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SUMMARY. It is provoed thal for all estitabl i and all multip tor ox-
ponontial familica, Bhattacharya bounds converge to tho variance of tho minimum variance
unbissed ostimate, provided the true value is an interior point of the paramector spacs. The
speoial caso of or | Bh barys functi is briefly di d and the variance is

licit], problom.
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1. INTRODUCTION

Suppose for an estimable 7(f) there exists a minimum varience unbiesed
estimate 7. Let B(m) be the Bhattacharya bound involving (Dify)fs,
1< i< m. When is it true that B(m) — var(T) ? Blight and Rao (1974)
show lim B(m) = var, (T} if f, is normal, binomial, Poisson, negative binomial
or gamroa with scale parameter, (up to a linear transformation) and r satisfies
certain conditions. Appsrently the same result is rediscovered by Khan
(1984). See also Lehmann (1983, p. 130).

We prove the same result for all estimable r and all multiparameter
exponential families, provided the true values of the parameter is sn interior
point of the natural parameter space (Theorem 1 and Cor. 2). An offshoot
is a result on the completeness of polynomials (Cor. 1). The argument is
extremely simple, it only mekes use of elementary ideas about Hilbert spaces.

A multiparameter example is worked out where 7 is & function of interest
in reliability theory and the Bhattacharya functions are orthogonal, The
general question of orthogonality is studied briefly in the light of the results
of Seth (1949) and Shanbhag (1872).

It is perhaps not inappropriate to point out that we still do not have a
characterisation of densities for which the Bhattacharys bound B(m) is
attained.
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2. RESULTS AND PROOF
Consider an exponential family. By reducing to the space of & minimal
sufficient statistic, we may consider the family of densities to be of the form
Jol@®) = A(®) exp{ <8, 2>}, 6560 C RE.

The dominating measure is some o-finite . Here ® and & are kX1 real
vectors. Fix 8, and assume

8, is an interior point of . o ()
Let Dy = D,‘ indicate differentiation with respect to the i-th co-ordinate
of 8. Let

¢,,.A...y, = [(D{"" D‘kkfe)/folsnoo

be the functions used in computing Bhattacharya bounds. Let 7(6) be a real
valued function which has an unbiased estimate 7' which has finite variance
under 8, Note that 7' must be the unique mini variance unbiaged
estimate. Let B(m,, ..., mx) be the Bhattacharya bound obtained by using
¢,1._”J‘, ji € mi. Then the following is true.

Theorem 1 : vary T = lim_ B(m,, ..., mp).

mg=rco, i1, ..,

Proof : Let L, be the space of real valued functions ¢ which are square
integrable with respect to fe‘, dp, with |}¢]F=E°n(¢'). Let Land L, bo

the linear subspaces spunned by ¢I.,--A.h-' 1< js < coand ¢I..-..h' 1< 5 <m

We denote by U the space of all ¢ in L, which are orthogonal to constants,
ie., Eon(¢) = 0. We begin by proving that L is dense in U. To see this

first note that if ¢ ¢ L, then by the Cauchy-Schwartz inequality, Eg(g) is
well-defined and finite in a neighbourhood of 8,. Moreover Ey(@) is analytie

(i.e., the restriction of an analytic function on a meighbourhood of §, in C?).

Suppose now ¢ ¢ U and is orthogonal to L. Then E g($) is an analytic function

whose value and derivativea of all orders at @, are zero. It follows that
Ey($) is identically zero and hence, by & well-known result (vido Lehmana,

1959, p. 132) @ is identically zera. This implies L is dense in U.
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Let T, be the projection of (I'—7(8)) on L,,. By the previous result
|—7(8)—Typll = 0. Hence,
varg, (T) = IT—7(O)* = IPmlP+IT—7(8)— Tyl = Lim [Ty

which is what we have to prove since B(m) = ||Ty,|*.
Corollaty 1 :  The linear space of all polynomials is dense in Ll(fo,)'
Proof . The proof of the proposition shows that the linear space spenned
by the constant function ¢ = 1 and ¢I:.~-.h is dense in L,. It is ensily checked
this linear space is identical with the linear spaco spanned by the polynomials.

It follows that a complete orthonormal basis for Ly(fg ) can be found
5

from the set of all polynomials.

Let = Ey(X). Then in a neighbourhood of 8, 6% is & one-one
analytic map (i.e., it has an extension to a k-dimensional complex domain
that is analytic) and we may parametrise the density as yv in terms of .

1, 9, o . .
Let ‘”h,m. 5 =D ..,D”‘;g,,)/g,,]n%. Note that it is still true that if

Ve L2Ueu) then Eg(y) is an analytic function of y. Hence the rest of the

proof of Theorem 1 with v in place of 8 remains valid and yields

Corollary 2: tar 0 (T) = lim C(m) where C(m) is the Bhallacharya bound
o

based on the funclion ¥Ill I and mi—0i=1,..,k ji < m.

't

As fer as the computation of B(m) or C(m) is concerned, the five one-

parameter families considered by Blight and Rao (1974) remain important.

The Bhattacharya bounds are relatively easy to calculate if the Bhattacharya

functions ¢“ 4 O Wh 4, 8T8 mutually orthogonal. For the one para-
yeenidk vk

meter exponential density,

(x—n) = Ky

at least in the interior of the parameter space. Seth (1949) had shown that
orthogonality of y's is true if X is 8 quedratic in %. This last condition holds
for the five families of (1], or slightly more gonerally, for random variable
whose linear functions have this sort of distribution. Using Seth’s calcula-
tions, it is not hard to show that orthogonality of ¥’s for all § in some open
set implies K is a quadratic. This may be proved by noting that Seth's
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expresgions (5.1.3) to (5.1.7) do not depend on his assumption (6.1.2) that
K i3 a quadratic in 7 and exprossion (5.1.8) becomes

Dy =¥~V = =32y~ 324+ 3/ K)a—Zy¥r, w9
where Z; = K-'DjK, as in Seth. Clearly (2) reduces to (6.1.8) when K is a

quadratic. Differentiating (2) and making use of (6.1.3.) to (6.1.7) as well as
(2), it can be shown that

Dy = rs—¥ ¥y = o linear function of ¥'s (i > 1). .. (3)

A proof of (3) is obtained as follows. The first equality in (3) follows from
(5.1.3). Also by differentiating (2), Dy, is seen to be Dy, plus the
derivative of the right hand side of (2). Each term is now reduced to a
linear combination of #¢'s and n constant.  We illustrate this by considering
only Dy,

Dy, = 'ﬁan'/’s+5/’aDn¢1- e (4)

By (2), tho first term ubove is a lincar combination. YW, ¥a¥, and yf of
which the first two are lincar combination of (s by (2) and (5.1.7) and the
last is a linear combination of ('s and a constant by (5.1.6). The second
term in (4) can be handled in a similar way. Finally collecting all the constant
terms appearing in such reductions one notes they cancel each other. This
proves (3). It follows from (2) and (3) that

2y = — Zyyi+a linear combination of y¢'s (i > 1)
+(u linear combination of ¥,y and y,y,)
= — 2y +a linear combination of yr('s (i > 1)

by another application of (2) and (5.1.7). Hence E,(yiy,) = —Z:E,(yt)
which is zero iff Z; = 0, i.0., iff K is a quadratic in .

The fact that orthogonality of ¢'s implics K is & quadratic in 7 has also
been noted by Shanbhag (1972) with somewhat different computations. The
main result of Shanbhag (1072) is that (under some conditions) ortbogonality
holds for & one parameter exponential iff it is one of the five listed in (1] upto
a linear transformation. It also follows from his calculations that the only
Bhattacharya functions which can be orthogonal are the y's obtained by
differentiating the density with respect to 7.

Combining the above facts it follows that (under mild conditions) the
following are equivalent : (1) Seth’s condition holds, (2) yy's are orthogonal
for an exponential family and (3) the exponential family is one of the five
listed in [1] up to & linear transformation. A multiparameter version of this
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result would be interesting. Of courye if the components of X are independent
with each of the marginal distributions belonging to one of the above five fami-
lies, up to & linear transformation, then (taking k=2, say) ¢I; ,z's are orthogonal

and l":._:. = wh,o'%.!z‘ Then!
varg(T) = L E(r, lz/Alx B,y

1 :
where g = D,: D,: 7, A;l = Es(qllh_o)’, BZ;: l'le(qﬁ‘,,,z)2 and the sum is

over §; » 0, js » 0, j;+j, » 1. The following example of this kind illus-
trates the computation of varg(T) in a reliability problem.

Example : Let U,V indicate the stimulus and tolerance for a system.
The system survives if U < V. Suppose U, V are independent, exponential,
—u v
fo(u v) = exp{ ‘91 0—’}
Let 7(8) = PO{U < V}. Then 7 = 6,(6,+6;)'. We want to estimate
7 given n i.i.d. copies of U and m ii.d. copies of V. Clearly we may work
with the sufficient statistics X, 2‘. Uy, X,= Z Vi. Then X, X, are
independent with marginel gamma dmtnb\mons If T is the minimum
variance unbiased estimate of 7 then
_ jytly_ (J1tds) ! (jlei_jiol)
s (=1 g G
ke (6,+6, yrist (J1+3s)

A2 = (= 1)! 5! B = (m+_7,-—1)‘],
W o ThT
(n—1)!6, —1)tot
Thus, though 7 = P(U, < V,| X) is hard to write down explicitly, thereis
an explicit expression for its variance. In the special case n=m =1,
vnr.(’I') = 1(1—7), so that one gets the curious identity

6.6, _ Tz (jl+jl )' (5:6y—js0)* 6} 63
0,46 >0, >0 B D G 56, 08 Y
Bt
Another ourious identity of the same type may be obtained if we take
r=¢""" = Pyfu< Ujandn=1 Then
R
ey s (Dol'r)lﬂx
i1 (TI?
1 After the paper was prepared, the suthors came to know that v.hh spoeoial results and the
following example have in Bar ioz (1080). Vol 18,
pp. 601-60.
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Professor 8. Bagohi has shown us a direct proof of this using Parseval’s
reault for Fourier transforms.

Incidentally if one takes the normal with a location parameter or
the exponential with a scale parameter the y’s (for ,= 0 and 6,=1)
are the Hermite and Laguerre polynomials (up to a constant). Corol-
lary 1 implies that these olassical polynomisls form a basis for L’U‘o)'
The present proof seems to be different from the classical one, videCo urant
and Hilbert (1853, 94-98).
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