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Autoregressive Moving Average (ARMA) are being used extensively for analyzing station-

ary signals. In practice, many signals are non-stationary in nature and it is well known

that analyzing non-stationary signals is quite difficult in general. Quasi-stationarity is often

used in analyzing non-stationary signals. The main idea about quasi-stationarity is to assume

stationarity over a short data segment (see for example Isaksson et al., 1981; Kay, 1988;

McAulay and Quatieri, 1986; Dahlhaus, 1997; Ombao et al., 2001) and the analysis of the

signal is performed over this short data length. Therefore, by this method a compromise

is needed between the model validity over the entire data length and the estimation of the

unknown parameters. In this paper we introduce a new model to analyze non-stationary

signals which is a generalization of the fundamental frequency model as well as the har-

monic model with multiple fundamentals and provide an estimation procedure under the

assumption of stationary noise random variables.

We consider the following model in stationary noise:

y(t)=

M
∑

k=1

fk(t; hk)+X(t), t = 1, . . . , N . (1)

We assume that there are M fundamental frequencies and the other frequencies appear in

the model with a certain relationship associated with each fundamental frequency. Here

fk(t; hk) is the contribution of the kth fundamental frequency and is a sum of qk sinusoidal

components of the following form:

fk(t; hk)=

qk
∑

j=1

q0
kj

cos{[k0
k + (j − 1)x0

k]t − /0
kj
}, (2)

where k0
k is the fundamental frequency and the other frequencies associated with k0

k are

occurring at k0
k , k0

k +x0
k, . . . , k

0
k + (qk − 1)x0

k . Note that, k0
k +x0

k, . . . , k
0
k + (qk − 1)x0

k ,

need not be harmonics of k0
k . If k0

k = x0
k , then they are harmonics of k0

k . Corresponding to

the frequency k0
k + (j − 1)x0

k , q0
kj

and /0
kj

represent the amplitude and phase components,

respectively, and they are also unknown.

We make the following assumptions on the model parameters and noise random variables

X(t).

Assumption 1.

q0
kj

> 0, /0
kj
∈ (−p, p), k0

k, x
0
k ∈ (0, p), j = 1, . . . , qk, k = 1, . . . , M . (3)

Assumption 2. k0
k and x0

k , k = 1, . . . , M are such that

k0
k + (i1 − 1)x0

k 6= k0
l + (i2 − 1)x0

l

for i1 = 1, . . . , qk; i2 = 1, . . . , ql and k 6= l = 1, . . . , M .

Assumption 3. The number of fundamental frequencies, M and the number of components

qk associated with the kth fundamental frequency, k = 1, . . . , M are known.
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Assumption 4. X(t) has the following representation:

X(t)=

∞
∑

k=−∞

a(k)e(t − k), (4)

where {e(t)} is a sequence of independent and identically distributed (i.i.d.) random variables

with mean zero and finite variance r2. The arbitrary constants a(k)’s are such that

∞
∑

k=−∞

|a(k)|<∞.

Assumptions 1–4 are quite general. We need Assumption 2 for identifiability. It only says

that the effective frequencies are distinct. Note that kM + (qM − 1)xM < p. We should

mention here that under Assumption 4, the signal y(t)’s are non-stationary in mean, not in

second or higher order structure. Thus, given an observed signal {y(t); t = 1, . . . , N}, the

aim is to estimate the unknown parameters, namely q’s, k’s, x’s and /’s under Assumptions

1–4.

We are interested to study the model (1) under Assumptions 1–4. Several authors have

considered various forms of the model (1) with M = 1 and without any restriction on the

frequencies, namely,

y(t)=

p
∑

k=1

a0
k cos(b0

kt − /0
k)+X(t), t = 1, . . . , N , (5)

where a0
k s are non-negative amplitudes, b0

ks are frequencies and /0
ks are phases and they

are unknown. Note that the multiple frequency model (MFM) (5) is a more general model

and can be used when no relationship exists among the frequencies. But, if the frequencies

are related, then this additional information is helpful to reduce the number of non-linear

parameters. In Section 4, we shall see how the model (1) is used to analyze different real

data.

The model (5) is a well-studied model and several authors considered the model with

different assumptions on the noise random variables and proposed different estimation

procedures. References may be made to works of Walker (1971), Hannan (1971, 1973),

Rice and Rosenblatt (1988), Kundu (1997) and so on. Observe that the proposed model is

a generalization of the following fundamental frequency model:

y(t)=

q
∑

j=1

q0
j cos(jk0t − /0

j )+X(t), t = 1, . . . , N . (6)

When M=1, q1=q and k0
1=x0

1=k0, model (1) coincides with model (6). The model (6) was

considered by Hannan (1974), Baldwin and Thomson (1978), Quinn and Thomson (1991),

Nandi and Kundu (2003) and Kundu and Nandi (2004) to analyze different real-life data sets.

Quinn and Thomson (1991) obtained the theoretical properties of an equivalent estimator

of the generalized least-squares estimator (LSEs). Nandi and Kundu (2003) discussed the
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theoretical properties of the LSEs for the model (6). The model (6) has only one non-

linear parameter, and so if all the frequencies are harmonics of a particular frequency,

the fundamental frequency model is the best one as maximum reduction of the number

of parameters is possible. Recently, Irizarry (2000) considered a similar model to analyze

several musical sound (harmonical) data. The model is expressed as follows:

y(t)=

J
∑

j=1







Kj
∑

k=1

(Aj,k cos(khj t)+ Bj,k sin(khj t))







+X(t) (7)

and is a harmonic model with multiple fundamental frequencies h1, . . . , hJ . This model is

exactly equal to the fundamental frequency model (6) with J = 1, A1,k = /k cos(/k) and

B1,k = qk sin(/k). Irizarry (2000) proposed window-based estimators using the method of

weighted least squares to estimate the unknown parameters and established the consistency

and asymptotic normality properties of the estimators. The model (1) is a generalization of

model (7). If k0
k = x0

k in model (1), it coincides with (7) (writing qkj
cos(/kj

)= Aj,k and

qkj
sin(/kj

) = Bj,k). Therefore, the proposed model is a generalization of the harmonic

model (7) with multiple fundamentals (so also of the fundamental frequency model (6))

and a particular case of the frequency model (5) which has several applications in different

field of science.

The presence of this kind of periodicity is a convenient approximation, but many real-life

phenomena can be described quite effectively, using models (6), (7) and similarly by using

model (1). We shall see later on in this paper that incidentally several short-duration speech

data can be successfully modeled using (1). Baldwin and Thomson (1978) and Quinn and

Thomson (1991) used the model (6) to describe the visual observation of S. Carinae, a

variable star in the Southern Hemisphere sky. Greenhouse et al. (1987) proposed the use

of higher-order harmonic terms of one or more fundamentals and ARMA processes for the

errors (so model (6) and (7)) for fitting biological rhythms and illustrated it by analyzing

human core body temperature data. The harmonic regression model has also been used to

assess the static properties of human circadian systems; see Brown and Czeisler (1992) and

Brown and Liuthardt (1999). To analyze the periodic changes in the functional activity of

specific groups of neurons in the human SCN (suprachiasmatic nucleus), the annual cycles

of peptidergic activity could be described by a multiple harmonic regression model with

ARMA errors (Hofman, 2001). Musical sound waves produced by musical instruments

can be analyzed using above-mentioned models (Rodet, 1997). Irizarry (2000) studied a

segment of sound produced by a pipe organ playing two consecutive notes using model

(7). Sircar and Syali (1996) proposed an amplitude modulated model with i.i.d. error by

exploiting some special features of some short-length voiced speech signals and analyzed

“aaa” and “uuu” sound data. Nandi et al. (2004) also studied this amplitude-modulated

model with stationary error and analyzed the same data sets. The analysis of these two data

sets are also included in this paper using model (1).

We propose the usual LSEs to estimate the unknown parameters of the model (1) and

obtain the theoretical properties of the estimators. We note that the model (1) is highly non-

linear in its parameters. Therefore, all the theoretical results of the LSEs are asymptotic

and it is not possible to obtain the finite sample behavior theoretically. It also does not

satisfy the sufficient conditions given in Jennrich (1969) or Wu (1981) for the LSEs to be
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consistent. So the consistency and asymptotic normality properties are not automatically

followed from standard results already available in the literature. We need to prove them in

some different way. We observe that the LSEs are consistent and they are asymptotically

normally distributed under the assumption that the error process is a linear process. The

asymptotic distribution provides us to approximate the variances of the estimates for finite

samples and to construct the error bounds of all the estimators. We compare models (1) and

(5) using numerical examples based on simulated as well as real-life data sets.

The rest of the paper is organized as follows. In Section 2, we define the LSEs of the

unknown parameters and derive the asymptotic properties of the LSEs. Simulation results

are presented in Section 3 to see the small sample performance. Different real data sets are

analyzed in Section 4 and finally we conclude the paper in Section 5. The proofs are given

in the appendix.

2. Asymptotic properties

In this section, we define the usual LSEs and obtain their theoretical properties. We denote

the parameter vector W as W= (h1, . . . , hM) for the model (1), where hk = (qk1
, . . . , qkqk

,

/k1
, . . . , /kqk

, kk, xk), k= 1, . . . , M . W
0 denotes the true parameter value. Here, M refers

to the total number of fundamental frequencies present and qk , the number of frequencies

associated with the kth fundamental frequency. Under Assumption 3, the other parameters

of this model are identifiable provided they satisfy Assumption 2.

Least-squares method consists of choosing Ŵ by minimizing the criterion

QN (W)=

N
∑

t=1



y(t)−

M
∑

k=1

qk
∑

j=1

qkj
cos{(kk + (j − 1)xk)t − /kj

}





2

. (8)

Note that obtaining the LSEs involves a 2
∑M

k=1 qk+2M dimensional minimization search.

When M and qk , k = 1, . . . , M are large, the LSEs may be very expensive. But qkj
s and

/kj
s can be expressed as functions of the frequencies kks and xks, so using the separable

regression technique of Richards (1961), it involves a 2M dimensional search.

We now present results describing the asymptotic properties of the LSEs for the parameter

W
0 of the model defined in (1). We prove all the results in the appendix.

Theorem 2.1. Under Assumption 1, 3 and 4, the LSE Ŵ of W
0 is a strongly consistent

estimator of W
0.

Now for asymptotic distribution, let us define a diagonal matrix V as follows:

V=









D1 0 · · · 0

0 D2 · · · 0
... · · ·

. . .
...

0 0 · · · DM









,
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where for each k = 1, . . . , M , Dk is a diagonal matrix of the following form:

Dk =









1
N1/2 Iqk

0 0 0

0 1
N1/2 Iqk

0 0

0 0 1
N3/2 0

0 0 0 1
N3/2









.

Here Iqk
denotes the identity matrix of order qk . Let R = 2

∑M
k=1 qk + 2M . The following

theorem states the asymptotic distribution of the LSE Ŵ of W
0.

Theorem 2.2. Under the same assumption as Theorem 2.1 and Assumption 2,

(Ŵ−W
0)V−1 →NR(0, 2r2

R
−1GR

−1),

as N →∞. The matrices R and G are as follows:

R=









R1 0 · · · 0

0 R2 · · · 0
... · · ·

. . .
...

0 0 · · · RM









and G=









G1 0 · · · 0

0 G2 · · · 0
... · · ·

. . .
...

0 0 · · · GM









,

where

Rk =









Iqk
0 0 0

0 Pk − 1
2

PkJk − 1
2

PkLk

0 − 1
2

JT
k Pk

1
3

JT
k PkJk

1
3
JT
k PkLk

0 − 1
2

LT
k Pk

1
3

LT
k PkJk

1
3
LT

k PkLk









, k = 1, . . . , M

and

Gk =









Ck 0 0 0

0 PkCk − 1
2

PkCkJk − 1
2

PkCkLk

0 − 1
2

JT
k PkCk

1
3

JT
k PkCkJk

1
3

JT
k PkCkLk

0 − 1
2

LT
k PkCk

1
3

LT
k PkCkJk

1
3

LT
k PkCkLk









, k = 1, . . . , M .

Here

Pk = diag{q0
k1

2
, . . . , q0

kqk

2
}, Jk = (1, 1, . . . , 1)T

qk×1,

Lk = (0, 1, . . . , qk − 1)T
qk×1, Ck = diag{ck(1), . . . , ck(qk)}, k = 1, . . . , M
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and

ck(j)=

(

∞
∑

l=−∞

a(l) cos{(k0
k + (j − 1)x0

k)l}

)2

+

(

∞
∑

l=−∞

a(l) sin{(k0
k + (j − 1)x0

k)l}

)2

=

∣

∣

∣

∣

∣

∞
∑

l=−∞

a(l)e−i{(k0
k+(j−1)x0

k)l}

∣

∣

∣

∣

∣

2

, j = 1, . . . , qk; k = 1, . . . , M .

Remark 2.1. The asymptotic distribution of the LSEs indicates that ĥj and ĥk are asymptot-

ically independent if j 6= k, that is, the estimators of the unknown parameters corresponding

to different fundamental frequencies are independent.

Remark 2.2. As R and G are block-diagonal matrices, R−1GR
−1 is also a block-diagonal

matrix with diagonal blocks as R
−1
k GkR

−1
k , k = 1, . . . , M . The off-diagonal blocks are 0

matrices. This implies that for each k = 1, . . . , M ,

(ĥk − h
0
k)D

−1
k →N2qk+2(0, 2r2

R
−1
k GkR

−1
k ),

as N →∞.

Remark 2.3. It can be seen from the definition of the matrix Dk and Remark 2.2 that the

normalization factor associated with k̂k and x̂k is N3/2 whereas with q̂kj
and /̂kj

, it is

N1/2. This indicates that for a given sample size N, the frequencies can be estimated more

accurately than the other parameters and the rate of convergence is much higher in case of

estimators of k0
k and x0

k .

Remark 2.4. Note that the matrices Rk and Gk are of the form

Rk =

(

Iqk
0

0 Fk

)

and

Gk =

(

Ck 0

0 Hk

)

.

So

R
−1
k GkR

−1
k =

(

Ck 0

0 F−1
k HkF−1

k

)

which implies that, the amplitude estimators are independent of the corresponding phase

and frequency parameter estimators.

Remark 2.5. From Theorem 2.2, it can be seen that asymptotic distribution of the LSEs

of the unknown parameters is independent of the true values of the phases.
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Remark 2.6. For the linear processes, i.e. processes satisfying Assumption 4, r2ck(j) is

exactly equal to the spectral density function of the process. Also it can be shown that

r2ck(j)= E





1

N

∣

∣

∣

∣

∣

N
∑

t=1

X(t)e−i(k0
k+(j−1)x0

k)t

∣

∣

∣

∣

∣

2


 , j = 1, . . . , qk; k = 1, . . . , M ,

which is the expected value of the periodogram function

I (k)=
1

N

∣

∣

∣

∣

∣

N
∑

t=1

X(t)e−ikt

∣

∣

∣

∣

∣

2

(9)

of the error random variables X(t). Thus, for simulation study, r2ck(j) can be estimated by

local averaging of the periodogram function of the error process across the point estimate

of the effective frequencies k̂k, k̂k+ x̂k, . . . , k̂k+(qk−1)x̂k . Another approach to estimate

r2ck(j) is to model {X(t)} as an autoregressive process and then using the estimated autore-

gressive parameters, ck(j)’s can be estimated. The later approach is suitable for analyzing

real data sets but cannot be implemented in experiments based on simulations.

3. Simulation results

In this section, we present results of numerical experiments based on simulations. We

compare the performance of the LSEs of the proposed model defined in (1) with the LSEs

of the unknown parameters of the corresponding MFM as defined in (5). In case of MFM,

b1 = k1, b2 = k1 +x1, . . . , bq1
= k1 + (q1 − 1)x1, . . . , b∑M

k=1 qk
= kqM

+ (qM − 1)xqM
.

We consider the following model for simulation studies with M = 2, q1 = 3, q2 = 3:

y(t)=

3
∑

j=1

q0
1j

cos{(k0
1 + (j − 1)x0

1)t − /0
1j
}

+

3
∑

j=1

q0
2j

cos{(k0
2 + (j − 1)x0

2)t − /0
2j
} +X(t) (10)

with X(t)= 0.5 e(t − 1)+ e(t) and

q0
11
= 0.10, q0

12
= 0.45, q0

13
= 0.40, /0

11
= 0.55, /0

12
= 0.60,

/0
13
= 0.15,

q0
21
= 0.20, q0

22
= 0.60, q0

23
= 0.40, /0

21
= 0.10, /0

22
= 0.50,

/0
23
= 0.20,

k0
1 = 0.439822978, x0

1 = 0.157079635,

k0
2 = 1.130973372, x0

2 = 0.188495562.
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Here e(t)s are i.i.d. Gaussian random variables with mean zero and finite variance r2. We

report the results for N = 200 and for error variances r2 = 0.2 and 0.4. We generate a

data set from the model (10) and compute LSEs of different parameters by minimizing

the residual sum of squares given in (8) and 95% confidence intervals for each parameter

using Theorem 2.2. For minimization we use routines “amoeba” and “amotry” (based on

downhill simplex method) given in Press et al. (1992). As already mentioned in Section

2, for interval estimation we need to estimate r2ck(j), j = 1, . . . , qk, k = 1, . . . , M . We

use smoothed periodogram (averaging the periodogram function over a window (−L, L)

across the point estimate of the frequency) of the estimated error process. We replicate the

process 5000 times and report average estimates, mean-squared errors (MSEs), average

confidence lengths and coverage percentages. The results are reported in Tables 1 and 2.

Table 1

The average LSEs, the MSEs, the average confidence lengths and the coverage probabilities of the different

parameters using the proposed model for r2 = 0.2

Parameter Average LSE MSE Av. conf. length 95% cov.

(true value) (asym. var.) (ex. conf. length) prob.

q11
0.125963062 3.95831512e− 03 0.337497294 0.95

(0.10) (4.3096542e− 03) (0.2573400)

q12
0.455777884 4.15113848e− 03 0.326178163 0.94

(0.45) (4.1541611e− 03) (0.2526549)

q13
0.404897749 3.96256289e− 03 0.315576911 0.95

(0.40) (3.9579375e− 03) (0.2466156)

/11
0.494047403 0.688315213 4.24205685 0.91

(0.55) (0.4414515) (2.604519)

/12
0.596532404 2.38425396e− 02 0.774129033 0.94

(0.60) (2.2643777e− 02) (0.5898757)

/13
0.151415542 2.99340468e− 02 0.855129421 0.95

(0.15) (2.7628275e− 02) (0.6515728)

k1 0.439792693 1.55844623e− 06 5.46646677e− 03 0.95

(0.4398230) (1.0486136e− 06) (4.0141521e− 03)

x1 0.157105446 7.16287389e− 07 3.64642008e− 03 0.95

(0.1570796) (4.5592520e− 07) (2.6468716e− 03)

q21
0.210262716 3.31078214e− 03 0.198635176 0.81

(0.20) (3.3515587e− 03) (0.2269392)

q22
0.600659609 2.89968797e− 03 0.189876512 0.82

(0.60) (2.9973800e− 03) (0.2146135)

q23
0.404682457 2.62100901e− 03 0.175994471 0.81

(0.40) (2.6255806e− 03) (0.2008625)

/21
0.0978257582 9.84198451e− 02 1.11533058 0.83

(0.10) (9.2979610e− 02) (1.195308)

/22
0.501318812 9.60094389e− 03 0.359809935 0.85

(0.50) (1.0157371e− 02) (0.3950724)

/23
0.203538164 1.92437172e− 02 0.506877661 0.84

(0.20) (2.0647796e− 02) (0.5632781)

k2 1.13098848 5.99011685e− 07 3.59018217e− 03 0.95

(1.1309734) (9.1906406e− 07) (3.7580191e− 03)

x2 0.188493758 3.12252752e− 07 2.60419305e− 03 0.95

(0.1884956) (4.8829617e− 07) (2.7392253e− 03)
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Table 2

The average LSEs, the MSEs, the average confidence lengths and the coverage probabilities of the different

parameters using the proposed model for r2 = 0.4

Parameter Average LSE MSE Av. conf. length 95% cov.

(true value) (asym. var.) (ex. conf. length) prob.

q11
0.151604086 8.27635452e− 03 0.476105064 0.95

(0.10) (8.6193085e− 03) (0.3639337)

q12
0.46168986 8.26609321e− 03 0.461868048 0.94

(0.45) (8.3083222e− 03) (0.3573080)

q13
0.411106139 7.85315502e− 03 0.446626604 0.95

(0.40) (7.9158749e− 03) (0.3487671)

/11
0.411025107 1.22210026 5.07852125 0.88

(0.55) (0.8829030) (3.683347)

/12
0.594926059 4.85680364e− 02 1.11277223 0.94

(0.60) (4.5287553e− 02) (0.8342102)

/13
0.152366251 6.14459403e− 02 1.23698533 0.95

(0.15) (5.5256549e− 02) (0.9214631)

k1 0.439781189 3.03807201e− 06 7.8823017e− 03 0.95

(0.4398230) (2.0972273e− 06) (5.6768684e− 03)

x1 0.157114819 1.42341173e− 06 5.31302486e− 03 0.95

(0.1570796) (9.1185041e− 07) (3.7432418e− 03)

q21
0.220800266 6.48095924e− 03 0.281173646 0.81

(0.20) (6.7031174e− 03) (0.3209405)

q22
0.602861106 5.78639749e− 03 0.268543154 0.82

(0.60) (5.9947600e− 03) (0.3035093)

q23
0.409267187 5.22927288e− 03 0.249112844 0.81

(0.40) (5.2511613e− 03) (0.2840624)

/21
0.0954661742 0.232197076 1.66008222 0.82

(0.10) (0.1859592) (1.690421)

/22
0.501951993 1.93329826e− 02 0.514545619 0.85

(0.50) (2.0314742e− 02) (0.5587168)

/23
0.20508866 3.9053704e− 02 0.72747165 0.85

(0.20) (4.1295592e− 02) (0.7965956)

k2 1.13099003 1.19849585e− 06 5.12786489e− 03 0.94

(1.1309734) (1.8381281e− 06) (5.3146416e− 03)

x2 0.188494474 6.31346211e− 07 3.73536511e− 03 0.94

(0.1884956) (9.7659233e− 07) (3.8738493e− 03)

For comparison, we have also reported asymptotic variances and expected confidence

lengths computed using the true values of the parameters. We perform same experiments on

model (10), but using MFM, instead of model (1). In this case total number of non-linear

parameters is q1 + q2 = 6. The results for MFM are reported in Tables 3 and 4.

Some of the points are quite clear from Tables 1 and 2. It is observed that for all the

parameter estimators as the variance increases, average biases and MSEs increase. It ver-

ifies the consistency property of the LSEs. The non-linear frequency estimators are more

accurate than the amplitude and phase estimators as the theory suggests. The MSEs and

the corresponding asymptotic variances of all the estimators are quite close to each other.

The coverage percentages of the parameters associated with first fundamental frequency
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Table 3

The average LSEs, the MSEs, the average confidence lengths and the coverage probabilities of different parameters

using MFM for r2 = 0.2

Parameter Average LSE MSE Av. conf. length 95% cov.

(true value) (asym. var.) (ex. conf. length) prob.

a1 0.100683041 6.62101229e− 05 0.220231146 1.0

(4.30965424e− 03) (0.257339984)

a2 0.451257676 3.44792061e− 04 0.216402516 1.0

(4.15416108e− 03) (0.25265491)

a3 0.400900543 2.59834371e− 04 0.212928489 1.0

(3.95793747e− 03) (0.246615589)

a4 0.200601995 9.68176464e− 05 0.152528748 1.0

(3.35155893e− 03) (0.226939201)

a5 0.601447225 5.48608368e− 04 0.138830096 0.95

(2.99737975e− 03) (0.214613453)

a6 0.400943607 2.53332662e− 04 0.135277435 0.98

(2.62558088e− 03) (0.200862452)

/1 0.551747084 4.09032963e− 03 4.39787626 1.0

(1.72386169) (5.14680004)

/2 0.60472846 6.82766503e− 03 0.960425317 0.99

(8.20575058e− 02) (1.12291074)

/3 0.151506901 3.14068445e− 03 1.06390452 1.0

(9.8948434e− 02) (1.233078)

/4 0.0995254889 1.77992496e− 03 1.52432573 1.0

(0.335155904) (2.26939178)

/5 0.501218498 5.90951648e− 03 0.462355971 0.95

(3.33042182e− 02) (0.715378225)

/6 0.200857386 2.44277902e− 03 0.675922155 0.99

(6.56395182e− 02) (1.00431228)

b1 0.439534605 5.60617264e− 05 3.80868129e− 02 0.95

(1.29289634e− 04) (4.45725955e− 02)

b2 0.596982002 2.0185114e− 06 8.31752364e− 03 0.97

(6.15431281e− 06) (9.72469151e− 03)

b3 0.754041851 2.13030876e− 06 9.21367202e− 03 0.98

(7.42113252e− 06) (1.06787682e− 02)

b4 1.1309551 9.4032639e− 06 1.3201056e− 02 0.93

(2.51366928e− 05) (1.96535103e− 02)

b5 1.31950402 9.81566586e− 07 4.00412921e− 03 0.89

(2.49781647e− 06) (6.1953566e− 03)

b6 1.50798428 1.40446798e− 06 5.85365482e− 03 0.94

(4.92296385e− 06) (8.69759917e− 03)

attain the nominal level for all the parameters except /11
when r2 = 0.4, but in case of the

second one, the amplitude and phase estimators do not attain the nominal level and they

are quite poor, whereas the performance of the frequency estimators are satisfactory in all

the cases considered. Since the expected confidence lengths are quite close to the average

confidence lengths for all the parameters, the estimation of r2ck(j) is quite reasonable and

the asymptotic results can be used in making finite sample inference.
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Table 4

The average LSEs, the MSEs, the average confidence lengths and the coverage probabilities of different parameters

using MFM for r2 = 0.4

Parameter Average LSE MSE Av. conf. length 95% cov.

(true value) (asym. var.) (ex. conf. length) prob.

a1 0.103271469 3.12825432e− 04 0.310845464 1.0

(8.61930847e− 03) (0.363933712)

a2 0.453495115 8.75412254e− 04 0.303890526 0.99

(8.30832217e− 03) (0.357308)

a3 0.402786911 6.71417103e− 04 0.299821109 1.0

(7.91587494e− 03) (0.348767132)

a4 0.20187901 3.19670828e− 04 0.213473439 0.99

(6.70311786e− 03) (0.320940495)

a5 0.603555858 1.3390953e− 03 0.195176035 0.95

(5.9947595e− 03) (0.303509265)

a6 0.402185053 6.61559461e− 04 0.190110669 0.97

(5.25116175e− 03) (0.284062415)

/1 0.553592145 8.26491881e− 03 6.60993528 1.0

(3.44772339) (7.27867413)

/2 0.610250294 1.67299565e− 02 1.345227 0.99

(0.164115012) (1.5880357)

/3 0.152599573 7.37958541e− 03 1.49412251 1.0

(0.197896868) (1.74383569)

/4 .0999217778 3.84876621e− 03 2.12972307 1.0

(0.670311809) (3.20940495)

/5 0.50403589 1.38942935e− 02 0.648625791 0.95

(6.66084364e− 02) (1.01169753)

/6 0.202204913 6.29422953e− 03 0.948941886 0.99

(0.131279036) (1.42031193)

b1 0.439267337 9.31811592e− 05 5.72436824e− 02 0.95

(2.58579268e− 04) (6.30351603e− 02)

b2 0.597042143 4.41594557e− 06 1.16500212e− 02 0.97

(1.23086256e− 05) (1.37527911e− 02)

b3 0.754063606 4.70306395e− 06 1.2939482e− 02 0.97

(1.4842265e− 05) (1.51020577e− 02)

b4 1.13074279 2.5412297e− 05 1.84439197e− 02 0.90

(5.02733856e− 05) (2.77942587e− 02)

b5 1.31954181 2.17460683e− 06 5.61727071e− 03 0.88

(4.99563293e− 06) (8.76155775e− 03)

b6 1.50802243 3.02026615e− 06 8.2180649e− 03 0.93

(9.84592771e− 06) (1.23002622e− 02)

Now comparing the estimators obtained using the proposed model and MFM, we observe

that the amplitude and phase parameter estimators are estimated more accurately in terms

of biases and MSEs if MFM is used. On the other hand the non-linear frequency estimators

are more accurate if model (1) is used. The average confidence lengths for amplitudes are

larger in case of model (1), whereas for phase estimators, they are larger in case of MFM. In

case of MFM, 95% coverage percentages cover all the time for all the phase and amplitude

estimators except a5 and /5, for the model considered. For the frequencies also, they do

not attain the nominal level in general.
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4. Data analysis

In this section we use the proposed model (1) for analyzing several real datasets. We

would like to mention here that several short-duration voiced speech signal, namely “eee”,

“aaa”, “aww”, “uuu” and “ahh”, can be analyzed using model (1) and we present the

analysis in this section. But as already mentioned in introduction that there are many other

applications where this model can be satisfactorily used. The plots of the observed data

sets and corresponding periodogram functions are provided in Figs. 1–10. The data set

“ahh” contains 340 signal values whereas each of all the other data sets contains 512

signal values, all sampled at 10 kHz frequency. We have estimated M and qk, k=1, . . . , M

from the periodogram plots. The periodogram is a powerful tool for locating the frequencies

visually. If the observed data are periodic, the plot of the periodogram function exhibits large

positive values (the squares of the amplitudes associated with the frequencies) at the true

values of the underlying frequencies present in the data and at all the other points it is close

to zero. Note that, we have considered the simple periodogram function, not the smoothed

periodogram, which is commonly known as spectrogram in the time series literature. Also,

we have calculated I (k), for each point of a grid (fine enough) of (0, p). We have not

calculated I (k) only at the so-called Fourier frequencies {2pj/N, j = 0, 1, . . . , N − 1}. So

the number of peaks in the plot of the periodogram function gives an estimate of the number

of effective frequencies present in the underlying model, or it roughly estimates the number

of components p if one uses model (5). It may be quite subjective sometimes, depending on

the error variance and magnitude of the amplitudes. The periodogram may show only the

more dominant frequencies. In such cases, when the effects of these frequencies are removed

from the observed series and the periodogram function of the residual series is plotted, then

it may show some peaks corresponding to other frequencies. If the error variance is too
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Fig. 1. The plot of the observed “eee” vowel sound.
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Fig. 2. The plot of the periodogram function of “eee” sound.
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Fig. 3. The plot of the observed “aaa” vowel sound.

high, periodogram plot may not exhibit a significant distinct peak at k∗, even if this k∗ has a

significant contribution to the data. Also, in case, two frequencies are “close enough” then

periodogram may show only one peak. In such cases it is recommended to use of larger

sample size, if it is possible and use of a finer grid may provide some more information

about the presence of another frequency.
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Fig. 4. The plot of the periodogram function of “aaa” vowel sound.
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Fig. 5. The plot of the observed “uuu” vowel sound.

The initial estimates of the frequencies are obtained from the plot of the periodogram

function. Using these initial estimates as starting values, the LSEs of the unknown parame-

ters are obtained for all the data sets. Using Theorem 2.2, we also calculate 95% confidence

intervals of the LSEs. To see how the proposed model (1) performs as compared to the

general MFM (5), we estimate the LSEs of the unknown parameters of MFM. We also

obtain 95% confidence intervals using the asymptotic distribution (Kundu, 1997) of the

LSEs of the parameters of MFM in case of each data set. In analyzing these data sets we
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Fig. 6. The plot of the periodogram function of “uuu” vowel sound.
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Fig. 7. The plot of the observed “aww” sound.

use estimated error random variables to estimate r2ck(j), j =1, . . . , qk; k=1, . . . , M . We

use run test (Draper and Smith, 1981) to test whether the estimated error is independent

or not. For “eee” data set the estimated errors are independent for both models, whereas

for all the other data sets, the test statistic value confirms that the errors are correlated.

Using autocorrelation and partial autocorrelation function we model the error processes as

different autoregressive (AR) processes in all such cases. In case of “aaa” with model (1)
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Fig. 8. The plot of the periodogram function of “aww” sound.
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Fig. 9. The plot of the observed “ahh” sound.

the error is modeled as an AR(3) process whereas with MFM, it is modeled as an AR(1)

process. For “ahh”, “aww” and “uuu” the residuals are modeled as different AR(3) pro-

cesses. We estimate the AR parameters using Yule–Walker equation. Finally, we again use

the run test to verify whether the independence assumption on ê(t) is satisfied at 95% level

of significance or not. We see that in all the cases ê(t) satisfies the independence assumption

except “aww” data set when MFM is used for estimation. As the estimated error is used
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Fig. 10. The plot of the periodogram function of “ahh” sound.

to estimate r2ck(j)’s for these data sets, in case of “aww” data, we apply run test to the

ê(1), . . . , ê(256) and then independence is satisfied. For “aww” data, we have used the fact

that frequencies appear as harmonics of the first fundamental frequency. In each case the

roots of the characteristic equation of the estimated AR process are less than one in absolute

value, so the estimated error is stationary and can be expressed as linear process given in

(4). The results for model (1) are provided in Tables 5, 7, 9, 11 and 13 and for MFM in

Tables 6, 8, 10, 12 and 14.

The predicted signals say ŷ(t) for all data sets are provided in Figs. 11–15 for “eee”,

“aaa”, “uuu”, “aww” and “ahh”, respectively. For comparison, we have plotted the predicted

values using LSEs of model (1), predicted values using LSEs of MFM and the original sig-

nal in the same figure. The fitted values match quite well with the original signal in all the

cases.

We observe that in case of “eee” and “aaa” data sets the confidence intervals of all the pa-

rameters corresponding to first fundamental frequency k0
1 and amplitudes corresponding to

second fundamental frequency are slightly larger in case they are estimated using model (1)

than those obtained with MFM. But the confidence lengths of k2 and x2 and corresponding

phases are much smaller in case of model (1). In case of “ahh” data set there is only one

frequency and the confidence lengths of the phases are larger in case of MFM. For “aww”

data set confidence intervals of amplitudes associated with k1 is much higher in model (1),

whereas for phases, it is the other way. The confidence interval for frequency k1 (here it is

used that k1 = x1) is much lower as compared to b1 of MFM. For second frequency, they

are almost identical (but in this case there is only one frequency, so theoretically asymptotic

variances are equal) for both the models. For “uuu” data set the confidence intervals of all

the parameters are smaller in case of MFM. But in “uuu” data set like “ahh”, M = 1 and

the total number of parameters is 10. If we use the information that k1 = x1, i.e. if the
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Table 5

Results for “eee” data set using the proposed model

Parameter Estimate Lower bound Upper bound

q11
0.792912781 0.745130777 0.840694785

q12
1.41441321 1.36663115 1.46219528

q13
0.203153163 0.15537113 0.250935197

/11
0.681846261 0.434020698 0.929671824

/12
0.913759112 0.747117102 1.08040118

/13
−0.0415502712 −0.298853695 0.215753138

k1 0.1140192 0.113080189 0.114958212

x1 0.113874406 0.11353147 0.114217341

q21
0.110554226 0.0627721995 0.158336252

q22
0.708103955 0.660321951 0.755885959

q23
0.170492932 0.122710906 0.218274966

q24
0.141166449 0.0933844224 0.188948482

q25
0.344861776 0.297079742 0.392643809

q26
0.16529128 0.117509253 0.213073313

/21
0.427151084 −0.0344740637 0.888776243

/22
0.479345709 0.34814921 0.610542178

/23
−2.71241069 −3.01004577 −2.41477561

/24
0.815808356 0.451096743 1.18051994

/25
−0.773955345 −1.01284397 −0.535066724

/26
−0.577183068 −0.966903508 −0.187462628

k2 1.3514533 1.35081983 1.35208678

x2 0.11346291 0.113172941 0.113752879

Data set: “eee”. M = 2, q1 = 3, q2 = 6.

X̂(t)= e(t).

Run test: z for ê(t)=−1.10903132.

Residual sum of squares: 0.154122174.

fundamental frequency model given in (6) is used, the number of non-linear parameters

reduces to one from two. Using the asymptotic distribution of (k̂1− x̂1), it is observed that

the confidence interval of (k1 −x1) is (−0.004721, 0.002557) which includes zero. Thus,

we accept the hypothesis H0 : k1 − x1 = 0. So for this particular data set it is reasonable

to use the fundamental frequency model rather than the proposed model (1). If we use the

fundamental frequency model (6), then we see that the confidence intervals for phases and

frequency k1 is much lower as compared to MFM (not reported here). Note that the asymp-

totic variances of a particular frequency of MFM is inversely proportional to the square

of the associated amplitude and they are independent of the other frequencies, which is

not true in case of the proposed model. In this case the asymptotic variances of kk and xk

depend on all the amplitudes qkj
, j = 1, . . . , qk . Thus, we have seen that several short-

duration voiced speech data can be analyzed using the model (1). In analyzing these data

sets, neither of the two models outperforms the other in all respects. But the advantage of
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Table 6

LSE and confidence intervals for “eee” data with multiple frequency model

Parameters LSE Lower limit Upper limit

a1 0.792754471 0.745822906 0.839686036

a2 1.41381097 1.36687934 1.46074259

a3 0.203779265 0.1568477 0.250710845

a4 0.111959115 0.0650275424 0.158890679

a5 0.7039783 0.657046735 0.750909865

a6 0.172563389 0.125631824 0.219494954

a7 0.145034194 0.0981026217 0.191965759

a8 0.355013132 0.308081567 0.401944697

a9 0.176291764 0.129360199 0.223223329

/1 0.687658191 0.569256902 0.80605948

/2 0.912467241 0.846077085 0.978857398

/3 0.0317988843 −0.428812951 0.492410719

/4 0.628177047 −0.21019274 1.46654689

/5 0.495831549 0.362499118 0.62916398

/6 2.82846522 2.28453088 3.37239957

/7 0.847214043 0.200034678 1.49439347

/8 −0.360235542 −0.624628961 −0.0958421007

/9 0.00214044028 −0.530290186 0.534571111

b1 0.114038095 0.113637552 0.114438638

b2 0.227885813 0.227661222 0.228110403

b3 0.342097998 0.340539783 0.343656212

b4 1.35217214 1.34933603 1.35500824

b5 1.46495438 1.46450329 1.46540546

b6 1.5753814 1.57354128 1.57722151

b7 1.69190764 1.68971825 1.69409704

b8 1.80700564 1.80611122 1.80790007

b9 1.92089081 1.91908967 1.92269194

X̂(t)= e(t).

Run test: z for ê(t)=−1.03238821.

Residual sum of squares: 0.148744926.

using the proposed model is that the total number of non-linear parameters to be estimated,

reduces as compared to the number of the effective frequencies. Several non-stationary data

follow a particular relationship among the frequencies and it is captured by the proposed

model.

5. Conclusions

In this paper, we propose a new model with multiple fundamental frequencies in sta-

tionary noise. The model is a particular model of the multiple frequency model (5) and a
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Table 7

Results for “aaa” data set using the proposed model

Parameter Estimate Lower bound Upper bound

q11
0.220683411 0.16870077 0.272666067

q12
1.21162212 1.16022503 1.2630192

q13
0.160044715 0.109573394 0.210516036

q14
0.138260633 0.088989988 0.187531278

/11
2.11266017 1.35893762 2.8663826

/12
2.74804449 2.53007388 2.9660151

/13
−0.129586205 −0.89653182 0.637359381

/14
0.377879053 −1.02523708 1.78099513

k1 0.113897234 0.11110048 0.116693988

x1 0.113964394 0.111329563 0.116599225

q21
0.146804646 0.109372251 0.184237033

q22
0.245368242 0.209165379 0.28157112

q23
0.377789408 0.342714161 0.412864655

q24
0.0969588906 0.0629100502 0.131007731

q25
0.133374184 0.100253083 0.166495293

/21
2.94918633 2.42440987 3.47396278

/22
0.0518640578 −0.357301384 0.4610295

/23
1.36409092 0.98188448 1.74629736

/24
2.10673928 1.55073655 2.66274214

/25
−0.706613243 −1.30023837 −0.112988077

k2 1.36052275 1.35873103 1.36231446

x2 0.11399442 0.113307588 0.1146212

Data set: “aaa”. M = 2, q1 = 4, q2 = 5.

X̂(t)= 0.696457803 X̂(t − 1)− 0.701408327 X̂(t − 2)+ 0.618664384 X̂(t − 3)+ e(t).

Run test: z for X̂(t)=−5.87313509, z for ê(t)= 0.628699183.

Residual sum of squares: 0.101041436.

generalization of the fundamental frequency model (6) as well as the harmonic model (7). It

is observed that several non-stationary signals can be analyzed using this model. To analyze

the data sets, the number of fundamental frequencies, M and the number of frequencies

associated with kth fundamental frequency qk , k = 1, . . . , M are estimated using the peri-

odogram function. We have proposed the usual LSEs to estimate the unknown parameters.

The estimators are strongly consistent and asymptotically normal. The asymptotic distri-

bution indicates that the estimators of the unknown parameters corresponding to different

fundamental frequencies are independent and amplitude estimators are independent of the

corresponding phase and frequency estimators. The experimental results indicate that the

asymptotic results can be used in making finite sample inferences. Several real data are

analyzed and the estimated signals match quite well with the observed signals in each case.

The asymptotic distribution is used to construct the confidence bounds of each parameter

at 95% level of significance. In this paper, we have not considered the problem of esti-

mating M and qk . Some information theoretic criteria combined with the special structure
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Table 8

LSE and confidence intervals for “aaa” data with multiple frequency model

Parameters LSE Lower limit Upper limit

a1 0.226719305 0.190961957 0.262476653

a2 1.21300876 1.17725146 1.24876606

a3 0.163902849 0.128145501 0.199660197

a4 0.137947291 0.102189943 0.173704639

a5 0.143389478 0.10763213 0.179146826

a6 0.266157418 0.230400071 0.301914752

a7 0.38930583 0.353548497 0.425063163

a8 0.101906128 0.0661487803 0.137663469

a9 0.134322852 0.098565504 0.1700802

/1 2.1619103 1.84647751 2.47734308

/2 2.54826617 2.48930979 2.60722256

/3 −0.0690812841 −0.505404949 0.367242366

/4 0.371035159 −0.147385299 0.889455616

/5 3.04547048 2.54672599 3.54421496

/6 −0.602789819 −0.871483028 −0.334096611

/7 0.90565449 0.721956491 1.08935249

/8 1.58608973 0.884319425 2.28785992

/9 −1.12101579 −1.65342474 −0.588606775

b1 0.114094153 0.113027073 0.115161233

b2 0.227092206 0.226892769 0.227291644

b3 0.34200263 0.340526581 0.34347868

b4 0.455799341 0.454045564 0.457553118

b5 1.36083913 1.35915196 1.3625263

b6 1.47200274 1.47109377 1.47291172

b7 1.58692384 1.5863024 1.58754528

b8 1.70071459 1.69834054 1.70308864

b9 1.81501627 1.81321514 1.8168174

X̂(t)= 0.31577149 X̂(t − 1)+ e(t).

Run test: z for X̂(t)=−3.13001537, z for ê(t)= 0.26275149.

Residual sum of squares: 0.0874886289.

of the proposed model may be used to estimate them. Further research is needed in this

direction.
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Table 9

Results for “uuu” data set using the proposed model

Parameter Estimate Lower bound Upper bound

q11
0.633288026 0.544679284 0.721896768

q12
1.70542562 1.61684871 1.79400253

q13
0.419593066 0.331111431 0.508074701

q14
0.343196869 0.254873455 0.431520283

/11
−2.61283183 −3.14323187 −2.08243179

/12
1.33654237 1.08859777 1.58448696

/13
−2.88876963 −3.43958592 −2.33795333

/14
−2.69739866 −3.66095066 −1.73384655

k1 0.113104612 0.111106128 0.115103096

x1 0.114186443 0.112432718 0.115940168

Data set: “uuu”. M = 1, q1 = 4.

X̂(t)= 1.2119236 X̂(t − 1)− 0.518095672 X̂(t − 2)+ 0.0920835361 X̂(t − 2)+ e(t).

Run test: z for X̂(t)=−14.5708122, z for ê(t)=−1.03364444.

Residual sum of squares: 0.0981521457.

Table 10

LSE and confidence intervals for “uuu” data with multiple frequency model

Parameters LSE Lower limit Upper limit

a1 0.63175 0.57488 0.68861

a2 1.71710 1.66195 1.77225

a3 0.43196 0.37941 0.48452

a4 0.35917 0.30972 0.40861

/1 −2.41835 −2.59838 −2.23832

/2 1.52894 1.46471 1.59318

/3 −2.30741 −2.55075 −2.06407

/4 −2.08317 −2.35851 −1.80782

b1 0.11390 0.11329 0.11451

b2 0.22804 0.22782 0.22825

b3 0.34376 0.34294 0.34458

b4 0.45793 0.45700 0.45886

X̂(t)= 1.09189606 X̂(t − 1)− 0.502943218 X̂(t − 2)+ 0.102927223 X̂(t − 2)+ e(t).

Run test: z for X̂(t)=−12.1590595, z for ê(t)=−1.48203266.

Residual sum of squares: 0.0620818324.

Appendix A

For notational convenience, first we prove the results for M = 1, i.e. the model has only

one fundamental frequency and then we sketch the outline of the proof for general M.
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Table 11

Results for “aww” data set using the proposed model

Parameter Estimate Lower bound Upper bound

q11
0.127831191 0.0166739132 0.238988474

q12
0.164348915 0.0448353849 0.283862442

q13
0.242797658 0.107381746 0.378213555

q14
0.490236014 0.328855962 0.651616037

q15
1.11415863 0.920606256 1.30771101

q16
0.362586141 0.164035648 0.561136603

/11
−2.36564922 −3.23676491 −1.49453342

/12
0.397528142 −0.337061763 1.13211799

/13
−2.53827643 −3.11740494 −1.95914781

/14
0.833990335 0.444618791 1.22336185

/15
−1.08417308 −1.39682209 −0.771524072

/16
−2.51970673 −3.14991474 −1.88949871

k1 0.0922982097 0.0920951292 0.0925012901

q21
0.168908238 0.14887704 0.188939437

/21
0.61500001 0.377815574 0.852184474

k2 1.66371846 1.66291606 1.66452086

Data set: “aww”. M = 2, q1 = 6, q2 = 1.

X̂(t)= 1.31350672 X̂(t − 1)− 0.511514068 X̂(t − 2)− 0.103843123 X̂(t − 2)+ e(t).

Run test: z for X̂(t)=−15.0958452, z for ê(t)=−0.89579612.

Residual sum of squares: 0.484496683.

For M = 1, W = h1 = h, q1 = q, say and let us write h = (q1, . . . , qq , /1, . . . ,/q , k, x).

h
0 = (q0

1, . . . , q
0
q , /0

1, . . . , /
0
q , k0, x0) and ĥ = (q̂1, . . . , q̂q , /̂1, . . . , /̂q , k̂, x̂) denote the

true value of h and the LSE of h
0, respectively. We need the following lemmas to prove the

theorems.

Lemma 1. If X(t) satisfies Assumption 4, then

lim
N→∞

sup
06c6p

∣

∣

∣

∣

∣

1

NL+1

N
∑

t=1

U(t)tL cos(ct)

∣

∣

∣

∣

∣

= 0 a.s.,

lim
N→∞

sup
06c6p

∣

∣

∣

∣

∣

1

NL+1

N
∑

t=1

U(t)tL sin(ct)

∣

∣

∣

∣

∣

= 0 a.s.

for L= 0, 1, 2, . . . .
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Table 12

LSE and confidence intervals for “aww” data with multiple frequency model

Parameters LSE Lower limit Upper limit

a1 0.120224684 0.0445712507 0.195878118

a2 0.152249157 0.0754743591 0.229023963

a3 0.238393679 0.160011902 0.316775471

a4 0.514508545 0.434411645 0.594605446

a5 1.3179431 1.23688722 1.39899898

a6 0.456269532 0.376150042 0.536388993

a7 0.172196656 0.154326186 0.190067127

/1 −2.42837739 −3.68691158 −1.16984332

/2 0.851819396 −0.156722158 1.86036098

/3 −2.27399015 −2.93157291 −1.61640739

/4 1.53354931 1.22219622 1.8449024

/5 0.00387152098 −0.119132072 0.126875117

/6 −1.31130302 −1.66249669 −0.960109353

/7 0.664068937 0.456509978 0.871627867

b1 0.0920180827 0.0877605751 0.0962755904

b2 0.186266482 0.182854667 0.189678296

b3 0.278118253 0.275893718 0.280342788

b4 0.372019708 0.370966434 0.373072982

b5 0.46590662 0.46549052 0.46632272

b6 0.558983684 0.557795644 0.560171723

b7 1.66409254 1.6633904 1.66479468

X̂(t)= 1.21117878 X̂(t − 1)− 0.603570342 X̂(t − 2)+ 0.0734062716 X̂(t − 2)+ e(t).
Run test: z for X̂(t)=−13.1944799 (using whole data set),

z for X̂(t)=−8.97054672 (using first 256 data points).

z for ê(t)=−1.72880948 (using first 256 data points).
Residual sum of squares: 0.193716243.

Proof of Lemma 1. For L= 0, the result is available in Kundu (1997). For general L, the

result follows using the fact that t/N < 1. The lemma also follows from Theorem 4.5.1 in

Brillinger (1981, p. 98). �

Comment: Lemma 1 is a very strong result and has been proved under different conditions.

Walker (1971) proved for i.i.d. errors. Hannan (1973) proved it under ergodic and purely non-

deterministic conditions. Kundu (1997) provided the proof for stationary linear processes,

Brillinger (1986) and Nandi et al. (2002) proved a version of this lemma for spatial point

processes and for i.i.d. stable processes, respectively.

Lemma 2. Let us define

Sd,K = {h : |k− k0|> d or |x− x0|> d or |qj − q0
j |> d or |/j − /0

j |> d

for any j = 1, . . . , q, and qk 6K for all k = 1, . . . , q}.
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Table 13

Results for “ahh” data set using the proposed model

Parameter Estimate Lower bound Upper bound

q11
0.154038683 0.00933268107 0.298744678

q12
0.110609308 −0.038386818 0.259605438

q13
0.20130381 0.044975698 0.357631922

q14
0.219141886 0.0524176359 0.385866135

q15
0.973635674 0.794148386 1.1531229

q16
1.39281392 1.20093036 1.58469748

/11
1.51953971 0.227566779 2.81151271

/12
1.95636904 0.578811526 3.33392644

/13
2.49770141 1.72301531 3.2723875

/14
−2.94550371 −3.68023229 −2.21077514

/15
−2.23193026 −2.43851805 −2.02534246

/16
0.776610613 −0.572394848 2.12561607

k1 0.0916645825 0.079089947 0.104239218

x1 0.0923735052 0.0873730332 0.0973739773

Data set: “ahh”. M = 1, q1 = 6.

X̂(t)= 1.2019335 X̂(t − 1)− 0.639286041 X̂(t − 2)+ 0.049728144 X̂(t − 2)+ e(t).

Run test: z for X̂(t)=−10.5448523, z for ê(t)=−0.152799755.

Residual sum of squares: 0.460617959.

If for any d > 0 and for some 0 < K <∞,

lim inf
N→∞

inf
h∈Sd,K

1

N
[QN (h)−QN (h0)]> 0 a.s. (11)

then ĥ which minimizes (8) (when M = 1, W= h), is a strongly consistent estimator of h
0.

Proof of Lemma 2. In this proof we denote ĥ by ĥN = (q̂1N , . . . , q̂qN , /̂1N , . . . , /̂qN ,

k̂N , x̂N ) just to emphasize that it depends on N. Suppose ĥN is not consistent, then we can

have one of the following two cases.

Case 1: For all subsequences {Nk} of {N}, at least one |q̂jNk
| tends to∞.

Case 2: There exists a d > 0, a 0 < K <∞ and a subsequence {Nk} of {N} such that

ĥNk
∈ Sd,K for all k = 1, 2 . . . .

Now for both the cases, under the definition of QN (h) (see (8)) and because of (11), there

exits a K0, such that for all k > K0,

QNk
(ĥNk

)−QNk
(h0) > 0 a.s.

This contradicts the fact that ĥNk
minimizes QNk

(h). �

Proof of Theorem 2.1. Let us write

Sd,K = P1 ∪ P2 ∪ · · · ∪ Pq ∪ U1 ∪ U2 ∪ · · · ∪ Uq ∪ K ∪ X,
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Table 14

LSE and confidence intervals for “ahh” data with multiple frequency model

Parameters LSE Lower limit Upper limit

a1 0.15321 0.04255 0.26386

a2 0.12292 0.01293 0.23291

a3 0.19762 0.08844 0.30680

a4 0.26646 0.15817 0.37476

a5 1.05137 0.94365 1.15908

a6 1.47706 1.36958 1.58455

/1 1.57744 0.13292 3.02196

/2 2.56365 0.77409 4.35321

/3 2.45601 1.35103 3.56099

/4 −1.93182 −2.74466 −1.11898

/5 −1.58160 −1.78651 −1.37670

/6 1.38753 1.24199 1.53307

b1 0.09222 0.08486 0.09958

b2 0.18906 0.17995 0.19818

b3 0.27671 0.27108 0.28234

b4 0.37503 0.37089 0.37917

b5 0.46543 0.46439 0.46647

b6 0.55728 0.55654 0.55802

X̂(t)= 1.01746476 X̂(t − 1)− 0.636902988 X̂(t − 2)+ 0.176133722 X̂(t − 2)+ e(t).

Run test: z for X̂(t)=−7.69534779, z for ê(t)=−0.594967306.

Residual sum of squares: 0.239770621.
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Fig. 11. The plot of the observed (DATA_EEE) and the fitted “eee” sound using LSEs of model (1) (PROP_EEE)

and MFM (MFM_EEE).



3898 S. Nandi, D. Kundu / Journal of Statistical Planning and Inference 136 (2006) 3871–3903

 -2.5

-2

 -1.5

-1

 -0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 100 200 300 400 500 600

’DATA_AAA’
’PROP_AAA’
’MFM_AAA’

Fig. 12. The plot of the observed (DATA_AAA) and the fitted “aaa” sound using LSEs of model (1) (PROP_AAA)

and MFM (MFM_AAA).
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Fig. 13. The plot of the observed (DATA_UUU) and the fitted “uuu” sound using LSEs of model (1) (PROP_UUU)

and MFM (MFM_UUU).

where for j = 1, . . . , q,

Pj = {h : |qj − q0
j |> d, qk 6K for all k = 1, . . . , q},

Uj = {h : |/j − /0
j |> d, qk 6K for all k = 1, . . . , q},

K= {h : |k− k0|> d, qk 6K for all k = 1, . . . , q},
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Fig. 14. The plot of the observed (DATA_AWW) and the fitted “aww” sound using LSEs of model (1)

(PROP_AWW) and MFM (MFM_AWW).

-3

-2

-1

 0

 1

 2

 3

0 50 100 150 200 250 300 350

’DATA_AHH’
’PROP_AHH’
’MFM_AHH’

Fig. 15. The plot of the observed (DATA_AHH) and the fitted “ahh” sound using LSE of model (1) (PROP_AHH)

and MFM (MFM_AHH).

and

X= {h : |x− x0|> d, qk 6K for all k = 1, . . . , q}.
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Now observe that

1

N
[QN (h)−QN (h0)]

=
1

N

N
∑

t=1







q
∑

j=1

qj cos{(k+ (j − 1)x)t − /j }

−

q
∑

j=1

q0
j cos{(k0 + (j − 1)x0)t − /0

j }







2

+
2

N

N
∑

t=1

X(t)







q
∑

j=1

qj cos{(k+ (j − 1)x)t − /j }

−

q
∑

j=1

q0
j cos{(k0 + (j − 1)x0)t − /0

j }







= fN (h)+ gN (h) (say).

For any d > 0 and a fixed 0 < K <∞,

lim inf
N→∞

inf
h∈Pi

fN (h)

= lim inf
N→∞

inf
h∈Pi

1

N

N
∑

t=1







q
∑

j=1

q0
j cos{(k0 + (j − 1)x0)t − /0

j }

−

q
∑

j=1

qj cos{(k+ (j − 1)x)t − /j }







2

= lim inf
N→∞

inf
|qi−q0

i |>d

1

N

N
∑

t=1

[(q0
i − qi) cos{(k0 + (i − 1)x0)t − /0

i }]
2

= inf
|qi−q0

i |>d

1

2
(qi − q0

i )
2 >

1

2
d2 > 0 a.s., i = 1, . . . , q.

Similarly it can be proved that

lim inf
N→∞

inf
h∈Ui

fN (h) > 0 a.s., i = 1, . . . , q

and

lim inf
N→∞

inf
h∈K

fN (h) > 0 a.s., lim inf
N→∞

inf
h∈X

fN (h) > 0 a.s.

This proves that

lim inf
N→∞

inf
h∈Sd,K

fN (h) > 0 a.s. (12)
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Using Lemma 1, it follows that

lim
N→∞

sup
h∈Sd,K

gN (h)= 0 a.s. (13)

Now using (12) and (13) in Lemma 2, the theorem follows. �

Proof of Theorem 2.2. Let Q′
N (h), the first derivative vector of QN (h) be defined as fol-

lows:

Q′
N (h)=

(

­QN (h)

­q1

, . . . ,
­QN (h)

­qq

,
­QN (h)

­/1

, . . . ,
­QN (h)

­/q

,
­QN (h)

­k
,
­QN (h)

­x

)

.

Similarly Q′′
N (h), the (2q + 2) × (2q + 2) matrix of second derivatives of QN (h) is also

defined. Expanding Q′
N (h) at ĥ around h

0 using Taylor Series expansion, we have

Q′
N (ĥ)−Q′

N (h0)= (ĥ− h
0)TQ′′

N (h̄), (14)

where h̄ = aĥ + (1 − a)h0 for some 0 < a < 1. Consider a (2q + 2) × (2q + 2) diagonal

matrix D1 (=D with M = 1 and q1 = q) as follows:

D1 =







N−1/2Iq 0 0 0

0 N−1/2Iq 0 0

0 0 N−3/2 0

0 0 0 N−3/2






.

Therefore, (14) can be written as

(ĥ− h
0)TD−1

1 =−[Q′
N (h0)D1][D1Q

′′
N (h̄)D1]

−1. (15)

As ĥ is a strongly consistent estimator of h
0 and h̄ lies between ĥ and h

0, it can be shown

that

lim
N→∞

[D1Q
′′
N (h̄)D1] = lim

N→∞
[D1Q

′′
N (h0)D1] = R, (16)

where R is same as defined in the statement of Theorem 2.2. Now, using the Central Limit

Theorem of a linear process (see Fuller, 1976, pp. 251–256) it can be proved that

Q′
N (h0)D1 →N(2q+2)(0, 2r2G), (17)

and G(=G1) is same as defined earlier. Now Theorem 2.2 follows immediately using (16)

and (17) in (14). �

A.1. Outline of the proofs of the results when more than one fundamental frequency are

present in the model (M > 1)

The consistency of Ŵ, the LSE of W
0 (when M > 1 in model (1)) follows exactly the same

way as the proof of Theorem 2.1, considering the entire set of parameters, i.e. considering

Ŵ, W
0 and W instead of ĥ, h

0 and h, respectively.
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The asymptotic normality of the LSEs of the model (1) (M > 1) can be obtained along

the same line as the proof of Theorem 2.2. Expanding Q′
N (Ŵ) by Taylor series similarly as

(14), an equivalent expression to (15)

(Ŵ−W
0)TD−1 =−[Q′

N (W0)D][DQ′′
N (W̄)D]−1 (18)

can be obtained for the general model having more than one fundamental frequency. The

left-hand side of (18) is a 1× R (R = 2
∑M

k=1 qk + 2M) random vector whereas the right-

hand side is a product of 1×R (Q′
N (W0)D) random vector and a R×R ([DQ′′

N (Ŵ)D]−1)

random matrix. Using similar techniques, the R × R matrix converges to a block diagonal

matrix R of M blocks with kth block as Rk of order 2qk + 2. The 1 × R random vector

Q′
N (W0)D converges to a R-variate normal distribution with mean vector zero and the

dispersion matrix 2r2G, having a block-diagonal form with kth diagonal block as 2r2Gk .

Therefore, asymptotic distribution of Ŵ is the same as given in Theorem 2.2. �
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