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Absiract

A& fazey MILP moclel. developed by one of the aichors, is osed lor oblyining selective two-level pactilioning of the
feature apace i order 10 bn prose 118 classification performancs. The mede] van hundbe uneen ainly and or impreciscocss
it the inpnl as well a5 The sulpu. The inpul o the nelwork 3y modelled o lerms of inguislic pi-scts whose contros and
il sdong dhe lesiure gxes in cuch purliion sre generaled aotomulically fremm the distiiburion of the training data. ‘the
perlormance of the model ut the cnd of the firse stage is used as # criterden for guiding the selection of che appropeiate
paelilion to be subdivided ut the sceond stage, o order to improve the cffcctivencss of the model. & comparative stady of
the perfonmance of the twoudevel technigque with other methods, viz, the conventionat VELI12, linear discriminagl anolysis
and the k-nearcst neighbours algorithms, iz also provided o demonstrate it supetioniy,

Kepworihs, Fursy nzoral ngtworks: Mullilayer pervepitony Pollem vlassillvalion: Partitioning: Fuzzy subspace

. Imtraduction

Arlilicial neural netwaorks [11, 17] are massively parallel interconnections of simple neurons that lunction
as a collective syatermn. They have been found w be proficient in selving varions pattern recognition problerms.
Fusey sets |7, 20, 21]. on the other hand, are capable of modelling uticertain or ambiguons duatg so often
cneountered in real life. Therefare, fuzzy neural networks [1, 8, 153] are desigmed to utilize g synthesis of the
camputaticnal powet of the neural networks aleng with the uncertainty handling capabilities of fucey logie.
The multilayer pecceptron (ML [17] iz a feed-forward neural network marde] comyisting of multiple Yavers
of simnple, sigmoid processing elements or neurons. A fuecy version of the MLP (developed by one of the
anthars [ 14]) 1% wsed in this work.

A& recent and potentially fruitful idea in patiern recogrution, thal hus been directly announced ar implied in
several papers, s the partitioning of the initial feature space nto regions and the applicution of dilTerent
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classification rules to them [3, 4, 5,9, 12, 16]. The problem that remains is how to perform the partitioning in
order to preserve at least the same classification accuracy, and hopefully achieve a better one. This
classification strategy bears an analogy with the diagnostic process in medicine. If the physician does not feel
competent to resolve a special case, he summons a consultation team of professionals in that particular field.

The main question that arises here concerns the way of partitioning the feature space. In fact, every
rule-based classifier performs a partitioning through antecedent clauses and assigns a classification rule to
each region through the implication. A partition may be based on the geometric properties of the classes
detected by a preliminary clustering [3] or by a sequential groping about for the class boundaries [12]. In the
fuzzy classification rule described in [4, 5] the partitioning is uniform, i.e., the regions continue to be split
until a sufficiently high certainty of the rule, generated by each region, is achieved. In this work we employ
a selective two-level partitioning scheme in conjunction with a fuzzy MLP network to establish the
effectiveness of this notion of improving the performance in a pattern classification problem.

The fuzzy MLP model [13, 14] has already been used with data consisting of fuzzy as well as linearly
nonseparable, nonconvex and disjoint pattern classes. Here we demonstrate the enhanced classification
performance of the network (as compared to the status before the onset of the selective partitioning, measured
by the recognition score on the training and test sets) by incorporating a two-level selective partitioning of the
input space. In the first phase, the input vector (which can be in quantitative/linguistic/set forms) is represented
in terms of the linguistic properties low, medium and high while the output decision is in terms of class
membership values. The centres and radii of the pi-functions along each feature axis are determined automati-
cally from the distribution of the training patterns. In the second stage, the feature space is further partitioned
selectively, in order to improve the performance of the classifier. The performance index of the classifier in the
first stage is used to guide the selection of the partition that has to be further subdivided for this purpose. The
generation of the input description of the patterns in terms of overlapping pi-functions, corresponding to
each second-level partition along the different feature axes, is also automated using the training data.

The potential ability of the model to achieve higher classification accuracy is demonstrated on two sets of
synthetic data and one set of medical data on hepatobiliary disorders. A comparative study is made with the
classificatory performance of the fuzzy neural network [13, 14] at the end of the first stage (i.e., before the
onset of the second-level partitioning) and the more conventional approaches, viz., the standard MLP, linear
discriminant analysis and the k-nearest neighbours algorithms.

2. The fuzzy MLP model

In this section we describe the fuzzy MLP model [13, 14]. Consider the layered network given in Fig. 1.
The output of a neuron in any layer other than the input layer is given as

1
ht+1
prit , (1)

! 1+ exp(— X, ytwk
where y? is the state of the ith neuron in the preceding hth layer and w'; is the weight of the connection from
the ith neuron in layer h to the jth neuron in layer & + 1. For nodes in the input layer, y? corresponds to the
jth component of the input vector. The mean square error in output vectors is minimized by the backpropa-
gation algorithm using a gradient descent with a gradual decrease of the gain factor.

2.1. Input vector

An n-dimensional pattern F; = [F;(, Fi3, ..., F;,,] is represented as a 3n-dimensional vector

F, = [,ulow(F“)(Fi)s ,u'medium(Fn)(Fi)5 Mhigh(Fii)(Fi)’ v s Unigh (Fi,) (F)] = [J’?Jg» e ygn] 2)
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Fig. 1. The three-layered MLP model.

where the p values indicate the membership functions of the corresponding linguistic pi-sets along each
feature axis.

When the input feature is numerical, we use the n-fuzzy sets (in the one-dimensional form), with range
[0,1], represented as

F—cl\* . 2
2(1-@) for < |F— ¢ < 4,
A 2

n(F;;c A) = F. — 2 y.
: 1—2('1276”) for 0< | F—cf <3, 3)

0 otherwise,

where 4 > 0 is the radius of the n-function with ¢ as the central point.
When the input feature is linguistic, its membership values for the n-sets low, medium and high are
quantified as

0.95 0.95
_Jo9s “(E(T)Cm’ﬁm) ”(E(T)”“h)
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where ¢y, A1, Cy 2oy Cno An Tefer to the centres and radii of the three linguistic properties and F;(0.95/L),
F;(0.95/M), F;(0.95/H ) refer to the corresponding feature values F; at which the three linguistic properties
attain membership values of 0.95.

Let Fj,. and F,,;, denote the upper and lower bounds of the dynamic range of feature F; in all L pattern
points considering numerical values only. Let m; be the mean of the pattern points along the jth axis. Then
m;; and my, are defined as the mean (along the jth axis) of the pattern points having co-ordinate values in the
ange [Fjmin, m;) and (m;, Fja.], respectively. For the three linguistic property sets we define the centres as

Crmedium(Fy) = Mj,
Clow(Fy) = Mjy, (3)
Chigh(F)) = Mjn,
and the corresponding radii as
;vlow(Fj) = 2(Crredium 2 Ctow(Fj)),
Znigh(Ep = 2(Chigh(Fy) — Cmedium (Fp) > (6)

7 . Aow(F;) (F jmax — Cmedium(Fj)) + /%high(Fj)(Cmedium(F,-) — F i)
“medium (F;) — anS >
ijax —F

Jjmin

where fhos is a multiplicative parameter controlling the extent of the overlapping. Here we take into account
the distribution of the pattern points-along each feature axis while choosing the corresponding centres and
radii of the linguistic properties. This has been found to be more efficient in modelling skewed data
distributions [13]. Besides, the amount of overlap between the three linguistic properties can be different
along the different axes, depending on the pattern set. We are also able to ensure that any feature value along
the jth axis for pattern F; is assigned membership value combinations in the corresponding 3-dimensional
hinguistic space of (2) in such a way that at least one of pyowr ) (F); hmeaiumr, )(F;) OT tpign(r,;(F;) is greater than
0.5 in the interval [ ¢ — Aiow/2, Chign + Anign/2]. Note that this range corresponds to that region of the feature
axis which contains the majority of the pattern points and thereby represents the relevant region of the
feature space sans outliers. This is because the centres and radii of the three pi-functions, used to represent the
input to the neural network, are chosen automatically from the distribution of the training patterns. It also
enables us to minimize the effect of those regions of the feature space that are empty. This allows most pattern
vectors F; to have strong membership to at least one of the properties low, medium and high.

2.2. QOutput representation
Consider an I-class problem domain such that we have I nodes in the output layer. Let the n-dimensional

vectors O, and V), denote the mean and standard deviation, respectively, of the numerical training data for
the kth class. The weighted distance of the training pattern F; from the kth class is defined as

(7)
where F; is the value of the jth component of the ith pattern point.
The membership of the ith pattern in class k, lying in the range [0, 17, is defined as
1
1l F7) ity

T 1 Calfe)
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where z; is the weighted distance from (7) and the positive constants f; and f. are the denominational and
exponential fuzzy generators controlling the amount of fuzziness in this class-membership set.
Then, for the ith input pattern, the desired output of the jth output node is defined as

dy= p;(F). ©)

According to this definition a pattern can simultaneously belong to more than one class, and this is
determined basically from the training set used during the learning phase. However, it may be noted that in
the crisp case a pattern can ecither belong or not belong to a class. Then we have zy € {0, <o} in (7), such that
the output membership value of (8) reduces to p,(F) € {1,0}.

The learning rate of the algorithm is gradually decreased in discrete steps, taking values from the chosen
set {2, 1, 0.5, 0.3, 0.1, 0.05, 0.01, 0.005, 0.001}, depending on the value of the mean square error, while the
momentum factor is also decreased (generally from 0.9 to 0.5) [14]. The algorithm terminates when the
learning rate of value 0.001 is reached.

3. Selective second-level partitioning of the feature space

An efficient partitioning of the feature space refers to generating neither too many nor too few partitions
along the different feature axes. The distribution of the patterns in the input space is likely to play an important
role in this selection. Besides, some regions of the input space may require finer partitioning than others. We
use the fuzzy MLP model to determine an effective two-level partitioning, using linguistic pi-functions.

An n-dimensional pattern space is initially divided into 3" overlapping partitions of different sizes,
depending upon the centres and radii of the linguistic pi-functions determined automatically from the
training set distribution using (2)—(6). The upper and lower bounds for partition x, corresponding to
linguistic property p, along axis j are defined as c,,, + A,,/2 and ¢,, — A, /2 respectively. Here c,,, and
/xp, Tefer to the centre and radius of the n-function defining the linguistic property p for partition x along the
jth axis. Next, the classification performance of the fuzzy MLP corresponding to the recognition score, with
respect to each of these partitions, is evaluated. The fuzzy subspace providing the largest number of
misclassifications is selected for further subdivision into 3" overlapping regions defined by the pi-functions of
(5)—(6). This is designated as the doubtful region, while the remaining part of the feature space is termed the
more certain region. In this manner we can generate a total of s-3" — s + 1 subspaces at the end of the sth
stage. Note that we stop the process at the second level (s = 2), as each stage of partitioning corresponds to
a related increase in the number of neurons at the input layer of the fuzzy MLP. This also helps in avoiding
problems of overlearning and resultant poor generalization ability of the network. Note that we have to
compromise between the classification performance of the neural network and the associated overhead due
to the increase in number of input neurons with consecutive stages ol partitioning of the feature space.
Nevertheless, it is observed from the results of Section 4, that this selective second-level partitioning scheme
serves to enhance the performance of the model to a considerable and satisfactory extent.

Let the xth subspace be selected for further division at the end of the first stage. Note that the algorithm
terminates at the end of the first stage according to the criterion of decreasing learning rate, as described
earlier. We determine the appropriate linguistic properties p; corresponding to this subspace x along each
feature axis j. Let m,,, be the mean of the pattern points in this subspace along the jth axis. For subdivision
into three partitions along this axis, we have from (5)

Cxpmedium(P,l - mej’

=m

(10)

CxPlow(Fj) xpj»

Cxphigh(f]J - mxpjhb
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where Mip, and Myp, aT€ the mean of all the pattern points that lie in the range [cy,, — 4x,,/2, My, ) and (my,,,

Cxp, T Axp, /2] respectlvely, of partition x (for linguistic property p). The correspondlng radii along the threc
new linguistic property sets, along this axis, are defined analogous to (6). Note that once again the
distribution of pattern points in the subspace is considered during the automatic evaluation of the required
centres and radii of the three new pi-sets along each feature axis.

The new enhanced set of input features is now submitted at the input layer of the fuzzy neural model and
the network trained on the pattern set under consideration. The classification performance of the model is
evaluated with respect to both the training and test sets.

The idea to perform separate classification rules or strategies in different regions of the feature space have
also been investigated from a different perspective by Kuncheva [9] and Rastrigin and Erenstein [16].
Ishibuchi et al. [4, 6] used an idea of sequential partitioning of the feature space into fuzzy subspaces, until
a pre-determined stopping criterion was satisfied, for solving pattern classification problems. We employ
a related but different idea in our fuzzy neural net-based model. Here the distribution of the training patterns
is used to automate the generation of the centres and radii of the linguistic pi-functions determining the
nature of the overlapping subspaces. As a result, the corresponding membership functions can be automati-
cally tuned by the input data. Only a two-level scheme is used to compensate for the overhead involved by
the considerable increase in the number of input neurons with every stage of consecutive partitioning. This
also helps avoid the problem of overlearning by the neural network.

Takagi et al. [18] reported the development of a neural network architecture based on the structure of the
fuzzy inference rules involved. The identification error can be analysed to improve the performance of the
structured network. For this, the appropriate region of the feature space is further clustered and the
corresponding Then parts accordingly added. We, on the other hand, use the second-level partitioning of the
input feature space of the fuzzy MLP. Note that this corresponds to augmentation of the If parts of the
relevant rules for the required pattern classification problem..

4. Implementation and results

We used two measures of percent correct classification performance for the training set. The output, after
a number of updating steps, was considered a perfect match p if the value of each output neuron y} was
within a margin of 0.1 from the desired membership value d;. This was a stricter criterion than the best match
b, where we tested whether the jth neuron output y?‘ had the maximum activation when the jth component d;
of the desired output vector also had the highest value. The factor b, corresponded to the performance of the
model when one also considered the second best choice (ie., the output neuron with second highest
activation corresponded to the correct pattern class). Note that p, by, b, refer to the training set while ¢, (best
choice), 1, (with second best choice) are indicative of the test set. The individual classwise performance (with
best choice) are also provided for the test set patterns for the output classes. The second best choices b, and £,
are depicted for the data on Hepatobiliary Disorders only (as the synthetic data consist of two classes).

Initially two artificial data sets have been used, each containing 200 cases, as the training sets. Two
equiprobable classes were considered. Both data sets used the same discrimination boundary but the first one
(Random) uses a pseudo-uniform distribution, while the second (Cluster) contained three pseudo-Gaussian
clusters. These are illustrated in Figs. 2 and 3, respectively, with dots and triangles indicating the two classes.
Two numerical features F; and F, are involved, so that the pattern points lie in the region [0,1] x [0, 1] and
may be easily visualized. The decision boundary is given as

f= —025sin(7nx3) + x, — 0.5.

Two separate data sets, each consisting of 1000 pattern points, were used as the test sets for the above two
cases. In each case the corresponding training and test sets were taken from the respective distributions. The
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Fig. 3. The Cluster data set.

separate test sets were selected in order to avoid an eventual optimistic bias in assessing the classification
accuracy. For a comparison, linear discriminant analysis and k-nearest neighbours algorithm were applied
on the training sets and the classification accuracy assessed both for the training as well as test sets. Note that
the output class membership values by (8) were crisp in this case, belonging to the set {1,0}.

The generated membership functions along the two feature axes Fy and F,, both at the end of the first and
second stages (i.e., before and after splitting), are depicted in Figs. 4 and 5 for the Random and the Cluster data
sets, respectively. Note that we use the linguistic n-sets low, medium and high defined by (3)—(6) and (10) in the
process. The subspace high, medium, corresponding to (Fy, Fs,), is partitioned in both cases.

Table 1 compares the recognition scores, with the two synthetic data sets Random and Cluster, using the
fuzzy MLP both at the end of the first and second stages; those of the crisp and fuzzy k-nearest neighbours
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Comparative study of recognition score on synthetic data
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Fig. 4. Generated membership functions for Random data.
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Fig. 5. Generated membership functions for Cluster data.

Data set Model k-nearest neighbours Linear discrm.  Conv. Fuzzy MLP
analys. MLP
Crisp Fuzzy Stage 1 Stage 2
k=1 k=3 k=1 k=3
Random Train b, 93.5 90.5 93.5 92.5 83.0 90.0 99.5 98.5
Test 1, 92.8 93.0 92.8 92.9 85.4 882 92.8 93.2
Cluster Train by 92.0 92.0 92.0 93.0 89.0 91.0 92.5 100.0
Test t; 91.7 91.2 91.7 91.7 872 86.0 86.7 94.5
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algorithms; the conventional MLP; and the linear discriminant analysis technique. We employed one hidden
layer for the Random data and two hidden layers for the Cluster data, with 13 nodes in each such layer. For
both data sets, the algorithm selected the subspace high, medium (corresponding to the first and second
feature axes) for the second-level partitioning. This corresponds to the regions [0.518, 0.99] and [0.294,
0.756] along the two feature axes respectively. It can be verified from both Figs. 2 and 3 that this area
corresponds to the most complicated decision region in the feature space with respect to the two pattern
classes. It is observed that the proposed selective second-level partitioning provides appreciably better results
on the Cluster data with respect to the other algorithms. This is perhaps because this pattern set has some
inherent structure embedded in it, as compared to the randomness involved in the Random data sct.
However, the generalization capability of the fuzzy MLP on the separate test set is enhanced after the
second-level partitioning in both cases. On the whole, the fuzzy MLP performed better than the k-nearest
neighbours, linear discriminant analysis and the conventional MLP in case of both the synthetic data sets. It
is to be noted that the two-level scheme helps avoiding too many partitions, associated with a related increase
in the number of input neurons, which would also have resulted in overlearning and therefore poor
generalization ability.

The model was next used on a set of 536 patient cases of various Hepatobiliary Disorders [2,19]. There
were nine input features corresponding to the results of different biochemical tests, viz., glutamic oxalacetic
transaminate (GO'T, Karmen unit), glutamic pyruvic transaminase (GPT, Karmen Unit), lactate dehydrase
(LDH, iu/l), gamma glutamy! transpeptidase (GGT, mu/ml), blood urea nitrogen (BUN, mg/dl), mean
corpuscular volume of red blood cell (MCYV, fl), mean corpuscular haemoglobin (MCH, pg), total bilirubin
(TBil, mg/dl} and creatinine (CRTNN, mg/dl). The 10th feature corresponded to the sex of the patient and
was represented in binary mode as (1, 0) or (0, 1). The hepatobiliary disorders used for the four output classes
were alcoholic liver damage (ALD), primary hepatoma (PH), liver cirrhosis (I.C) and cholelithiasis (C). The
network was trained by randomly selecting perc% samples from each representative pattern class of the data
set. The remaining 100 — perc% samples constituted the test set. We selected fy = 5 and f, = 1 in (8) and
Jfros = 1 in (6), depending on the performance of the model, after several experiments.

Comparisons are provided in Table 2 with the results obtained by the fuzzy MLP model at the end of the
first stage, i.e., before the use of the second-level selective partitioning of the feature space, as well as with the
performances of the more conventional linear discriminant analysis method, the crisp and the fuzzy versions
of k-nearest neighbours algorithm — using the Hepatobiliary Disorders data set. We used perc = 70% of the
samples for training the network consisting of three hidden layers with 20 nodes in each such layer. The

Table 2
Comparative study of recognition score on Hepatobiliary Disorders data

Model k-nearest neighbours Linear discrim. Fuzzy MLP
analysis
Crisp Fuzzy Stage 1  Stage 2

k=1 k=3 k=1 k=3

best b, 71.7 70.9 71.7 74.1 67.0 97.8 100.0
T ALD 83.9 61.3 8§3.9 67.7 57.6 48.5 60.0
e PH 77.2 68.4 77.2 71.9 64.7 70.3 75.9
] LC 68.4 553 68.4 68.4 65.7 68.4 73.7
t C 82.9 85.7 82.9 88.6 63.6 80.5 94.4

Net t; 77.6 67.7 77.6 73.9 63.2 67.5 76.1




10 S. Mitra, L.I. Kuncheva | Fuzzy Sets and Systems 70 (1995) 1-13

proposed algorithm is found to provide a good performance on both the training and test sets. Note that the
conventional MLP provided very poor results, viz., 56.2% overall recognition score for the training set in this
case, and was therefore omitted from the table.

What we emphasize in this paper is the selection strategy. The first stage partition provided by the fuzzy
MLP can be further processed by other classification techniques. Some encouraging results have been
obtained by applying the k-nearest neighbours rules separately to the certain and doubtful regions after
detection in the first stage by the fuzzy MLP [10]. It seems natural that a properly trained scheme based on
this strategy would outperform a single k-nearest neighbour rule applied on the whole sample.

In Tables 3—5 we study the effect on the recognition score (%) with the Random, Cluster and Hepatobiliary
Disorders data, respectively, using different numbers of hidden layers and nodes. The number of hidden nodes
in each case corresponds to the network configuration (found experimentally) providing good results with
the given combination of number of layers and training set.

Table 4 indicates better results for the Cluster data set in all cases, after the second stage of partitioning, as
compared to the case of the Random data set of Table 3. This is perhaps because of the absence of any

Table 3
Performance of fuzzy MLP on Random data before and after partitioning
Layers 3 4
Nodes 11 12 13 10 11 12
Stage 1 2 1 2 1 2 1 2 1 2 i 2
best b, 99.0| 9951 9351 99.5] 995 9851 99.0| 98.0| 93.0| 99.5( 93.0| 950
perf p 740 | 69.0| 565 81.5| 585| 63.0| 955| 945| 865 900 | 865 33.0
Sweeps 940 |320 |310 |290 |980 |420 |860 |350 420 480 |510 |150
Class 1 9371 933 923 93.2| 928 | 944 | 940 | 947 | 951 ] 918 922 942
Class 2 899 | 906 | 89.6| 91.1| 928 | 91.5( 891 | 90.6( 884 9351 90.6| 894
Net t; 921 | 922 912 923 928 93.2] 92.0| 93.0( 923 | 925 91.5] 922
Table 4
Performance of fuzzy MLP on Cluster data before and after partitioning
Layers 3 4
Nodes 16 17 18 11 12 13
Stage 1 2 1 2 1 2 1 2 1 2 i 2
best by 91.51 99.5] 93.0 1000 91.5] 99.5] 51.0| 96.0] 91.5| 99.5| 92.5(100.0
perfp 6501 89.0| 70.0 | 850 43.5| 89.0| 33.0| 91.5| 720| 93.5| 76.0| 930
Sweeps 350 630 (460 |920 (370 |480 [270 |520 |[350 (920 |[S570 |760
Class 1 760 89.0 | 762 | 89.8| 76.2| 93.1 00| 81.7| 742 888 | 781 | 94.5
Class 2 970 939 96.1 | 943 | 967 94.7 |100.0| 943 | 974 93.7| 955| 945

Net t, 863 9141 B60| 92.0| 863 | 939| 49.2| 879 | 856 91.2| 86.7| 945
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Table 5
Performance of fuzzy MLP on Hepatobiliary Disorders data before and after partitioning
Layers 3 4 5
Nodes 20 20 15 10 20
perc 10 50 10 50 70 10 50 70
Stage 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
by 98.0 [100.0 | 88.4| 94.8 1100.0}100.0 | 96.6 | 974 84.1| 952 |100.0 |100.0 {1000 | 989 | 97.8 [100.0
b, 98.0 1000 | 94.0| 97.0 |100.0 | 100.,0 [ 98.5] 99.6| 954 | 99.5|100.0 {100.0 {1000 | 99.6 | 99.4 |100.0
P 569 | 98.0| 27.3| 56.4 | 92211000 [ 269 | 74.6| 100 | 587 | 94.2 | 98.0 | 41.8| 84.7| 68.9| 86.1
cycle 350 (200 |410 [270 (330 78 (370 |270 (390 (320 (250 (280 (360 (340 [480 (250
ALD 314 | 448 | 379 | 386 295 61.0 | 569 | 5341 457 | 514 352 533 | 569 | 60.3 | 485 60.0
PH 4471 553 | 59.5| 73.0| 453 609 | 77.5| 77.5| 77.7| 81.5| 982 | 665 | 74.1| 798| 703 | 759
LC 562 | 51.8 1 59.6| 69.4| 428 | 545 | 564 726 579 | 658 134 32.1 | 484 613 | 684 73.7
C 80.3| 748 | 71.2| 559 | 747 | 62.6 | 89.8 | 763 | 75.0 ) 88.9 | 75.7| 682 | 745 79.7| 80.5| 944
t 523 | 565 | 574 653 | 478 59.8 | 709 | 709 | 65.6| 73.0| 50.1| 56.7 | 64.5| 71.3 ]| 67.5| 76.1
t, 713 792 79.1| 851 | 729 802 | 832 | 85.1| 852 | 86.5| 72.5| 759 | 80.2| 84.7| 79.7| 859
Table 6
Effect of fy, f., fnos on the recognition score for Hepatobiliary Disorders data

fa 30 | 40 5.0 60 | 7.0

f. 1.0 1.0 0.25] 0.5 1.0 { 20 1.0 1.0

Jfhos 1.0 1.0 10| 08] 09 1.0 1.1 1.2 1.0 1.0 1.0 1.0

b, 98.6 |98.6 | 1000 |99.2197.8 1994 |97.8 |992 |97.3 [855 [951 |959

b, 99.7 [99.2 | 100.0 | 99.4 |98.6 | 994 | 989 1997 1973 | 946 |98.1 [975

P 88.5 | 794 | 96.0 904|775 |89.3 | 829 |872 [563 8.6 | 649 [61.7

t 73.0 | 71.1 724 17241730 | 742 |73.0 | 742 | 724 [71.1 [754 [73.6

1 852 |89.5 90.1 | 89.587.7 {86.5 [90.1 [90.1 [89.5 |86.5 [85.8 |858

inherent class structure in the synthetically generated pattern space of the Random data of Fig. 2, relative to
the Cluster data of Fig. 3.

It is observed from Table 5 that generally better results are obtained for the data on Hepatobiliary
Disorders, with less training cycles, after incorporating the proposed partitioning technique. Note that here
the training set size perc was varied. Usually cases representing large training set size coupled with large
network configuration (in terms of hidden layers and nodes) provided better results. Small training set sizes
resulted in poor generalization capabilities on the test set.

Some results on the effect of fy and f, (controlling the amount of fuzziness in the output membership) and
fnos (controlling the extent of overlap among the linguistic n-sets at the input) on the classification
performance of a four-layered fuzzy MLP with 25 nodes in each hidden layer, using 70% of the data on
Hepatobiliary Disorders for training, are provided in Table 6.
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5. Conclusions and discussion

A neuro-fuzzy classifier, using two-level selective partitioning of the input feature space, has been
described. The model could handle uncertainty both at the input and the output. The input to the network
was modelled in terms of the primary linguistic properties low, medium and high, using pi-functions. The
centres and radii of these n-sets were automatically determined from the distribution of the training patterns.
The performance of the model at the end of the first stage was used as a criterion for guiding the selection of
the appropriate partition to be further subdivided at the second stage, in order to improve the effectiveness of
the model. The two-level scheme helped avoid the problem of a large increase in the number of input neurons,
thereby preventing cases of overlearning. A comparative study with the performance of the model at the end
of the first phase as well as with those obtained by the more conventional linear discriminant analysis and the
k-nearest neighbours techniques indicated the superiority of the algorithm described.

Medical information such as results of biochemical tests and/or the diagnosed disorder(s) are often
ambiguous and/or fuzzy [2]. Hence incorporation of fuzziness at input and output levels was found to be
more effective in modelling such problems. The skewness of the data set under consideration could be
appropriately handled by the chosen input description that automatically determined the centres and radii of
the linguistic pi-sets.

Although the experiments with the generated data have been carried out using a completely separable set
of classes, the proposed two-level partitioning scheme can be even more effective in cases of complex
classification structures. Due to the strategy adopted here, the regions of overlapping would be notified as
doubtful in the first stage and thereby lead to a separate consideration of certain regions applying a simple
fuzzy MLP configuration. This simple structure, and hence less amount of trainable parameters, can be
viewed as the background for a higher generalization ability over the certain regions. On the other hand, the
overlapping regions are paid special attention, developing a proper network configuration and then training
that in more detail on this data. Therefore, applying a different classification strategy on the less certain
(doubtful) regions detected at the end of the first stage, one can achieve better performance for the overall
scheme.
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