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rme-dimensional binary strings and visual patlerns.
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L. Iniredecton

Various newral penwork models haye been built o far for producing the desined
output for a given input pattern [10,13,6]. But most of the models used for patletn
recopnition problems determine a single category for a given input. That is, an
mput feature vector 15 assumed 10 be generated from a single catepory. However,
in rexl life sitnation, a feature vector of observable catcpories may be penerated
from a combination {or presence) of more than one category. In other words, the
inpul vector may result from the superimpoasition of more than one individual class
framre veetor. Fur example, in the feld of industrial inspection, several objects
may appear simultaneously in the scene and can occlude each other. In thal case,
the feature veutor does not cormespond to any single object. Similarly, in medical
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diagnosis problem, the symptoms of a patient may not correspond to any single
disease. In literature, there exist very few investigations which can really tackle
such a problem [12)].

This problem becomes even harder if the connectionist model needs to be
operated under unsupervised mode. The task is difficult because the model should
be able to decide if the input pattern has been generated by the presence of more
than one candidate feature vector, and at the same time be able to automatically
associate the features with their corresponding categories without the help of any
external teacher. It may be noted here that the biological systems are able to
self-organize in such cases.

In literature, there exist several attempts on self-organization using connection-
ist models [1,2,4,7,8,9,11]. In most of them, the concept of self-organization is
analogous to the idea of clustering in the literature of pattern recognition [5], and
it works only when the input pattern represents a single category. In the present
problem, it is not sensible to compute any kind of distance between the input
pattern and the templates corresponding to the categories (as performed in most
of the self-organization models) because due to superimposition, the resulting
feature vector may be widely different from its constituent feature vectors.

In the present article, we attempt to develop a connectionist model for perform-
ing the task of self-organization in the presence of mixed categories by interpreting
a feature vector generated due to the presence of more than one category. Instead
of using the conventional concepts of self-organization, the concept of similarity
based induction hypothesis [14] has been used. It may be mentioned that, opera-
tionally the model has a similarity to ART [4]. But, unlike ART, the present model
is able to categorize in the presence of more than one category. The categories are
initially hypothesized depending on the feature vector presented to the network.
After the formation of initial hypothesis, the presence or absence of each category
is iteratively verified depending on the support it gets from its constituent features.
Note that it does not use any order search mechanism as employed in adaptive
resonance theory. Rather, with each feature a measure of ambiguity is associated
which indicates how well that feature has been interpreted. The certainty factor
about a decision {(whether it is correct or not) is measured based on the ambiguity
value present in the feature vector. The confidence value indicates whether the
feature vector should be considered as a valid feature vector (i.e. single or mixed
instances of the learned categories) or should be treated as a new category. The
network model incrementally adjusts the number of nodes with the incoming train
of patterns. The total number of nodes in the network for a given set of patterns
has been theoretically estimated. The effectiveness of the model has been demon-
strated on both binary and visual patterns.

Fig. 1 (next page). (a) Structure of the connectionist model for self-organization. Bold lines represent
the control paths from the monitor network to the categorization network. (b) Structure and connec-
tions of the hidden nodes in the network.
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2. Neural network model

The proposed model (Fig. 1) consists of two subnetworks. One of them catego-
rizes the input patterns {categorizer) and another part monitors the performance
of the categorizer (monitor). In the present section the structure of the categorizer
is described. The monitor network will be described in Section 4. The categorizer
consists of three layers: input, hidden and output layer. The number of nodes in
the input and output layers are equal to the number of features and number of
possible object classes respectively. Each input node accepts an activation value
equal to the confidence level about the presence of the corresponding feature.
Similarly, an output node activation represents the confidence level about the
presence of the corresponding object. (If an entity is absent then the confidence
level is zero; if it is present then it is unity; and some intermediate confidence level
represents more or less present.) The hidden layer associates the input node
activations to the output node activations. To each input node a group of hidden
nodes is connected which represents the group of the objects to which the input
feature belongs.

Each hidden node is connected to exactly one input node through unidirectional
links of unit weights, and is connected to a single output node through bottom-up
and top-down links. Each output node has a self-negative feedback. Each hidden
node has functionally two parts. One of them stores the activation value received
from the output layer through top-down links. The other part takes the key role in
competition with the other hidden nodes. (The hidden nodes connected to the
same input node compete between themselves.) The network works as follows.

Initially, when a pattern or a set of features is presented to the network, the
input nodes get activated according to the confidence levels of the corresponding
features. The input nodes send their activation values to the hidden nodes. The
hidden nodes do not compete in the initialization process; rather the activation
values received by the hidden nodes from the input layer are propagated to the
output layer through the bottom-up links. In this process, each output node
receives an activation value equal to the sum of all activation values appearing
through the bottom-up links. (This is equivalent to initial hypothesis formation.)
The output of each output node is related to its input activation by an S-function
[3]. After the initialization process, the output nodes send their activations back to
the hidden layer through the top-down links. Once the hidden nodes receive the
activation values from output layer, the competition process starts (this is per-
formed by the second part of each hidden node). The hidden nodes connected to
the same input node, compete between themselves. On the other hand, hidden
nodes corresponding to different input nodes do not compete with each other. In
the competition process for each input node only one hidden node remains active
(the winner-take-all node receiving the maximum amount of feedback). The active
hidden node represents the most possible object class to which the feature belongs.
Once the competition is over, each WTA hidden node sends the differential
support (which is the difference between corresponding input activation and
feedback support) to the corresponding output node through bottom-up link. In
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this process (referred as settling process), each output node gets some differential
support from the hidden layer and some inhibition due to negative self-feedback.
The settling process continues till the network reaches a stable state. The objects
which have their candidate features in the set of features presented to the
network, get sufficient differential support from the hidden layer. As a result, the
activation values of these nodes reach some stable nonzero values when the
support and the self-negation become equal. On the other hand, the objects which
do not have their features in the feature train presented to the network, receive
only self-negation; consequently, the activation values get down to zero. The
settling process approximately corresponds to the iterative verification process,
where the objects compete for the features. Next we present the dynamic behavior
of the network.

The states of the output nodes are updated according to the differential
equation given as

du, 2
ar :igwileil — Wiy (1)

where u; and v, are the total input to and output of the /th output node. w;; is the
weight of the bottom-up link from the (i, )th hidden node (connecting ith input
node and /th output node) to the /th output node. w, is the weight of the
self-feedback in the output layer. e, (differential support) measures the difference
of the input activation from ith input node and the feedback from Ith output
node, provided the (i, I)th hidden node is enabled (winner-take-all node). Mathe-
matically,

= "mim

1 )
' 0 otherwise

where c; is the activation at the ith input node, z,; is the weight of the top-down
link from the /th output node to the (i, /)th hidden node. The output v, is related
to the instantaneous input u, by a semilinear nondecreasing gain function g(.)
(chosen as an S-function [3]).

The dynamic system described by (1) can be shown to converge. Let an energy
function &(¢) be defined as

n 2 m
&(t) = %Z/\Ii( max z,u; — Ci) + 5w, L Uf (2)
i=1 I=l.m =1

where 7n is the number of input nodes and m is the number of output nodes. X, is
a multiplication factor such that

ro_ H —
Ni=w; /2, if z,0,= l_rlnax zut

The rate of change of energy can be written as
dg& ™ 3& dv, ;
dt [=ou, dt )
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But,
& n
_E;): = _igzit’\ufu — Wiy
Le.
& du,
A

Therefore Eq. (3) can be written as

LN o

dt 1=1
From (4) it is evident that (d&/d?) <0 for all £ > 0. As t =, (d&/d?) - 0, and
thereby the system converges to an energy minima (local).

The energy function (2) reveals the fact that the system always tries to minimize
the error of mismatch between the input confidence values and the interpreted
confidence values of the output layer, The weights of the top-down links are set in
such a way that z,; is zero if ith feature do not belong to object, and close to unity
if it belongs to. As a result, the first part shows the similarity of the problem to the
‘set covering’ problem. The second part of the energy function ensures the fact
that the feature train presented to the network should be interpreted by the
minimum possible number of objects. This enables the network to reduce the
number of redundant gbjects or the chance of false alarming.

3. Learning strategy

The recognition would be correct if and only if the weights of the bottom-up
and top-down links are set properly. Since the network does not have any apriori
knowledge about the nature of associations between the features and the objects,
the knowledge has to be acquired adaptively. Presently the strategy for learning or
the adaptive acquisition of the knowledge about the relative frequency of the
features and objects is presented.

If the network detects some new feature-abject pair (by the monitor network in
categorization process), a new hidden node is allocated for the corresponding
input and output nodes. The hidden node is then connected to the input node with
a link of unit weight. The bottom-up and top-down links are created from the
hidden node to the corresponding output node. The weight of the bottom-up link
is initialized to zero, and weight of the top-down link is initialized to unity. The
hidden node is also connected to all other resident hidden nodes connected to the
same input node. This enables the hidden node to compete with other nodes in the
same group connected to the input node. Then the weights of the bottom-up and
top-down links are updated so long as the pattern is present at the input.
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The learning rules or the rules for iterative adjustment of the weights are set in
such a way that the weight of each link asymptotically reaches a predefined
measure. The measure for each weight is defined in such a way that it achieves the
ability to capture the relative frequency of appearances of the corresponding
feature object pairs. From the expression of the energy function (2), it is intuitively
seen that the weight of a top-down link (z,) should be proportional to the
probability of appearance of the corresponding feature (i) with respect to the
corresponding object (/). On the other hand, the value of A; should be propor-
tional to the probability of appearance of the object (corresponding to the winner)
with respect to feature (i). Therefore, the asymptotic values can be given as

Zli=p(fi |01) (5)

and

Ail=p(ol‘fi)' (6)
The weight of bottom-up links should take a form

Wi Az, (7)

In the present work, since the transfer function of the output nodes is chosen as an
S-function, the output values always saturate if the total input activations exceed
unity. The weights of bottom-up links are iterated in such a way that the total
activation reaching an output node is always less than unity. Therefore, an
additional constraint is imposed on the weights of the bottom-up links which is

w1, (8)

Moreover, if two objects (say A and B) are such that the feature set of one
object (say A) is a subset of another one (say B) and the probabilities of
appearances of both the objects are the same then both A and B would be fully
active if the larger feature set (corresponding to B) is presented to the network. In
that case, it would not be possible to decide that a single object has been presented
to the network. This problem can be taken into account by using Weber’s law (as
presented in adaptive resonance theory [4]). Considering (7), {(8) and Weber’s law,
the asymptotic measure for the weights of bottom-up links becomes

P(Ozlfi)P(fi lol) .
Y+ EP(Ollff)P(fi ‘01)

i=1

i

()

The constant ¥ is used to get the effect of Weber’s law.

The weights of the links in the network are changed in such a way that they
become equal to the measures after sufficient number of learning trials. In other
words, the learning rules should be such that the weights of the bottom-up and
top-down links asymptotically reach the measures (Egs. 5 and 9). The conditional
probability values are approximated by the ratio of the number of appearance of
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the features and the objects. The detailed derivation of the learning rules is
presented in [3]. The learning rules are

dw; of Wit 0

dr a8,z +af| — | e,y — (e + afy)wy (10)
2y

.‘ﬂ = q? (C —Z ) 1

7t 1 YILE; Li (1)

where a; and «] are the agility factors of the ith input node and the /th output
node. The agility factor determines the capability of learning of the links con-
nected to that node. The higher the agility factor, the higher will be the rate of
learning and vice versa. Initially, the agility factor of all nodes are set to unity and
they are decreased with the learning trials. The agility factor of a hidden node is
the same as that of the input node connected to it. The agility factors are changed
according to the following rules.

da;
-Et_ = '-aizCi. (12)
daj
= —afy, (13)

The value of y, is the desired output value at the /th output node. The desired
output is determined by the monitor network. If the monitor network finds a
pattern already known to the network, it sets the desired output of the correspond-
ing node(s) to be unity and all other nodes to zero. If it finds a new pattern then it
sets the desired output for the newly created node to unity and all other nodes to
zero. The value of §, is given as

€
v&'(u;)
where €, =y, — o, measures the difference of the actual output at the /th output
node from its desired value (as determined by monitor network). y is the constant

used in the asymptotic measure (Eq. 9) which also controls the rate of learning (as
expressed in the learning rules).

3, (14)

4. Categorization (unsupervised classification)

Whenever a pattern (corresponding to either single or mixed category) is
presented to the network, it produces some output depending on the weights of
the bottom-up and top-down links. The output values indicate the confidence
levels of the corresponding objects. The recognition mechanism should be such
that the error between the feature confidence values and the interpretation of
object confidence values (z,v, in (2)) should be minimum. In other words, the
network should be able to interpret all features presented to the input with the
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current output confidence values. This is performed with a measure of certainty in
the monitor network. The certainty value is measured depending on the ambiguity
in the feature set presented to the network. If the activation of an input node does
not match with the feedback support received from the output layer then there will
be an ambiguity at that node (i.e. the feature is not properly interpreted by the
network). Therefore, if a new pattern (representative of a single or mixed calte-
gory) is presented at the input then the feature set would not be properly
interpreted by the output categories. As a result, there would be a high ambiguity
in the feature set. The certainty is measured depending on the ambiguity in the
feature set. If the certainty is less than some threshold (or ambiguity is greater
than some threshold) then the input feature vector is considered to be representa-
tive of a new category.

Note that the categorization process is not similar to the clustering problem in
pattern recognition. In the clustering problem whenever a new pattern appears, a
distance is measured from the seed points of different clusters, and depending on
the distances the pattern is considered to be coming from the present clusters or
some new cluster. But if a pattern is a representative of some mixture of more than
one category then the clustering process would not be able to determine that. On
the other hand, the present categorization process is able to self-organize even in
the presence of mixed categories. Next we present the measure of certainty factor.

Suppose, the network is presented with a set of n features with input confi-
dence values given by [c,, ¢,," -, c,]. Let, after the network has stabilized, the
top-down feedback corresponding to these features be [b,, b,,-*,b,]. Then the
total ambiguity D corresponding to the entire feature set can be defined as

D= ici(ci —b,) (15)
i=1

The mismatch between the input confidence c; and the top-down feedback b, in
each feature is modulated by the confidence value of the feature itself, thereby
setting the relative importance of the mismatch. If (¢; — b,) increases, the value of
D also increases, and vice-versa. Here, D > 0, and posseses a maximum value of
Tr_c? = C (say).

The normalized ambiguity measure is given by

D
r=G (16)
The certainty factor is given by
CF=1—-pu. (17)

From (15), it is clear that for some given set of ¢; values, if feedback support
decreases then the ambiguity will increase and consequently, CF will decrease. But
if ¢; for each feature i (for a known category) is very small then the ambiguity (or
CF) will reflect the fact that there is very little confusion in the network. Thiseis
due to the fact that the output confidence value will also be small (since input
confidence values are small) and as a result, the feedback will also be small. As a
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result, the network will accept the input as a representative of the category which
is not desirable. Therefore, the monitor network also measures the maximum
activation value present in the output layer. The output activation of any node in
the network can be formulated as follows.

Without loss of generality, we can consider all the features to be active, i.e.
sending differential activation (e) to a particular output node /. (If some features
are shared by other objects and do not send any activation to that output node
then they can be omitted from the feature set.) Under stable condition, the
positive and negative signals at the output node will cancel each other. Mathemati-
cally,

n

W0, = Z(Ci —Z,;0)Wy. (18)
i=0

Considering linear gain function of the nodes, the output activation can be written
as

Zwilci
=9 (19)

01=

n
W, + Zwi!zli
i=0

When the network has learnt a particular category, the value of £  w,z; (we can
drop [ to represent the validity of the expression for all nodes) is nearly unity (the
learning rules are designed in such a way). If w, is small enough and all ¢; values
are nearly unity then the output x (maximum output is denoted by x) will reach
unity.

The certainty factor is compared with a threshold (vigilance threshold (p)) and
the maximum output activation with another threshold (output threshold (T)). If
the pattern satisfies the conditions CF >p and x> T then it is treated to be a
known category or mixture of more than one known category. If either of these
conditions fails then it is treated as a new category. The connectionist model works
as follows:

Step 1. Present a new pattern. The pattern may be representative of a single
category or may be caused by the presence of more than one category.

Step 2. Measure the Certainty Factor (CF). Measure the maximum output (x) in
the output layer. Note that there does not exist any output node initially.
In that case, CF and x are considered as zero. The monitor network
measures these two factors.

Step 3. If CF > p and x < T then goto Step 7;
if CF > p and x > T then make all the output nodes whose activations are
greater than T fully active, and goto Step 6.

Step 4. Allocate a new output node in the output layer. If the total number of
output nodes is greater than the capacity of the network then exit.
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Step 5. Allocate hidden nodes for having input-output associations corresponding
to the features which are present at the input. Connect the hidden nodes
to the corresponding input nodes and the newly created output node.
Initialize the weights of the newly created links, i.e. weights of the bottom-
up links are set either to zero or to a small value. The weights of the
top-down links are set to unity. Make the newly created output node fully
active.

Step 6. Learn the weights of the links, i.e. iterate the weights till they converge.

Step 7. Present another new pattern. Goto Step 2.

The categorization process is controlled by the monitor circuit of the network
(Fig. 1). In Section 2, it was mentioned that each hidden node has two operational
parts. With each hidden node, another node is added to compute the ambiguity
value at that particular node. This node computes the ambiguity value only when
the network gets stabilized. The ambiguity values and the input activations are
propagated to the monitor circuit where the normalized ambiguity value is com-
puted and the certainty factor is determined. The monitor circuit also has a
connection to the output layer. The part connected to the output layer consist of a
comparator circuit which determines the maximum activation present in the output
layer. The certainty factor is compared with vigilance threshold (p) and if it is
found to be less then a new output node is allocated at the output layer. The
hidden nodes corresponding to new feature-object pairs are also allocated, and the
necessary bottom-up and top-down links are created. If CF is found to be greater
than p then the maximum output activation is checked if it is greater than 7. If so
then only the network is allowed to execute the learning rules. On the other hand
if the maximum output value is found to be less than T then learning rules are not
executed.

5. Estimation of the number of nodes

In Section 2 it has been mentioned that the network is formed adaptively along
with learning of the input features. The total number of nodes in the network is
equal to n + A +m, where & is the total number of hidden nodes, m is the total
number of output nodes (i.e. the maximum number of categories that can be
identified), and n is the number of input nodes (maximum number of input
features). Apparently, it seems that the total number of hidden nodes will be
approximately equal to the product of the number of input nodes and the number
of output nodes, i.e. of O{mn). But in practice & depends on the number of
categories that actually share each input feature, because the number of hidden
nodes associated with an input node is equal to the maximum number of objects
sharing the feature corresponding to that input node. In one extreme case 4 is of
O(mn); in the other extreme, it is equal to the number of input nodes, when each
feature belongs to exactly one object. Here, it is assumed that there is no
redundant feature, i.e. each feature belongs to at least one output category.
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The expected number of hidden nodes can be calculated by considering a
particular model of input-output association. It is very unlikely that a feature will
belong to all the output categories. Again, the probability that a feature will not
belong to any object is zero. Therefore, for any particular feature i, if it is shared
by approximately p; number of categories, then the probability that the ith feature
is shared by u; categories will be maximum, and it will decrease as the number of
objects increases or decreases. Following the nature of the input-output associa-
tion, it can be validly assumed that the association follows a truncated Poisson
distribution. The probability that the ith feature is shared by j number of
categories is given by

exp( —p;)u! !
(j—1)!
m ! exP(‘#i):_l

)

= (r-1!

The expression is normalised because a feature can be shared by at most m
categories, i.e. the summation is in the range j €[/, m]. The total number of
hidden nodes can be written as A =Y7_,h; where h; is the number of hidden
nodes associated with the input node corresponding to ith feature. The expected
value of A, is given as

Pr(ith feature shared by j objects) = (20)

m
h;=Y_j. Pr(ith feature is shared by j objects)
i=1

1j exp(—p;)pf
j!
Lexp( - M)u,

p

J

=14+——
Z
r=0

_ZE‘_{W

=14 u,H; (21)

H- | @)
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From Eq. (22), it is evident that H, < 1. Again by simple algebraic calculation, H,
can be written as

T
(m—1)!
Hi=1- =
r=0 r!
But
m-—1,,7 o0 r m-—1
M M; M
— =exp(p;) — )}, — <exp(u;) —
Eo” p(wi) = L Ty <exp(m) — 7y
Therefore,
T
(m—-1!
H>1- p— (23)
exp(u)
T Y

From Eq. (23), it can be inferred that the total number of hidden nodes in the
network is bounded, and the upper and lower bounds in the number of hidden
nodes are governed by the bounds of H; for all /. The total number of hidden
nodes A can be written as

_
n n n m — 1 !
R (24)
i=1 =1 i=1 i
t exp( ;) - m=1!
In Eq. (24), if we assume p, =pu,= --- =p, = u(say) then the total number of

hidden nodes cannot be greater than n + nu. For a fixed value of w, the total
number of hidden nodes will be O(n) and thereby the total number of nodes will
be of O(m + n).

6. Simulation and experimental results

The network has been simulated on SUN 3 /60 workstation. The capability of
the network is tested both for binary and visual patterns. Note that the application
of the network in practical domains like 2D object recognition, needs domain
specific knowledge and is not incorporated here.

The set of binary patterns presented to the network is shown in Table 1. The
power of the network is tested with different vigilance and output threshold values.
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Table 1
Patterns are presented against features. Full confidence is represented by 1 and no confidence as 0

f fa f3 fa fs fs f7 fs fo fio fu fiz fi3 fia

pat, 0 0 0 1 0 0 0 1 0 0 0 1 1 1
pat, 1 1 0 0 1 1 1 0 1 0 0 ¢ 1 0
pat, 1 0 0 0 0 1 0 0 1 1 1 0 0 0
pat, 0 1 1 0 1 0 1 0 0 1 0 ] 1 1
pais 1 1 0 1 1 0 0 0 0 0 0 ] 0 1
patg 1 1 0 1 1 ¢ 0 1 1 0 0 0 ] 0
Table 2

Results of categorization when patterns are presented individually with vigilance factor = 0.9 and noise
level = 0.3

Actual class  Category

1 1 0 06 0 0 O 42 0 0 0 0O O 0O O0 0 O 1 O
2 o1 0 0o o0 0 O0O6 0 1 1 26 0 0 8 0 0 1
3 6 o1 0 0 O 0 0 4 0 0 0 0 0 0 0 1 0
4 o1 0 3 ¢ 0 0O O 0 O O 0 1 0 0 1 0 2
5 o 02 o0 3 o 00 00 0 O 0 10 00 0 0
6 o0 06 0 0 4 0 O0 0 OO0 OO0 0 0 o000

The value of y is chosen as 0.15. The value of negative self-feedback is set to be
0.05. The patterns are contaminated with additive and subtractive noise. It was
found that the network is able to categorize single categories for noise level as high
as 30% with an output threshold 0.8. Tables 2 and 3 show the results of
categorization for vigilance threshold values 0.9 and 0.65. With a high vigilance
factor (p), the network is very sensitive to noise and creates a large number of
categories. Table 2 illustrates the effect of a large value of p on the categorization
process. It has been found that 18 categories are formed for six classes, although
12 categories become redundant after repeated presentations of the patterns. Each
class gets associated with a particular category, e.g. class 1 goes to 7th category,

Table 3
Results of categorization when patterns are presented individually with vigilance threshold = 0.65 and
noise level =0.3

Actual class Category

1 1 0 0 0 0 49 0
2 0 50 0 0 0 0 0]
3 0 0 50 0 0 0 0
4 0 0 0 50 0 0 0
5 0 ¢ 0 0 1 0 49
6 50 0 0 0 0 0 0
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Table 4
Results of categorization when individual and mixed patterns appear randomly to the network. ‘cls’
stands for class and ‘ctg’ stands for category

ctgl ctg2 ctg3 ctgd ctgsd ctgb ctg7

clsl 0 0 0 58 0
cls2 0 0
cls3 1]
cls4

clsS

cls6

cls1&?2
cls1&3
cls1&4
cls1&S5
cls1&6
cls2&3
cls2&4
cls2&S
cls2&6
cls3&4
cls3&5
cls3&6
clsd&S5
clsd&6
cls5&6
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Fig. 2. (a), (b), (¢) and (d) represent the objects 1, 2, 3 and 4 respectively used as visual input pattern.
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Table 5
Confusion matrix when visual patterns are presented with vigilance threshold = (.8 and noise level = 0.2.
‘cls’ stands for class and ‘ctg’ stands for category

ctgl ctg2 ctg3 ctgd
clsl 0 12 0 0
cls2 23 0 0 0
cls3 0 0 19 0
cls4 0 0 0 18
cls1&2 7 7 0 0
cls1&3 0 3 3 0
clsl&4d 0 5 0 5
cls2&3 4 0 4 0
cls2&4 2 0 0 2
cls3&4 0 0 7 7

class 2 is mapped to 12th category and so on. Effect of a relatively small value of p
has been illustrated in Table 3. With a small p, the network is less sensitive to
noise and as a result, only 7 categories are formed of which only one is redundant.

Next to it the power of the network is tested for categorization of mixed
categories. It was found that the network is able to categorize mixed categories
correctly, Table 4 presents the results of categorization with 10% contamination
(output threshold = 0.8, vigilance threshold = 0.8). It shows that even when the
patterns are presented in a mixed form, the network is able to predict that more
than one category is present at the input. For example, whenever a mixture of class
2 and class 3 is presented, the model is able to predict that the corresponding
categories 3 and 6 are present at the input simultaneously. Similarly, the network
response for other mixtures of patterns is illustrated in Table 4. The capability of
the network in the categorization of visual patterns is also tested. The patterns
(Fig. 2) are contaminated with a noise level of 20% and presented to the network.
The network was found to categorize correctly these patterns. Table 5 presents the
results of categorization for visual patterns.

7. Discussion

In the present article we have presented a connectionist model which can
categorize even in presence of mixed categories. The network architecture is able
to incrementally adjust its number of nodes. A theoretical estimate on the number
of hidden nodes is also given. The power of the network lies in the categorization
of mixed patterns. Although the present work has a similarity with adaptive
resonance theory, ART is not able to categorize in presence of mixed categories.
Moreover, the network does not consider any ordered search technique to catego-
rize which is essential in adaptive resonance theory. Another advantage of this
network is that it is not necessary to give input as 0 or 1; rather it can accept
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Fig. 3. Mixed patterns with 20% noise level. (a), (b}, (c), (d), (¢) and (f) represent the mixture of objects
1&2, 1&3, 1&4, 2&3, 2&4, and 3&4 respectively.

intermediate values also. The same model can also be used under supervised mode
when an external teacher will operate in place of the monitor network.
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