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For a square matrix A, we write A > 0 to indicate that A is Hermitian
positive semidefinite. Also, A > B means that A >0, B> 0,and A - B >
0.

For a complex number ¢, the g-permanent of an n X n matrix A =

((a, j)), denoted by perq( A), is defined as

perq( A) = Z ql(a)naz(r(z)

o, i=1

Observe that per_,(A) = det A, per,( A) = I}, g,;, and per,(A) = per A,
where det and per denote determinant and permanent, respectively. Here we
have made the usual convention that 0° = 1, The g-permanent thus provides
a parametric generalization of both the determinant and the permanent. The
main purpose of this paper is to prove inequalities for the g-permanent for
g € [—1, 1] which generalize the results in [2].

We introduce further notation. If m > 2 is an integer and ¢ a complex
number, then we define the generalized factorial of a positive integer m as

mll=(14+qg)1+qg+¢*)-(1+qg+q*>+-+g™ ).

We also set 0!Il = 1!! = 1. For convenience our notation here does not involve
g. Note that if ¢ = —1 then m!l= 0 for m > 2. For convenience we will
make the convention that 0/0 = 0 throughout. This saves us the trouble of
considering the case ¢ = —1 separately at each stage. We will also use the
fact that (o) = (o™ 1).

For an n X n matrix A and for 0 €%, we define d,(o) =TT} a,, .
the diagonal product of A corresponding to the permutation . If A is an
n X n matrix, then the Schur power matrix of A, denoted by II( A), has been
defined as follows (see, for example, [8]). The rows and columns of TT( A) are
indexed by .%,. If o, 7 €.%,, then the (o, 1) entry of [T(A) is

dT(T_l(A)Z T

[ [aotir

i=1

It can be seen that II(A) is a principal submatrix of the Kronecker product
®'A=A®A® - ® A taken n times, and therefore, if A > 0 then II{ A)
= 0.

If g is a complex number, define the n!X n! matrix I, _ as follows. The
rows and columns of F n.q are indexed by &, If o, 7 Ef)” then the (o, 7)
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entry of I, is g"" 7). We set
M,(A) =T(Aa)-T,,

where ° denotes the Hadamard product.

Let V be the Euclidean space of all complex-valued functions on .%.
Then V is of dimension n!. The canonical Kronecker basis for V is {5, : o €
%} which is ordered ]exicographically. Then it is clear that the space I(V)of
linear endomorphisms on V can be identified with n! X n! complex matrices.
For o €.%,, we define, U, € L(V) by U, 8, = §,,. Then U:.%, = L(V) is
known as the left regular representation on .%,. It is easily seen that we also
have

N(A) = T dy(o)U, .
TES,

and hence we get

Hq(A) = Z ql(d)dA(o-)Ua'_l'
UGL?;I

Observe that
1
per,(A) = F(Hq(A)l, 1) (1)

where 1 is the column vector of all ones. It has been proved by Bozejko and
Speicher [4] that if ¢ € [—1, 1] then T, =0 I then follows from (1) that if
A > 0and g € [-1,1] then per (A) = 0.

4
2. GRAM'S INEQUALITY FOR THE SCHUR POWER MATRIX

We need to develop some preliminaries before coming to the main result
in this section. The following notation will be used. If = €.%,, then P™ will
denote the permutation matrix corresponding to 7. Thus the (i, j) entry of
P™ is 1if j = m(i) and 0 otherwise. We denote by Q(r, n) the set of all
r-tuples k = (k,, ..., k,) of nonnegative integers k,,..., k. such that ¥]_,
k, = n.
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Let B =(B,, B, ..., B,) be an n X r matrix, where B, denotes the ith
column of B. If k € Q(r, n), then we denote by B(k) the n X n matrix

We will deal with partitions of {1,2,..., n}. For k € Q(r, n) let (k)
denote the collection of all partitions

% = (U,....,U)

of {1,2,..., n} such that the cardinality of U, is k; for i = 1,2,..., r.

Choose and fix k€ Q(r,n). Let I, ={1,....k;}, I, =1{k; +1,...,
ki +kyb,..., L ={n—k +1,...,n}. We call #=(I,,..., 1) the stan-
dard partition in (k).

If % € #(k) and if ¢ €.7,, then we say that o < % if 0 maps U, onto
I for j=1,2,.

Let % 637’(1() and let B be an n X r matrix. We define

33(%) - 1—[ nb

j= ltEU

Suppose —1 < g < 1. We construct matrices G, H as follows. Both G
and I are square matrices whose order is the same as the cardinality of 92(k)
(which equals nl/k !+ k1. The rows and columns of G, H are indexed by
PKk). If Z, 77€ P(k), then the (%, 77) entry of G and H is defined as

1
- e L Lot
v v kll"' kr‘ ¥ kl T a.«g/.,-«%'q ( )
and
l l(u‘)+l(1’)

T" o< U T ¥

LEMMA 1. With the above notation, G > H. Equality holds if ¢ = 1.

Proof. See Lemma 2 in Bapat and Lal [3]. |
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The main result of this section is Gram’s inequality for the Schur power
matrix, which in turn gives us Gram’s inequality for the g-permanent. The
result generalizes Theorem 1 in Bunce [5].

THEOREM 2. Let A > 0 be an n X n matrix, and suppose A = BB*,
where B = (B,,..., B,) isn X r. Then for g € [— 1, 1],

Mn(ay> 3 ————M(B[L,2,....n1k])
! keﬂ(r,n)k]”.“ kr” !
XHq(B*[kll,Z,...,n]). (3)

Equality holds in (3} if g = +1.

Proof. First suppose —1 < g < 1. Using the fact that the g-permanent
is a multilinear function of each column, we have

I (A) =1,(BB*)

g b,; B;

1

=1, X b,B,.....
j=1 j

] —
= Z k_'T Z dB(k)(T") Hq( B(k)PW)-
keQ(r,n) T 1° rl wes,

Thus the result will be proved if we show that for any k € Q(r, n)

1 —
PRI Y. dpgy(m) I (B(k) P7)
| I Tt weS]

>

ke kN I(B[12,....n KD (B*[kI1.2,..., nl). (4)
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Fix k € Q(r, n), and let C = B(k). Then

E dB(k)(“') Hq( B(k)P™)

n

Zy de(o) Hq(CU(l), e, CU(H))

ks

= ¥ de(0)de(n)q"" Y, U
o, 1S,

= Z 33(?/) eg( 7 ) 245U U,-1, (5)
%, 7ePK)

where z,,- has been defined in (2). Also,

m(B[1,2,....n |KDTL (B*[k1,2,....n])

_ (;Z‘yql(a)dC(a)Ufl)( y qz(f)dc(T)Ufl)

'rE._‘Zi

= Z dC(T)dc(o')ql(g)H(T)UrUa—l

o, TEY,

= X ep(#)en(7IUU X XL g O (8)

Y. vePk) o« ¥ 1<

Lemma 1, (5), and (6) together imply (4). If g = 1, then the expressions (5),
(6) are equal and (4) holds with equality. If g = —1, then again, keeping in
mind our convention that 0/0 = 0, it is easily seen that equality holds in (4).
That completes the proof. B

COROLLARY 3.  Let A > 0 be an n X n complex matrix, and suppose that
A = BB*, where B = (B,,..., B,) isn X r. Then for g € [—1,1]

l 2
Perq(A) > Z koo ke Hlperq(B(k))| * (7)
ke Q(r,n)y ™17 ree

Equality holds in (7) if g = +1.
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Proof. From (3), we have

(T, (A)1, 1)

%

1
< 5 mnq(B[l,Z,...,nlk])

XM (B*[k11,2,...,n])1, 1>.
which gives us the result. =

3. INEQUALITIES USING INDUCED MATRICES

We now define the kth induced matrix P, (A) of an n X n complex
matrix A. It is the (" *+ & - ! )-square matrix whose entries are

per,(Ala i B])
Vi (), (B)

arranged lexicographically in «, 8 € G; . Recall that G, , denotes the set
of all nondecreasing sequences @ = (a,, a,, ..., a;) of integers, 1 < a; < n,
i=1,2,..., k, that Ala| B]is the k X k matnx whose {i, j) entry is Ao,
and that p.q(a) is the product of the generalized factorials of the multiplici-
ties of the distinct integers in . We will write n, in place of (»+ k- ).

THEOREM 4. For g € [—1,1] the map A — quq(A) possesses the
following properties:

@ P (L) = I, being the identity matrix of order n.
Gi) P, (cA) = ckPk (A) and P, (A™) = P, (A"
(iii) P, (A) is posztwe Semzdefzmte if A is so.
(iv) P, (A +B) = P, (A + P (B)if A, B are positive semidefinite.
W) P, q((A + B9 3 P, (AVF) + P (Bl/k) if A, B are positive
semidefinite.

Proof. (i) and (ii) can be easily verified. For (iii) we proceed as follows.
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For each «, B € G, , consider the matrix Ala | B], which is a k X k
matrix. Then H(A[a | B]) is a k!X k! matrix. If o, 7 €%, then the (o, 1)
entry of I[I(A[a | B] is

k
dA[a I B]( O 1) - ]-—]1: aao'(i)Br(().

Note that any two rows (columns) of II(A[a | B]) have same elements
except for the positions that they appear at. We now construct a square
matrix A of order kln; from A. The matrix A is partitioned into blocks of

size k!X k!. That is, A has n, X n; blocks with each block of size k!X k!.
We index these blocks using a, 8 € G, , and arrange them lexicographically.
Then for a fixed a, B € G ,, we put the matrix [I(Ala | B] in the (ai B)
block. Note that in this way we have indexed the rows and columns of A by
a&,’s arranged lencographlcally

Since A > 0, we have ® A > 0, implying (8"A) ® Juz 0, where [},
denotes the k!X k! matrix with each entry 1. Observe that Aisa prln(:lpal
submatrix of (® “A) ® J,, corresponding to the rows and columns &,’s.

Hence A 0.
Let x! = (xl, Xy onn, xnk), where x, = 1/ uq(ai) for i =

o
L2,. nk, and a’, a® ..., a" are the totality of elements of G, . Thus if
M, = xMx then /K 0 and is of order n; X n;. Thus .#, ® J,,> 0. Also,

Jo, ® 0, 20, as I‘k)q > 0. Hence Ao °(f,,® I )=>0. Therefore

AO(]ﬂk ® Fk,q)o(‘/[ﬂk ®]k!) =0

Let AF be the matrix obtained by adding the elements of each block of
Ao °(f,, ® I} )o(A, ® J;)). Then it is easily seen that

Ar = kP, (A).

Hence P, q(A) > 0, and thus we have proved (iii).

Reasoning as in case (111) with the fact that for positive semidefinite
matrices A and B we have & (A + B) > ®'A + ®"B, gives us (iv). Part (v)
follows from the result proved by Lieb [6] and Ando [1], that the map
A — &'AY¥ is concave and positively homogeneous, hence superadditive—
that is, if A, B > 0 then

1/k

®"(A + B)" > & AV* + o BV/*

—and from the reasoning used to prove (iii). [ ]
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COROLLARY 5. Suppose n = mk, and let each n X n matrix A be parti-
tioned as follows:

in which each A,; is k X k. Then the map @, from M,,, the set of all n X n
matrices, to M,, defined by

Perq(Au) perq(Am) perq( Aln)
®,(A) = . : S :
perq( Aml) Perq( Amﬂ) Perq( Amm)

possesses the following properties:

W o) =1,.
(i) fI)q(cA) = ck¢>q( A) and <I>q(A*) = (I)q(A)*.
(iii) @ (A) is positive semidefinite if A is so.
(iv) (I)q(A + B) > (I)q(A) + (I)q(B) if A, B are positive semidefinite.
W (A +BV" > ®(AY") + &, (BY*) if A, B are positive
semidefinite.

Proof. This follows from the ohservation that @ (A) is the principal
submatrix of the induced matrix P, q( A) on fixed indices. Hence there is a
positive (i.e., order preserving) linear map ¢ from M, to M, such that

¢(I, ) =1, and

D (A) = (b(Pqu(A)) for every A. |

THEOREM 6. The map ®_ is completely positive in the sense that if A,

(i, j = 1,2,..., p) are n X n matrices such that
Ay Ay
: -1 =0
A A
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then
(I)q(All) q)q(}‘lp)
: - : > 0.
(Dq(Apl) (I)q(App)
Proof. Apply Corollary 5 with pn instead of n. »

COROLLARY 7. The map @, possesses the following properties:

(i) @, (AP (A) < P,(A*A).
(i) @A) < ®,(A™") if A is positive definite.

Proof. (vi) follows from Theorem 6 on observing that

A*A  A¥
A ;| =0

n

Similarly (vii) follows from the inequality

A I
> 0.
I, A

for positive definite A. [

With k = n, (Dq(A) reduces to perq( A); hence we have the following
consequence of Theorem 6.

COROLLARY 8.  Let A, B, C be n X n matrices. If

2 ]

is positive semidefinite, then

|perq(C)|2 < perq( A) per,( B).
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Proof. By Theorem 6, we get

per,(A) per,(C)
per,(C) per,(B)

;
hence its determinant is nonnegative. n

4. INEQUALITIES OF SCHWARTZ TYPE

Let A, B, (i =1,2,..., p) be n X n matrices.

THEOREM 9. Forany 0 < A, <1G =12 ..., p)and —1<qg <1,
2

perq( Y B;“Ai)

i

< Pel'q(EBi*(AiAT)/\fBi) Perq(Z(ATAi)J'”\')‘

Proof. Since

Ez‘Bi*(AiAT)AiBi Z’z’Bi*Ar'
£, ATB, L(ara)

B o0]l(a,an)* A, B, 0
—; 0 L]l ar  (ara) M0 L]

1

by Corollary 8 it suffices to prove that

A (A A" A,
‘ Ar O (ara)'h

Let | Al = (ATA, )Y/2 Then there exists a unitary matrix U; such that
= U|A| Then obviously (A,A*)* = U]A*"U* and (A*A) N =

WV
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fAilz(J ~*). hence

UlA,l™ _
A, = [ [laux 140 *] = 0. 0

i lAi|l—Ai

CoroLLARY 10.  For g € [—1, 1] we have

2
perq( ZB;"Ai) < perq( ) B;“Bi)perq( Y. ATAi).

Proof. This follows from Theorem 9 with A, = O for each i. |

REMARK. When p = 1 this inequality can be written as
Iperq( B"‘A)I2 < perq( B*B) perq( A*A),

which is the Cauchy-Schwartz inequality for the g-permanent and was
proved in Bapat and Lal [3].

CoroLLARY 11, If | Al = (ATA)Y? then

2

< perq(zi:IAﬂ) perq(§|Ai|)-

perq( Zl: Ai)

In particular, if all A, are normal then

perq( ;Ai)

< perq(Z]Ail).

Proof. The first inequality follows from Theorem 9 with A, = 0 and
B,=1I fori=12...,p. [ ]
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CoROLLARY 12.  If A is positive semidefinite and doubly stochastic, then
forany 0 < A <1

(LA 1)

< per,( A).

Proof. Since (1/n)], is an orthogonal projection such that (1/2)AJ, =
(1/n)], A = (1/n)],, it follows that A — (1/n)], > 0. Then by Corollary 10
and Corollary 5(iv)

1 1
ol 1)

1 1
< perq(;]n + A(A — —r-l-]n))

1 A 1 )
< —J, + A~ —
per, n]n n]n

= per,(A). =

REMARK. Certain inequalities of Minkowski type in Ando [2] can also be
generalized to inequalities for the g-permanent.

We now apply the previous results to obtain more inequalities for the
g-permanent. The next results partially generalize results of Marcus and Minc

[7].

THEOREM 13.  If A = ((a;,)) is a positive semidefinite n X n matrix with
TOW SUMS 1, 1o, ..., r,, then

nll  =» _
ok

n ri 2
s(A) i=1

per,(A) >
provided s(A) = L, r, # 0.

Proof. Since A is positive semidefinite, there exists a matrix C such that
A = C*C. Suppose C = (x, x5,..., x,) where for each i, i = 1.2,..., n,
x; = (x,, x;9,..-, x;,). Thus

n it n n
iy = (C*C)y; = Zx”?cj, and Zaij = E fot?_c_jt=1”i-
t=1

j=1 j=1t=1
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Since s(A) # 0,let u = [1/V/s(A) I1ZIL, x,, ie., v, = [1/{/s(A) X%,
for j =1,2,...,n. It is easily seen that {u,u} = 1. Let us define an n X n
matrix D as D = (u, u, ..., u). Then it can easily be shown that

per,( D*D) = per (],) = n!l.

We also have

N ]
C*D = 1 Ty ’”-2 Ty
Vs(A) :
rn rn rﬂ
Thus
n'l ﬁ
er, (C*D) = ———— 1 | r,.
pery ) [S(A)]n/zizl
Now again, by the remark on Corollary 10, we get the required result. ]

COROLLARY 14.  If all the rows of a positive definite n X n matrix A are
equal to k, then

k n
N —
per,(A) 211(”) .

Proof. Easily follows from Theorem 13. [ |

THEOREM 15. If A is a positive semidefinite matrix with eigenvalues A,
Ag, ..., A, then

n
perq(A) >nll )] |1§t|2 "
t=1

where &, is the product of the coordinates of the unit eigenvector correspond-
ing to A,.
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Proof. Since A is positive semidefinite, we have A = U*DU, where U
is unitary and D = diag(A}, Ay, ..., A,). Let DV? = diag(e, a3, ..., @)
with a; = A/%. Using Gram’s inequality, we have

perq( A) = perq(U*Dl/z(U*Dl/z)*)

1

‘ 2
> L ”|perq(U*D1/2(k))| . (8)
keQ(n, n) "1 n
If we retain only those n-tuples k = (k,, ..., k, ) for which one of the ks is

equal to n and others zero, we get

n

1
perq(A)> Em‘pﬁrq(U*Dl/ﬁ(O,---,O, n ,0,...,0)”2
— n!!

2

n
n!!Hutjat"
i=1

n
=nll Y [£|%A7.

r=1
Hence the result. |

THEOREM 16.  If A is a positive semidefinite matrix with eigenvalues A,,
Agyoovy A, then

per (A) = !l 3 |£1°A} + per, (U)I* det A,

t=1
where the £s are defined as in the above theorem.

Proof. In addition to the n-tuples for which one of the k;’s is equal to n
and others zero, we also retain on the RHS of (8) the n-tuple (1,1,....1).
Then (8) yields the required result. m

I thank Professor R. B. Bapat for bringing reference [2] to my attention.
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