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Abstract
Consider a vector valued process X given by X = {{X;(m),m>1},1<i<k} which takes values on a finite set EX where

E:{1,2,...,n}. We derive sufficient conditions under which such a stochastic process is associated in time. An illustrative
example wherein such a process is useful is also provided.
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1. Introduction

Consider a vector valued process X given by X = {{X;(m),m>1}, 1 <i<k} that takes values on a finite set
E* where E: {1,2,...,n}). The array can be written as

X xi2 - xiv-1) X - Xium)
Xo(l) X2(2) -+ Xo(b—1) Xa(b) -+ Xa(m)
X(1) Xu2) -+ Xub—=1) Xub) --- Xy (m)
Xie(1) Xp(2) - Xiu(b—1) Xp(D) -+ Xi(m).

We assume that for fixed b, variables in the bth column X (b), X1(b),..., Xx(b) are dependent random
variables and random vectors across rows form a stochastic process.

Motivation for the model comes from data on an oral hygiene study. Dentists recorded the reduction in the
amount of plaque on teeth. Each individual in the data was monitored for a couple of days. Two teeth were
identified, one on left lower canine which is in the left lower corner of a jaw, and one on molar at upper right
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jaw. The reduction in the thickness of plaque for subjects are usually recorded as belonging to four different
categories, viz., no reduction, slight reduction, moderate reduction and vast reduction. One of the objects of
the study was to evaluate effectiveness of brushing. In such cases natural question can be: Is it possible to
reduce the number of records per individual per day? If there is some sort of dependence, it may be possible to
reduce the dimension of the data. Das and Chattopadhyay (2004) developed a latent mixture regression model
to study this categorical multivariate data.

Canonical correlation factor analysis are the tools used for non-longitudinal measurable data. To deal with
reliability data Barlow and Proschan (1975) defined various concepts of bivariate and multivariate dependence
and studied their relationships. For sake of completeness we give definitions of dependence concepts needed in
sequence. Given random variables S and T following are some of the concepts of bivariate dependence.

Definition 1.1 (Right-tail increasing). A random variable 7' is RTI in a random variable S if P[T >¢|S>s] is
increasing in s for all ¢.

Definition 1.2 (Stochastically increasing). A random variable T is SI in a random variable S if P[T>1]S = s]
is increasing in s for all ¢.

Definition 1.3 (Multivariate stochastically increasing). A random variable T is stochastically increasing in
random variables Sy, S»,..., Sk if P[T>t|S| = 51,82 = $2,..., Sk = k] is increasing in sy, 52, . . ., Sk-

Definition 1.4 (Conditionally increasing in sequence). Random variables T4,T>,...,T, are conditionally
increasing in sequence if P[T;>t;|T;_y = t;_1,...,T1 = t1] is increasing in t,t,...,¢,_1 for i=1,2,...,n,
that is, 7'; is stochastically increasing in 71,75, ..., T;i_;.

Definition 1.5 (Associated). Random variables 7'y, T5,..., T, are associated if Cov(I'(T),A(T))=0 for all
pairs of co-ordinatewise increasing functions I and 4.

Remark 1.6. An infinite sequence of random variables {7, n> 1} is said to be associated if it is associated for
every finite n.

Barlow and Proschan (1975) showed that SI(7" | S) implies RTI(T'| S) and if Ty, T>, ..., T, are conditionally
increasing in sequence then they are associated. Associated random variables arise in reliability, statistical
mechanics, percolation theory, etc. For a detailed review see Roussas (1999) and Prakasa Rao and Dewan
(2001). The concept of association in time was defined by Hjort et al. (1985).

Definition 1.7 (Associated in time). The stochastic process X is said to be associated in time iff, for any integer
m and {t1,...,1,}, the random variables in the above array are associated.

Hjort et al. (1985) and Kuber and Dharamadikari (1996) discuss sufficient conditions under which
association in time for Markov and semi-Markov processes holds.

We model a vector valued stochastic process, recognize its multivariate structure for a specific time, and
longitudinal aspects over the period of time and identify sufficient conditions for such a process to be
associated in time. In Section 2 we discuss the discrete case with special reference to multivariate Bernoulli
random vectors. In Section 3 we discuss the continuous case with special reference to multivariate normal
random vectors.

2. The discrete case

Consider the stochastic process {{X;(m),m>1},1<i<k}. For i,j € E, let
PIX\(H)=i=mn, i=12,...,n,
PIXu(b) = j| Xy (b) = i] = Py, V2<as<k,
PIX\(b) =j| Xi(b—1)=i]=Li;, b=l 2.1)

Note that 7; is the initial probability, P;; are the usual one step transition probabilities, L;; link two vectors
X (D) and X(b — 1) in terms of the first entry of the hth column and the last entry of the (b — 1)th column.
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Hence we call them linkage probabilities. Assume that V2<a<k, b>1,

Al . P[Xa(b) = ib,u | Xafl(b) = ib,afls cee aXl(b) = ibl]
= P[Xu(b) = iba| Xa=1(D) = ipa-1] = Piy, i, (D). (2.2)

Further, suppose that
Ay PIX1(b) = ipy | Xy = 1] = PIX1(D) = ip1 | Xi(b — 1) = ip—1)k]- (2.3)

Note that A; is a Markov-like assumption for a finite collection of chronologically ordered random variables
and A; is a Markov-like assumption for the probabilities which link a component of a vector with the last
component of the previous vector.

For b = 1, the joint distribution of {X(b),..., X;(b)} will be determined by {m;, P;;,i,j = 1,2,...,n}. For
s=1,2,...,m, let iy = (i51,152,. . .,isx). Then from assumption (Aj, A») it follows that

PIX (1) = iyge, X1 (1) = g1, ..., X0(1) = i141]
XP[X (1) =i | Xpm1 (D) = dij—ts .-, X0 (1) = g ]
= PXi—1(D) = i1t | Xpe2(D) = i1 j—2, ..., Xi(D) = d141] ... PIX1(1) = i)

k
=[] P =iy | Xy (D) = iy, Xa(1) = i JPLXG() = i)
j=2
k
= [ PLx;(1) = in | Xjo1 (1) = iy JPLXH(D) = i), (2.4)
j=2

Further,
PX(2) =iy, X(1) = i1]
= P[X(2) = iox | Xp1(2) = iape—1, .-, X1(2) = i1, X(1) = i1]
PO =i | X (1) = dige, X1 (1) = dge—t, -, X (1) = i)

k
= H PIX;(2) = ir | X (j-1)(2) = 12, 1]P[X1(2) = ia1 | Xk (1) = i14]
j=2
k
s [T PIXG (D) = iy | X 0(1) = iy 1 PLX (1) = i), (2.5)
=2

In general, let (¢ — 1)k<{<ak, a=1. Then { = (a — 1)k +d for some d € {1,2,...,k}. Consider the joint
distribution of {X(1), X(2),...,X(b —1),X1(b) = ip1,...,X4(b) = ipq}. Then, using A; and A,, we get

PIX() =i, X2)=16p,....,X(0— 1) =ip_y), X1(b) = i1, .., Xa(b) Zip 4]
= PXa(b)=ipa, Xa—1(b)Zipa—i1,.... X1(1) —ii]

b k
= P[Xd(b)Zib,d | Xd(b)Zib,d] H H P[Xa(s) = is,a | Xa—l(s) = is,a—l]
s=1 a=2
b
< [T PIX () = s | Xi(s — 1) = i fJPLX1 (1) = 1], (2.6)

s=2

This expression involves (b — 1) linkage probabilities and (b — 1)(k — 1) + d one step conditional probabilities
and one initial probability. Hence

PXyb)=ipal Xa1(B)Zipa—r,...., X1(1) =i11]
PLX ()= iny | X4 — 1) = ipoig] if d = (b— Dk +1,
T PIXaB)Zipa | Xaa(B)Zina 1] if (b— Dk + 1 <d<bk.
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Thus, to write all finite dimensional distributions of such a vector valued process one would require
information about {r;, P;;, L;j,1,j € E}. Here >, m; = 1, Zj Py =1Vi, ZjLi/' =1Vi.
For the given process X, let {Z,,n>1} be a process, where
Ziokyy =Xi(), j=1, 1<k, 2.7

Hence all finite dimensional distributions of X and {Z,,n>1} coincide. Now we consider a set of sufficient
conditions for association in time for the process {Z,,n>1}.

Theorem 2.1. If {Z,,n>1} is conditionally stochastically increasing then it is associated in time.

Proof follows from the fact that conditionally stochastically increasing random variables are associated (see
Barlow and Proschan, 1975).

Theorem 2.2. Suppose conditions A and A, hold for the stochastic process X. Further suppose that
PIX,(b)=ipa| Xao1(b) = ipq_1] is increasing in ip,—y Vb=1, a=2, (2.8)
PIX1(B)=ip) | Xi(b— 1) = ip_1 4] is increasing in ip_1; Vb=1, a=2. (2.9)

Then it is associated in time.

Proof follows immediately from (2.6).

Thus sufficient conditions for X to be associated in time are that all one-step conditional and linkage
survival probabilities are stochastically increasing. Since right-tail increasing implies stochastically increasing,
it is sufficient that these conditional probabilities are right-tail increasing.

Lemma 2.3. Suppose X, Y are discrete random variables on the same finite sample space E. Further suppose that

P[X =x|Y =y] isincreasing in y for each x>y,

is decreasing in y for each x<y. (2.10)
Then
P[X =x|Y = y] is increasing in y for each x. (2.11)
Proof. First note that P[X>x|Y =y]=> " PX=z|Y =)].
The proof is trivial when y<x<m. When x<y<m, we have
y—1 m
PIX>x|Y=)]=) PX=z|Y=)]+) PX=z|Y=)]
=X =y
= PIX<y| Y =y]— PIX<x| Y = )]+ P[X>y| ¥ =)]
=1-PX<x|Y =y
The proof follows from the fact that P[X = x| Y = y] is decreasing in y for each x<y. 0O
The lemma leads to the following theorem.
Theorem 2.4. Suppose conditions Ay and A, hold for the stochastic process X. Further suppose that
PIX (D) = ipa | Xu1(D) = ipy—1] is increasing in ip,—1 Vipy=ipe—1 b=1, a=2,
is decreasing in ip4—1 Vipa<ipg—1 b=1, a=2, (2.12)
PIX (b)) =ip1 | Xi(b— 1) =ip_14] is increasing in ip_1x Vip1=ip_14 Vb=1, a=2, @13

is decreasing in ip_1; Vip1<ip_1x Vb=1, a=2.
Then it is associated in time.

Theorems 2.1, 2.2 and 2.4 give sufficient conditions for X to be associated in time. Theorem 2.1 does not
require the Markovian assumption (A, A,). Theorem 2.2 requires one-step conditional and linkage survival
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probabilities to be stochastically increasing. Since right-tail increasing implies stochastically increasing, it is
sufficient that these conditional probabilities are right-tail increasing.

However, the conditions in Theorem 2.4 are in terms of conditional mass function, that is, in terms of the
kernel of X. Hence these are easily verifiable. Theorems 2.2 and 2.4 give weaker conditions for verifying
associated in time provided the underlying process is Markovian in the sense defined by (A, A).

2.1. The Bernoulli case

Marshall and Olkin (1985) considered a bivariate Bernoulli distribution whose marginals are Bernoulli
random variables. They have used this bivariate Bernoulli distribution to generate bivariate binomial, Poisson
and hypergeometric distributions.

Now we consider two models, a multiplicative and an additive, which arise from independent Bernoulli
random variables and can be considered as an extension of Bernoulli random variables to k dimensional
dependent variables. They will be used to study association in time for the processes like those discussed
above. However, they are of independent interest as well.

2.1.1. The multiplicative model
Let Yy, Ys,..., Yi_1, Y be independent B(1,p;), i =1,2,...,k random variables. Define a new random
vector W as follows:

Wi=Yix Yy i=12... k=1, Wi= 7Yy (2.14)

Note that each ¥ is increasing in its arguments. Since independent random variables are associated and
increasing functions of associated random variables are associated (Esary et al., 1967), we have W =
(W1, Wa,..., W) associated random variables. The joint distribution of (W, W5, ..., W}) is given by

PIW,=Wy=--- ,Wr=0]=1-p,,

k
PIWy=Wy=-- Wi=11=]]r
i=1

PIWy=wi,Wo=wa,..., Wi_i =wim, Wi =0]=0, if wy=1 forany I<j<k,

k—1
PIW =wi,Wa=wa, ..., Wi =wi_, Wi = 1] =p, LH p}”f'(l —p,.)l“’f] otherwise. (2.15)
=1
For completeness note that for i=1,2,...,k — 1,
PIW;=1]=pppr, PIWi=0]=1-pp,
Cov(Wi, W) = pipipi(1 —pr),  i#). (2.16)
Cov(Wi, Wi) = ppi(1 —p) for i#k. (2.17)

However, note that

(1 = p)A = pr)ps3ps

PIWy=1|Wy=0,W,=0]= T
Pk

1 —
(1 — p2)pspy . (2.18)
1 = popyc
Clearly, the Markovian property defined in (A) does not hold. The following result is true.
Theorem 2.5. Let {X,(b),a=1,2,...,k} be independent B(1,p,) random variables for all b>1. Define
Zr=X,()x Xi(1), 1<l<k—1,

PWs=1|W,=0]=
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J
Zi = [[ Xe(@). j=1,

a=1
Zi=XD)xZp, (=(0b—-Dk+a 1<a<k. (2.19)
Then {Z,,n>=1} are associated in time.
2.1.2. The additive model

We also consider another additive model which describes the dental data mentioned earlier. Now, let
Y, Y, ..., Y be independent B(1,p,),i =1,2,...,k random variables and U be B(l,p) random variable

independent of Y;,i =1,2,...,k. Define a new random vector W* as follows:

Wi=Y;+U, i=12,... k. (2.20)
Note that (Wi, W, ..., W}) are associated random variables. Further each W7 takes values {0, 1,2}. We have

PIW:=01=0-p)d—p), PIWi=11=U-plp+ 1 —p)p, PIW=2=p;x*p. (2.21)
Note that

EW?Y) =p+pi, Var(Wi)=p(l —p)+p(l —p) Vi,

Cov(Wi, W7)=p(l —p) Vi#]. (2.22)

This idea can be extended such that W7 is a sum of two or more independent Bernoulli random variables and
a common effect. In this case also

PWs=1|W5=1W;=0]=ps,
« . p(1 = py)(1 = p3) + (1 — p)pyps
PWE=11W5=1]= =, (2.23)
: ’ (1 =py)+py(1=p)
Hence the Markovian property does not hold. However, the process {Z,,n>1}, defined below, is associated in
time.
Theorem 2.6. Let {X,(b),a=1,2,...,k,b>1} be independent B(1, p,) random variables for allb>1. Let U}, j =
1,2,... be independent B(1,p;) random variables, independent of {X ,(b)}. Define

Zo=X )+ U, 1<t<k,

b
Zr=X.b0)+[[U;. ¢=0b-Dk+a 1<a<k. (2.24)
j=1

Then {Z,,n>=1} are associated in time.

Hence for both the models considered above the stochastic processes of interest are not Markovian. Hence
Theorems 2.2 and 2.4 cannot be used. However, both the processes are associated in time.

3. The continuous case

In Section 2, the state space of the process X was considered to be discrete. When the records are on actual
measurements on an individual (device) at a given point, the random variables X ,(b) take values in an interval.
For example, in case of dental data amount of stain may be measurable. In such cases one has to study the
vector valued process { X}, discrete in time and continuous in state space. In what follows we provide sufficient
conditions for association in time for such a process. To begin with, as in Section 2, we provide a result based
on conditionally stochastically increasing sequence and then following Pitt (1982) obtain the sufficient
condition for association when the finite dimensional distribution follows multivariate normal distribution.

As before X = {X(b),b € N}. {X(b),b=1,2,...,m} is a collection of km random variables. One would
know the behaviour of these km random variables completely if one knows the corresponding km dimensional
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multivariate distribution completely. We note that there are two co-ordinates of this family of random
variables. For a fixed b € N, there are finitely many, i.e., k random variables, say {X(b), X2(D),..., Xk(b)},
each taking value in R'. This k dimensional multivariate distribution will be known completely if
we know one marginal and successive conditionals, say P[X(b)=x], P[Xa2(b)=x,| X1(b)=x1],...,
PIX (D)= x| Xp—1(B)=Xxp_1,. .., X1(b)=x1]. Assume that
Bi: PLX;(0)=x; | X1(b) = x1,. .., Xj—1(b) = x;-1]
= PX;(0)=x; | X; 1 (D)= x;1] = Fio1 (x| x;-1)  (say),

By: Fiij(x|y) = Fia(x|y). (3.1

Then, in order to know the k dimensional distributions one would require to know
{F1(x), Fim1j(xj|x;-1) Vx; € R,j=1,2,...,k}, where Fi(x)= P[X(b)>x;]. Further, if the conditional
survival functions satisfy the stationarity property B, and the marginals are identical, then the kernel of
this k dimensional vector would be {£(x), 1 2(x| y)}. Above is the multivariate expect of the family of random
variables described.

Now to consider the ““process™ aspect of it, VO<s<t,s,t € N {X(s), X(¢)} are jointly distributed. One can
say that {X(¢),7>0} is a vector valued Markov process if

By: PIX()=x,| X(s5) = x,, Vs<1] = PIX()=x,| X(5) = x,] = Fy,(x/] xy). (3.2)
Further we assume stationarity, that is,

F.Y,l‘(xf | XS) = FY—S(XI | xs)a Vﬁaﬁ € R+5 VO<S<Z (33)

In light of (3.1) and (3.3), in order to write the joint distribution of {X(s), X(¢)}, one needs the conditional
distribution function, say from one of the X;(s) to one of the X;()’s. The linkage probabilities are given by

PIX ()= x1, | Xi(s) = xp] = Gﬁ}l (x17 | xpg)  (say). (3.4

Then, using 1§1,B2,33, the joint distribution of {X(1),X(2),...,X(m)} can be determined by
{F(s), F1(t]5), G5 (1 9)}. Further for 0<s<t,

11

k t
PIX(D)=x, X()=x] = Feo) [T [ Frates 1x.) [ G5 ol xa)- (3.5)
j=2 s=2

s=1

In a similar way finite distribution of any order can be written.
As before, we consider the process {Z,,n> 1} given in (2.9) and study sufficient conditions for the process to
be associated in time. Theorem 2.1 holds even in this case when the state space is continuous.

Theorem 3.1. Suppose that for the stochastic process X conditions Bi—Bs hold. Further suppose that
P[X;(s) = x5, | Xj-1(s) = xy,_,] is increasing in x5, Vs=1, j=2, (3.6)
PIX () =xy | Xi(s — 1) = x4_1,] is increasing in x,—,, Vs=1, j=2. 3.7
Then it is associated in time.

Pitt (1982) showed that positively correlated normal random variables are associated. Hence we have the
following two results.

Theorem 3.2. If {Z,,1<n<m} have N,,(u,2), with 6;;=0, then {Z,,n>1} are associated in time.
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Theorem 3.3. If {X(1;)1 <i<m} have Nk(,uk,Zk), with ¢*.>0, and

ij =
PIX1(8)=xg | Xi(s = 1) = X(—1)k] is increasing in x_1yx Vs, (3.8)

then the process {X} is associated in time.

Note that we do not need the process {X} to be Markovian for Theorems 3.2 and 3.3 to be true.

4. Applications to dental data

Tables 1 and 2 give a part of dental data analysed by Das and Chattopadhyay (2004). It gives stain on the
same tooth at all the four positions before and after brushing, respectively. Numbers under (P, P, P3, Ps)
indicate the amount of stain at each of the four positions on the selected tooth of an individual.

It is ecasy to verify that data in Table 1 are conditionally increasing in its co-ordinates. However, for
data in Table 2 all probability inequalities are in the desired direction except that
P[Py=3|P =1,P,=0,P3=1]= %, while P[P4=3|P, =0,P,=0,P3;=0]= % Note that the first prob-
ability is based on only two observations and the departure can be attributed to sampling/measuring errors.
With such an understanding, both the data sets can be considered to be associated in time. Hence
measurement only at one of the four positions, say at P4, would suffice for statistical analysis. To the best of
our knowledge there are no statistical tests for testing if a sequence of random variables is conditionally
increasing.

In general, the philosophy in this paper is analogous to the philosophy behind generators, fractions, alias
structure and the resolution of a fraction in factorial experiments. These concepts in factorial experiments help
user to minimize the experimental work. On the same lines, if the user has some technical or statistical evidence
that the data are going to have a dependence structure of specific type, he/she can plan economic data
acquisition methods. We have provided various situations wherein collecting fraction of data may be sufficient
to take decisions.

Table 1
Dental data: stain before brushing
Individual Pl P2 P; P4
1 1 1 1 2
2 1 1 2 2
3 1 1 2 2
4 1 1 2 2
5 1 1 2 2
6 1 2 2 2
7 1 2 2 2
8 1 2 2 2
9 1 2 2 2
10 1 2 2 2
11 1 2 2 2
12 1 2 2 2
13 1 2 2 3
14 2 1 2 2
15 2 2 2 2
16 2 2 2 2
17 2 2 2 2
18 2 2 2 2
19 2 2 2 2
20 2 2 2 2
21 2 2 2 2
22 2 2 2 2
23 2 2 2 2
24 2 2 2 3
25 2 2 2 3
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Table 2
Dental data: stain after brushing

Individual P] P2 P3 P4
1 0 0 0 0
2 0 0 0 1
3 0 0 0 1
4 0 0 0 1
5 0 0 0 1
6 0 0 0 1
7 0 0 0 1
8 0 0 0 1
9 0 0 0 1

10 0 0 0 1

11 0 0 0 1

12 0 0 0 2

13 0 0 0 2

14 0 0 1 1

15 0 0 1 1

16 0 0 1 1

17 0 0 1 1

18 0 0 1 1

19 0 0 1 1

20 0 0 1 1

21 0 1 1 1

22 0 1 1 1

23 0 1 1 1

24 0 1 1 1

25 1 1 1 2
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