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ABSTRACT. By applying a transplantation theorem of Kanjin, a multiplier the-
orem and a Ceséro summability result are proved for multiple Laguerre ex-
pansions, In the one-dimensional case an improved version of the mulliplier
theorem s oblained,

Consider the normalised Laguerre functions %", o> -1, 0n R, = (0, )
defined by

Tk + 1)

L2
e R o o — 02 2
r{k+rx+ﬂ) Li(e)e™

(L1) Folt) = (

where Lp{¢) are the Laguerre polynomials of type «. The functions {3}
form a complete orthonormal system for £2(RE.}. Recently, in [4] Kanjin stud-
ied the mapping properties of the operator 7 , which is defined as

(1.2) Hr=yi =l
k=0

where (f, g} stands for the inner product in L?(R,). For the operator 77 he
has proved the following result,

Theorem 1.1 (Kanjin). Let o, f > —1 and y = minfe, B} If v = 0 then
(L.3) 1T f s < ClIFllp for L < p < 0.

If =l <y <0 then (1.3) is valid for p in the interval (1 +y/2)"' < p < -2/y.

The above theorem is called a transplantation theorem for the following rea-
son. Given a bounded sequence A{k) we can define an operator M by setting

(1.4) MEf =3 "Mk)S, B2

=0
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1136 5 THANGAYELL

whenever [ has the Laguerre expansion

{1.5) F2 ¥y (.S
k=0
From the theorem, we can deduce the norm inequality
(1.6) M2 flp = CU g
for any o if we know (1.6} for a particular e . This follows from the identity
(L7} TyMITEf = MPf.

As an application Kanjin proves the foliowing result concerning M? .

Theorem 1.2 (Kanjin). Ler At} be a four times differentiable function on (0, o)
and satisfy
(1.8) sup [t AX (1)) < ¢

{0
for k =0,1,2,3, 4. Then (16) istruefor | < p < o if o > 0 and for
(MI+af2y T <p<-2feif -l <u<.

Theorem 1.2 15 deduced by applying the transplantation theorem 1o the par-
ticular case o = 0, which is proved by Dlugosz in [1]. Now the aim of this
note 18 10 prove an improved version of the above multiplier theorem and also
10 give applications 1o higher-dimensional Laguerre expansions.

2
let R? = {x € R": x; > 0 for all j}, and consider for every « € R} and a
multi-index m = (m, my, ..., M,}. the normalised Laguerre functions .Z"
on R} defined by
fl
(2.1) Zax) =[5 (x)).

f=1
They form a complete orthonormal system for L2(R"), and the Laguerre ex-
pansion of a function f in LA{R?) can be writlen as

(2.2) fe ¥ iravas
mr=Al
where the sum is extended over all the multi-indices. Expansions of the above
type have been studied by Dlugosz [1] when « is a multi-index.
For the above series {2.2) we define the Cesaro means ¢f of order & by the
equation

N
1 . -
(2.3) oS = 2 A 2 U I
N k= || =k
where 47 = [{k+6+1)/T(k+1) are the binomial coefficients. Given a function
A on (0, co) we also define the multiplier operator M as

(2.4) Mpf=> AM2k+n) Y (f, L5
k=0 =k

For the operators (2.3} and {2.4) we prove the following two theorems.
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Theorem 2.1, Let § > 1. Then the uniform estimates

(2.5) lag S le < CIE e
are valid iff 4n/(2n+ 1 +25) < p < 4nf{2n -1 - 24).
Theorem 2,2, Assume that the function A satisfies the conditions
(2.6) sup [(“AFH(1)| < ¢
t=1
for k=0,1,2,...,v where v=n+1ifnisoddand v=n+2 ifnis
even, Then for | < p < oc we have
(2.7} M2l < CILE e
In the case n = | we can take v = | in the hypothesis and (2.7) is valid for
]
s<p<4.

A slightly weaker form of Theorem 2.2 is proved in [1] when a is a multi-
index. In that version one has ¥ = n + 3 for all n. Theorem 2.1 is known
when # =1 and is due to Gorlich and Marketi [3, 5}

For the Laguerre series (2.2) we also define the Riesz transforms R;, j =
i,2....,n.bythe formula

(2.8) R f = Z[ij + 1(2m| + my-Yf, ZFo)LZEe,

=l
Riesz transforms for the Hermite and special Hermite expansions have been
studied by the author in [9, 12]. For the above Riesz transforms (2.8) we prove

Theorem 2.3, For | < p < =c all the Riesz transforms R; are bounded on
LP(R")

All three theorems will be proved by appealing to the r-dimensional version
of Kanjin's transplantation Theorem 1.1, For «, # in B} we define ¢ by

(2.9 i ST O L
w={]

Then, for [ in CF(RY) and 1 < p < 20,

(2.10) IZE £l < €U e

This follows from Theorem 1.1 by iteration.

In view of {2.10) Theorems 2.1, 2.2, and 2.3 will follow once we show that
they are true in the particular case o = 0. It will be shown in the next section
that the case n = 0 follows from known results on special Hermite expansions
as a special case. The one-dimensional case of Theorem 2.2 when o = % will
be deduced from the corresponding result on the Hermite expansions, This will

be done 1n the last section.
3
Consider the functions ¥,(z) on C" defined by

{31 Wz} = H Lm_.'{%lz.ilzjf_l;"i]"d
i1
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where L;(t) are the Laguerre polynomials of type 0. The functions w,,(z) are
called special Hermite funetions since they are related to the Hermite function
P (x) on B?. This terminology is due to Strichariz [6]. In fact, one has

(32) unlz)= [ eion (s +3) on (¢ -F) dt

where z =x 4+ iy, x, v € R" (see [2]). Given f on C7 we have the special
Hermite expansion

(3.3) f(2)= 20" 3 £ x itz

m=0

where the twisted convolution f = g of two functions is defined by
(3.4) fxglz)= f Flz — ) glun)eViBImE™ doy,
En

We can also write (3.3} in the form
{3.5) fizi = Z fx gtz

where @7~ '(z) = L7 '(}|2]*)e~ =4, For all these facts we refer to [11],
For the special Hermite expansion let C§ be the Cesaro means defined by

N
1
{3.6) i > A%, (f % W)
& k=0 [m|=k

Given a function A on (0, 20) we also define a multiplier transform T by
(3.7) T =3 M2k +n) D (f % ym).
k=0 || =k
In [11] we proved
Theorem 3.1. Let & > 5. Then for f in LP(C")

1€ e = CUF
holds if and only if 4nj(2n+ 1+ 28) < p < 4nf(2n —1 - 28},
Regarding 7; we have proved the following multiplier theorem in [10].

Theorem 3.2, Let & satisfy the hypothesis of Theorem 2.2, Then for | <p < =
one has [Tof |l < ClIf |z

The case o = (0 of Theorems 2.1 and 2.2 will be deduced from the above
theorems in the following way. When [ is a radial function the twisted convo-
lution fx @7~ becomes

- Kn—1) ([
08 o= gty () foeoran et
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where @7 '(r) = ¢l '(z) with |z| = r. If [ is a polyradial function, ic.,
Hzi, oo zn) = fln, ...y ), 7 =lz;], then in view of (3.8) and (3.1) one
has

(3.9) fxyn= {v/l;”f{rl?r“ -rn} (H-?:ﬂ_;l:%rf]) rl"‘ruﬂr!'[“'dru} (T
+ i=1

Therefore, one sees that

(3.10) fx pmV22) = (g, ) ()
where gir,....m) = fiv2n, ..., v2r.). Therefore, {"f,f becomes ﬂ'f.,g

and T;f becomes Mf"g; hence, the case o = 0 of Theorems 2.1 and 2.2
follow.

The case « = 0 of Theorem 3.3 follows from the fact {see [12]) that the
Riesz transforms

[ ]

(3.11) 8if = 3 (2m; + D)2m| + )7 f % Yim

=[]

for the special Hermite expansions are bounded on LF{C?), 1 <p < .

4

Consider the normalised Hermite functions #,{x) on E. We also consider
the Laguerre function ¢ of another type defined by, for « real,

(4.1) p2(x) = Z(x))(2x)V?,  xeR.
Then the Hermite functions &, and @} are related by (see [7])
1 _ l
42)  halx) = (1 s, VXY, e (x) = {—IJ“E&‘L”[«YL

Consider a multiplier transform M for the Hermite series defined by

(4.3) MA(x) = SOMENS S ().

k=0
In [8] we proved

Thearem 4.1, Assume that A s bounded and satisfies |t3'(1)| < C forall 1 = 0.
Then M is baounded on LF{R), 1 <p < x.

SBince hy; is even and Ay, is odd, by considering [ to be odd we see that

(4.4) Mfx) =3 M2k + DU o e (0,
k=0
and this is related to M’: 2 in the following way. An easy calculation shows
that
12 1 )2
(4.5) 0"y = 2te, £
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where f{/X)x* = g(x). Therefore,

(4.6) MR =23 102k + 1)(g, B2 ).

k=0

If we know that for § < p <4

(4.7) fum |M f{x)PPx~3 dx < C[f |f ()P x—P2 dx
then it follows that

(4.8) [T erax < ¢ [Tigtapdx;

hence, the case i=1, a= % of Theorem 2.2 follows. We claim that (4.7) is
troe,

To prove the claim we recall the proof of Theorem 4.1. Let T' be the
semigroup on LF(R) defined by

(4.9 Tf =3 e ™ oh by
k=0
For this semigroup we defined the g and g* functions in the following way:
(4.10) 807, 07 = [ T x)Ra,
(4.11) (g*(f. x))? =f f R0 p)y 8, T ()2 dy de.
— ﬂ

For the g and g= functions we proved that

(4.12) CllS e < N8/ Mo < Callf e, L <p<ee,
(4.13) lg* (M < CIFll. p>2.

Under the assumption that |tA(t}| is bounded we verified that
(4.14) gMf . x)<Cgr S, x),

and in view of {4.12) and (4.13) this proved Theorem 4.1.
Therefore, in order to prove the weighted version we need 1o check that

{4.12)' Cillf lp.w < 18 NMpw €l lpw.  F<p<d,
(4.13)° 18" Mo S Clfllper  2<p<d,

where || f||p,. stands for the norm

Il g, e = (j:m P ]2 d_x)w

L]

Thus we need weighted norm inequalities for the g and g~ functions.
In [B] we proved the I# boundedness of ¢ by applying singular integral
theory. We identified g with a singular integral operator whose kernel takes
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values in the Hilbert space L°(I, , ¢df). When the weight function w is in
the Muckenhoupt class A, {scc [13]) then we also have

(4.15) [ lenpumax<c [ ipwpw s

—nd

When 1 < p < 4, w(x) = {77 is in 4, hence, the right-hand side
inequality of (4.12)" is valid. We will now show thal the reverse inequality is
also valid.

From [8] we recall that we have the partial isometry

(4.16) lg(fillz = L1712

from this, by polarisation, we obtain

fm Fi0T(x) dx| = 4fo /Dm 8T f ()3T hx) dt dx.
This gives the _inequa]it}r _
[ AT
Let us now take h(x) = f2{x)|x|"1¥ 12 50 that

If_i: Flxdx| MR T ) dx‘

(4.17)

{4.18)

<4 f_ gifi. X)glfs, x)dx.

(4.19) i
=4 [ g, xfllx|—lf1+lfrrg{hf x”_,[_.l—l,fh[.fg o

— I

where g is the index conjugate to p. An application of Holder’s inequality
gives
(4.20
f g(fi, R gk, )| 1PV gy
— - ] e s fin
= ([ |g{.f| ' I}lﬁlxl_ﬁ'.-'2+1 a'){.') ([ |g{h? _¥]|H|x|—q;1+1 ﬂ'x) ‘

—a X

Applying the direct inequality (4.12) to the second factor we get

f gtk X)X~ dx < € j | fabx) |9 x| i eipI=a2 g
(4.21) e g
<C f 001 .

In view of (4.20} and {4.21) the inequality (4.19) becomes
| A dx| < Clgls ol
Taking the supremum over all f with || fz{; =1 we obtain

(4.23} fw AP X dx < CllglAlp .

(4.22)

This completes the proof of {4.12).
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To establish the inequality (4,13} wc observe that
@29 [ @ mds < [ e, 0 Ak) dx

for every nonnegative function k where AA is the Hardy-Littlewood maximal
funetion. If 2 < p < 4, let r = p/2 and s be the conjugate index of r. Setting
Bi{x) = A(x) x|~ "7 we have

f_ (£°(F, )2~ () dx

g2y =Y f (U e X AR ) dx

<c( [ tatr, xypixi-eie a‘x)w (f : el (A () ds ) -

by an application of Holder's inequality, Since 5 > 2, |x| € A, ; hence,

f |x|( Ak (x)) ds < Cf () ]x |55+ dx
(4.26) —o
{Cf Rx)"dx.

Thus we have the inequality

f Tt U X)X R dx

(4.27) i

s I
<c ([ mpix-ratax) pal,

Taking the supremum over all A with ||&|, = 1| we obtain

(4.28) ‘/‘x (g(f. x))|x|~P ' dx < Cfm |f(x)|#|x|~#/2H) dx,

This proves the inequality (4.13)'.
Therefore, in view of (4.12), (4.13), and {4.14) we obtain the weighted
inequality

s e (s )

(4.29} f |M f{x)F x| "2 e < C/ LRGP || P
— o —32

for § < p < 4, and this proves the multiplier theorem for « = {. By applying

the transplantation theorem we complete the proof of Theorem 2.2 when n=1,
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