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Classroom

In this section of  Resonance, we invite readers to pose questions likely to be raised
in a classroom situation. We may suggest strategies for dealing with them, or invite
responses, or both. “Classroom” is equally a forum for raising broader issues and
sharing personal experiences and viewpoints on matters related to teaching and
learning science.

! Bachet's Problem

A grocery shopkeeper keeps five stones of different weights. He is able to use

a common balance and weigh out quantities ranging from 1 to 100 kg, in steps

of 1 kg. What are the weights of these five stones?

The above is the problem 100 kg with five stones  posed by R
Yusufzai in the  Think it Over  column of the July 1996 issue of
Resonance. A much better problem will result if the figure 100 is
replaced by 121.  This is because the question  what are the weights
of these five stones? seems to suggest that there are uniquely
determined weights to be found!  However, as may easily be
verified, the weights in kg of the stones might be 1, 3, 9, 27 and
m, where m is any integer in the range  60 ≤ m ≤ 81. In fact, there
are many other solutions to the problem  as posed. If, however, it
was given that the grocer can weigh any object of weight between
1 kg and 121 kg (in steps of 1 kg) using his five stones, then the
weights (in kg) of the stones must have been 1, 3, 9, 27 and 81.
This is the case k = 5 of the result stated and proved below.

The problem is a well-known variation of an old  problem due to
Bachet (see Suggested Reading).  In the original  binary  version,
the grocer cannot subtract, so he must put the stones in one pan
and the object in the other. Mr Yusufzai’s problem is an instance
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of the  ternary  version where this restriction is removed. The
general problem (in its  ternary  version) may be stated as follows:
Given a positive integer k, find the largest integer Nk  such that
any object whose weight is an integer between 1 and  N k  (ends
included) can be weighed using  k  stones of suitable integral
weights. In this notation, the  Think it Over problem is to show
that N5  ≥ 100.
In fact, we have  —

Theorem :  Nk  = 3 1
2

k − . If  k  stones are such that all integral

weights between 1 and  Nk  can be measured using them, then the
weights of these stones must be  3 j , 0  ≤  j  ≤ k – 1.

This is, essentially, Theorem 141 in the  book  by Hardy  and
Wright (see Suggested Reading).

In order to prove this, we must convert it into a precise
mathematical statement. To this end, let a0, 

…, ak–1  be the
(positive integral) weights of  k  stones. In order to weigh an
object of integral weight  m , the grocer places the object together
with some of the stones on the right pan (say) and puts some
other stones on the left pan.  For  0  ≤  j  ≤  k –1,  put εj  = 1 if the
stone of weight aj  is placed on the left pan, εj  = –1  if it is on the
right pan, εj  = 0  if it is not used. Since the two pans  must
balance, we get

This leads us to:

Definition : If  A = {a0, 
… , a k – 1 }  is a finite set of positive

integers then the  capacity C(A)  of  A is the largest integer  M such
that for every  integer m in the range  1≤ m ≤ M, the equation (1)
has a solution.

Informally, the capacity  C (A) is the largest M  such that all
weights between 1 and  M  can be measured using k stones whose

m aj j
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  where  εj   ∈ {0,1, –1} for 0 ≤  j  ≤  k – 1           (1)
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weights are in A. In terms of this definition, the above theorem
may be restated as follows.

Theorem :  If  A is of size  k then  C(A) ≤  3 1
2

k − . Equality holds
here if and only if  A = {3 j  : 0 ≤ j  ≤ k –1}.

To prove the theorem, note that if  m  can be written as in (1) then
so can –m  (just change the signs of all  εj ); also, trivially, m = 0
can be written thus (take εj  = 0 for all j ). Therefore, if  C(A) = M,
then all the 2M+1integers m in the range – M ≤ m ≤ M can be
expressed as in (1). But there are 3 choices for  εj  for each  j, hence
only  3k  choices for the right hand side of  (1). Hence  2M+1 ≤ 3k,

or  C (A)  ≤ 3 1
2

k − . Now, if we take  A = {3 j   : 0  ≤  j  ≤ k – 1},  then

for  1 ≤ m ≤ 3 1
2

k −  write 3 1
2

k − – m in base 3: 3 1
2

k − – m = δ j
j

j

k

3
0
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=

−

∑ ,

where δj   ∈ {0,1,2}. Put εj  = 1 – δj  . Then (1) holds. Thus C(A) ≥
3 1

2

k −  for this set. Together with the previous inequality, we get

C(A) = 3 1
2

k − .

Only the uniqueness part of the theorem remains to be proved. In
fact, this is the only non-trivial and interesting part. To prove
this, let A = { a0, 

…, ak – 1 } have capacity Nk . Since, now, equality

holds in the inequality C (A) ≤  3 1
2

k − which appears in the

statement of the theorem, the proof of the inequality shows that

every integer m in the range  – 3 1
2

k −  ≤ m  ≤ 3 1
2

k − has a unique

representation (1); conversely any  m  of the form (1) belongs to
this range. Therefore, letting  X be an indeterminate, we get

as may be verified by multiplying out the left hand. Since, in

particular, the largest integer (viz. 
j

k

=

−

∑
0
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aj  ) of the form (1) must
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be the largest integer in the range [– 3 1
2

k − , 3 1
2

k − ],  we also have:

Using (3) and a little algebra, (2) simplifies to

Now fix  j, 0 ≤  j  ≤ k – 1.  Let w  be a primitive  3aj  - th  root of unity.
That is, w  is a complex number such that  w l   = 1 if and only if
l is an integral multiple of  3aj.  (For instance, we may take  w =

exp(2π − 1 /3aj )) .  Then  w  is a zero of the left hand side, and

hence also of the right hand, of (4). Thus w
k3 =1. So 3aj  divides

3k. That is,  aj  ∈ {3i ,  0 ≤  i ≤  k – 1}.  Since this holds for all j, we
have A ⊆ {3i  : 0  ≤  i ≤  k – 1}. Since both sets have size  k, we must
have  A = {3i  : 0 ≤  i ≤ k – 1}.  This proves the uniqueness of
the set of given size and maximum capacity.

The reader may like to look up the proof in the book by Hardy
and Wright, which is very different from the proof given here. It
is a clever use of mathematical induction.

Tail-piece : Bachet is better remembered by mathematicians for
another reason. It was on Bachet’s edition of Diophantus’
Arithmetic that Fermat scribbled his famous marginal notes.
Bachet was also the first man to state, (without proof) what is
now known as Lagrange’s four square theorem: every natural
number is the sum of at most four perfect squares.

Suggested Reading

�  F Schuh. The Master Book of Mathematical Recreations.Dover. New York.

   pp115-118, 1968.

�   G H Hardy and E M Wright. An Introduction to the Theory of Numbers. Oxford

  Univ. Press.London.pp115-117,1971.
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