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Abstract—This paper deals with the channel assignment
problem in a hexagonal cellular network with two-band buffering,
where the channel interference does not extend beyond two cells.
Here, for cellular networks with homogeneous demands, we
find some lower bounds on minimum bandwidth required for
various relative values of s¢, s1, and sz, the minimum frequency
separations to avoid interference for calls in the same cell, or in
cells at distances of one and two, respectively. We then present an
algorithm for solving the channel assignment problem in its gen-
eral form using the elitist model of genetic algorithm (EGA). We
next apply this technique to the special case of hexagonal cellular
networks with two-band buffering. For homogeneous demands,
we apply EGA for assigning channels to a small subset of nodes
and then extend it for the entire cellular network, which ensures
faster convergence. Moreover, we show that our approach is also
applicable to cases of nonhomogeneous demands. Application of
our proposed methodology to well-known benchmark problems
generates optimal results within a reasonable computing time.

Index Terms—Two-band buffering, cellular network, channel
assignment problem, genetic algorithm, optimal bandwidth.

I. INTRODUCTION

HEN a mobile cellular network is designed, each cell
Wof the network is assigned a set of channels to pro-
vide services to the individual calls of the cell. The task of
assigning frequency channels to the cells satisfying some fre-
quency separation constraints with a view to avoiding channel
interference and using as small bandwidth as possible is known
as the channel assignment problem. For a network, the avail-
able radio spectrum is divided into nonoverlapping frequency
bands. We assume that the frequency bands are of equal length
and are numbered as 0, 1, 2,... from the lower end. Each
such frequency band is termed a channel. In this context, the
terms channel assignment and frequency assignment will be
used interchangeably in our discussions. The highest numbered
channel required in an assignment problem is termed the re-
quired bandwidth. We are considering here the static model of
the channel assignment problem, where the number of calls to
each cell is known a priori. Three types of interference [23] are
generally taken into consideration in the form of constraints:

1) cochannel constraint, due to which the same channel
is not allowed to be assigned to certain pairs of cells
simultaneously;
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2) adjacent channel constraint, for which adjacent channels
are not allowed to be assigned to certain pairs of cells
simultaneously;

3) cosite constraint, which implies that any pair of channels
assigned to the same cell must be separated by a certain
number.

In its most general form, the channel assignment problem
(CAP) is equivalent to the generalized graph-coloring problem,
which is a well-known NP-complete problem [2]. As a result,
earlier researchers attempted to solve the problem from a graph
theoretic view point and proposed many heuristics [9], [25].
Later improved approximate algorithms using neural networks,
simulated annealing, and genetic algorithms have been pro-
posed to solve this problem. In the neural network approach
[6], [22], [26], [28], an inherent disadvantage is that it easily
converges to local optima and hence optimal solutions cannot
always be guaranteed. The simulated annealing approach [4],
[5] guarantees global optimal solution asymptotically, but
the rate of convergence is rather slow. The genetic algorithm
approach [18], [19], [21], however, provides a global optimal
solution with a relatively faster rate of convergence.

Earlier works on approximate algorithms for channel assign-
ment can be classified into two categories. One of these [9], [25]
first determines an ordered list of all calls and then assigns chan-
nels deterministically to the calls so as to minimize the required
bandwidth. Given the bandwidth of the system, the other cate-
gory [4]-[6], [19], [21], [22], [26], [28] formulates a cost func-
tion, such as the number of interference constraints violated by
a given channel assignment, and then tries to minimize this cost
function. The advantage of the first category of algorithms is
that the derived channel assignment always fulfills all the inter-
ference constraints for a given demand; but it may be hard to
find an optimal solution in the case of large and difficult prob-
lems, even with quite powerful optimization tools. On the other
hand, for the second group of algorithms, it seems to be impos-
sible to minimize the cost function to the desired value of zero
with the minimum number of channels, in the case of very hard
problems.

In [18], the authors combined both of the above methods and
proposed the combined genetic algorithm (CGA), which gener-
ates a call list in each iteration and evaluates the quality of the
generated call list following the frequency exhaustive assign-
ment strategy. The authors started the procedure by estimating
the lower bound Z on bandwidth [7], [8], [23]. If the algorithm
does not find a solution with Z, the value of Z is incremented
by one and the CGA algorithm is repeated until a valid solution
is derived. Thus, in this approach, the computation time will be
highly dependent on the proximity of the prior estimation of the
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lower bound on bandwidth to its optimal value. But the problem
of finding an achievable lower bound is itself NP-complete [26].

In [7], Gamst presented some lower bounds on the bandwidth
for channel assignment problems in general. Improving the re-
sults by Gamst in [8], Tcha ef al. presented some new results
on the lower bound on bandwidth. The authors in [1] proposed
some new lower bounds on channel bandwidth, taking the reg-
ular geometry of the cellular network [11]-[14] into account.
They considered hexagonal cellular networks where every cell
has a demand of only one channel with two-band buffering, i.c.,
the channel interference does not extend beyond two cells, with
S0, S1, and s, as the minimum frequency separations between
the calls in the same cell and in cells at distances one and two
apart respectively.

In this paper, we present an algorithm for solving the channel
assignment problem in its general form using the elitist model
of genetic algorithm (EGA) [3]. We then show how this general
approach can conveniently be applied to the special case of the
network model of a hexagonal cellular structure with two-band
buffering, on which most of the known benchmark instances
(including the Philadelphia problems) of the CAP have been
defined. Our proposed approach falls in the first category of
approximate algorithms discussed above, which do not depend
on a prior estimation of the lower bound on the bandwidth.
However, in order to judge the performance of our proposed
algorithm, we have also found new lower bounds on the
bandwidth for a hexagonal cellular network with homogeneous
demands (where w;, the number of channels required for cell 7,
is same for all ) and two-band buffering. These lower bounds
have been based on different relative values of s and s, and
for w; = 1, these bounds are improved over that in [1]. It may
also be noted that these new lower bounds are either equal to
or tighter than those in [7], [8], and [23] when applied to this
special case of hexagonal cellular networks with homogeneous
demand and two-band buffering.

For hexagonal cellular networks with homogeneous demand
of w channels per cell, our approach essentially selects a small
subset of cells of the network, on which we apply the EGA
to find its assignment and next repeat the assignment for the
whole network. As a result of this, the proposed technique has
a faster rate of convergence. For w = 1, our approach im-
proves the bandwidth requirement by 25% at best over that in
[1]. We then show how our method can also be used to solve
the channel assignment problem with nonhomogeneous demand
vector W = (w;) on these networks. Most interestingly, it
shows that in some cases, depending on the relative values of s,
s1, and s9, the required bandwidth is mainly determined by the
maximum demand wy,,x In W. It reveals the fact that in terms
of bandwidth requirement, the case is almost equivalent with
the cellular networks having homogeneous demand w,y, .. Ap-
plication of our approach to well-known benchmark instances
(including the most difficult two) always results in assignments
with the optimal bandwidth, in a reasonable amount of compu-
tation time on a DEC Alpha station.

The rest of this paper is organized as follows. Section I de-
scribes the general model of the cellular network. Section IIT
presents new lower bounds on the required bandwidth for ho-
mogeneous demands. Section I'V includes the genetic algorithm
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Fig. 1. (a) A typical CAP graph and (b)—(c) two different frequency
assignments on it.

implementation of the problem in its most general form. In Sec-
tion V, we show how this general technique can effectively be
applied to the special case of hexagonal cellular network with
two-band buffering. In this section, we propose several schemes
for assigning channels to the cells of the entire network. In Sec-
tion VI, we consider nonhomogeneous channel demands and
report the results of our approach on well-known benchmark
problems. Section VII concludes this paper.

II. MODEL OF THE CELLULAR NETWORK

We have used here the same model as described in [1], [9],
and [15]. This model is described by the following components.

1) The number of distinct cells, say, n, with cell numbers as
0,1,....,n— 1.

2) A demand vector W = (w;), (0 <i < n — 1), where w;
represents the number of channels required for cell 7.

3) A frequency separation matrix C' = (¢;;), where ¢;; rep-
resents the minimum frequency separation requirement
betweenacallincellzandacallincell 7,0 < 7,5 < n—1.

4) A frequency assignment matrix ® = (¢;;), where ¢;;
represents the frequency assigned to call 7 in cell 7, 0 <
t <n—1,0 <j < w,;—1. The assigned frequencies ¢; ;s
are assumed to be evenly spaced and can be represented
by integers > 0.

5) A set of frequency separation constraints specified by the
frequency separation matrix:

|pir — (f)j1| > ¢;; for all 7,7, k,1 (except when both
1 =jand k = 1).

The goal of the channel assignment problem is to assign fre-
quencies to the cells satisfying the frequency separation con-
straints as specified by component 5) above, in such a way that
the required system bandwidth becomes optimal.

Each call to a cell is represented as a node of a graph, and
the nodes v; and v; are connected by an edge with weight c;;
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if ¢;; > 0. We call this graph a CAP graph following the ter-
minology in [1]. In our model, we assume that the channels are
assigned to the nodes of the CAP graph in a specific order and
that a node will be assigned the channel corresponding to the
smallest integer that will satisfy the frequency separation con-
straints with all the previously assigned nodes.

Example 1: Fig. 1(a) shows a CAP graph with three cells
having demands wg = 1, w; = 2, and wa = 2, respectively.
Eachnode in Fig. 1 is labeled as (rs), where 7 is the cell number
at which a call is generated and s is the call number to this cell .
That is, node (10) represents call 0 in cell 1. The frequency sep-
aration requirements for this example is given by the following
matrix:

cell mo.— 0 1 2
!
C= 0 7 3 2
1 3 7 4
2 2 4 7.

The edges of the CAP graph are labeled with weights ac-
cording to matrix C. The label [a] associated with each node
of the CAP graph of Fig. 1(b) and (c) indicates that the fre-
quency channel « is assigned to that node. Now, if the channels
are assigned to nodes in the order ((21), (00), (10), (11), (20)),
as shown in Fig. 1(b), the minimum bandwidth required will be
16. But, if the channels are assigned to nodes in the order ((20),
(00), (10), (21), (11)), as shown in Fig. 1(c), the minimum band-
width required will be just 13.

It is clear from the above example that the ordering of the
nodes has strong impact on the required channel bandwidth.
Suppose there are m nodes in the CAP graph. Therefore, the
nodes can be ordered in m! ways and, hence, for sufficiently
large m, it is impractical to find the best ordering by an exhaus-
tive search. Instead, we use the genetic algorithm approach to
find an optimal or near-optimal solution to the problem.

III. LOWER BOUNDS ON BANDWIDTH FOR HOMOGENEOUS
DEMAND

The cellular graph is a graph where each cell of the cellular
network is represented by a node and two nodes have an edge
between them if the corresponding cells are adjacent to each
other (i.e., when the two cell boundaries share a common seg-
ment) [14]. Note that this cellular graph simply represents the
topology of the cellular structure, without any regard to the de-
mand per cell, and is different from the CAP graph mentioned
above. We assume that the cellular graph is of hexagonal struc-
ture with two-band buffering, i.e., the interference extends only
up to two cells from the call originating cell.

Let us now consider a seven-node subgraph of the cellular
graph as shown in Fig. 2. Every node in this subgraph is within
at distance of two from each other. Therefore, they are going
to interfere with each other in their frequency assignment. In
other words, no frequency reuse is possible within this subgraph.
Hence, the bandwidth requirement of this subgraph will give a
lower bound on the bandwidth requirement of the whole cellular
network.
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Fig. 2. Secven-node subgraph of hexagonal cellular network.

In all our later discussions, a frequency (¢s1 + js2) assigned
to a node will be denoted by a two-tuple (7, j). Similarly, a fre-
quency (z2s0+7s1+ks2) will be denoted by a three-tuple (¢, 7, k).
We now state the following result on the minimum bandwidth
requirement for assigning channels to this subgraph.

Lemma 1: The minimum bandwidth required for assigning
channels to the seven-node subgraph of a hexagonal cellular
network having homogeneous demand of a single channel and
two-band buffering with frequency separation s; > so is (s1 +
582) when S92 S S1 S 282 and (281 + 382) when S1 Z 282.

Proof: See Appendix 1.

Remark: The results of Lemma 1 show that the minimum
bandwidth requirement for assigning channels to the seven-node
subgraph of Fig. 2 is actually lower (except when s; = s9) than
(2s1 + 4s2) reported in [1].

We now generalize Lemma 1 and state the following two
theorems on the minimum bandwidth requirement for as-
signing w (> 2) frequency channels to each of the nodes of
the subgraph.

Theorem 1: The minimum bandwidth required for assigning
channels to the seven-node subgraph of a hexagonal cellular
network with homogeneous demand w (> 2) and two-band
buffering with frequency separation so < s1 < 259 is:

1) (251 4+5s2) + (w —2)(s0 + 6s2) + 652, when 51 < s9 <

(281 — 82);
2) (w—1)(2s1 + 582) + 652, when (251 — s2) < 89 < 659;
3) (w—1)(2s1 + 5s2) + sg, when 652 < 59 < (51 + 582);
4) (w — 1)(2s1 + 582) + (s1 + 5s2), when (51 + 5s2) <

S0 S (281 + 582);
5) (w — 1)sg + (s1 + 5s2), when sg > (251 + 5sa).
Proof: See Appendix II.

Theorem 2: The minimum bandwidth required for assigning
channels to the seven-node subgraph of a hexagonal cellular
network with homogeneous demand w (> 2) and two-band
buffering with frequency separation s; > 2s5 is:

1y

a) (351 + 3s2) + (w — 2)(sg + 6s2) + 6s2, when
s1 < sp < 3sg;
b) (3s1 + 3s2) + (w — 2)(3s0) + 250, when 3s5
so < (51 + s2);
1)(3s1 + 3s2) + (251 + 2s2), when (s1 + $2)
(281 + 252);
1)(381 + 382) + So, when (281 + 282) S S0

IN

<
<

4) (w —1)(3s1 + 3s2) + (251 + 352), when (281 + 3s2) <
S0 S (381 + 382);
5) (w —1)sg + (251 + 3s2), when sq > (3s1 + 3s2).

Proof: See Appendix III.
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Note that the results presented in the theorems above assumed
homogeneous demand. However, in Section VI, we show that
some nonhomogeneous cases also can be solved by applying
the technique for homogeneous demand. For those cases, these
lower bounds help us to check the optimality of the solutions
achieved. It may be noted that the lower bounds derived above
are cither exactly equal to or tighter than those in [7], [8], and
[23] in the special cases of hexagonal cellular networks with
homogeneous demand and two-band buffering.

IV. GENETIC ALGORITHM FOR CHANNEL ASSIGNMENT

While solving an optimization problem using the genetic
algorithm (GA), it is required that the parameter set of the
optimization problem be coded as a finite-length string or
chromosome over some finite alphabet () [16]. A collection of
M (finite) such strings or chromosomes is called a population. A
simple genetic algorithm is composed of three basic operators:
1) reproduction or selection, 2) crossover, and 3) mutation [16].
GA starts with an initial population (randomly generated). In
each iteration, a new (hopefully improved) population of the
same size is generated from the current population by applying
the above-mentioned three operators on the strings of the current
population. The newly generated population is then used to
generate the next (possibly improved) population, and so on.

Let Sp be the best string (with respect to the fitness value)
of the population generated up to iteration ¢. In the EGA, if S,
or any string better than S, is not in the population generated
in iteration (£+1), then include S, in the (£+1)st population
[16]. We apply this technique for solving the channel assign-
ment problem, which ensures that in successive iterations the
population is improved.

A. Problem Formulation

Let us assume that the channel assignment problem is repre-
sented by a CAP graph and the frequency separation constraints
are given by the matrix C' = (¢;;), as described in Section II.
Suppose the CAP graph has n nodes. A random order of these
nodes is considered as a string S or chromosome. For example,
S = ((20),(21),(10),(11), (00)) is a string corresponding to
the CAP graph of Fig. 1(a). Let M be the population size (we
have taken M as an even integer). Let cp be the crossover prob-
ability. We set c¢p to a high value, say, 0.95, in our algorithm.

Let g be the mutation probability and 7" be the total number
of iterations. Usually, 7" is a very large positive integer.
We divide the total number of iterations into five equal in-
tervals (assuming that 7' is a multiple of five) as [0,7/5],
[T/5,2T/5],12T/5,3T/5],[3T/5,and, 4T /5)[4T/5,T]. We
start with a mutation probability of ¢ = 0.5. It is then varied
with the number of iterations in the way shown in Fig. 3.
The way in which the mutation probability is varied here is
similar to that used in [17]. The reason for varying the mutation
probability ¢ in this fashion is that, to maintain the diversity
of the population, we are to increase the value of ¢. Similarly,
as the optimal string is approached, ¢ is to be reduced. Fig. 3
shows one such technique for varying ¢ with the number of
iterations.
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Fig. 3. Variation of mutation probability (¢) with number of iterations (¥).

The mutation probability at the tth iteration is given by the
following function.

Function m probability (int t)
begin

W «— 5(1 — 0.5n)/(nT)

for +=0 to 2 do

begin

V «—214+1

if (¢t <VT/5) do

begin
U—t—(V-1T/5
return (0.5+ WU)
break

end;

if (¢ < (V+1)T/5) do

begin
Ue— (V+1)T/5—t
return (0.5+ WU)
break

end;

end
end.

The fitness function F'it(.S) used in our algorithm is de-
scribed by the following function.

function Fit(S) // S is a string.//
begin
t[0] < 0
// t[i] is the freguency assigned to the
1th node
node; (0<i<n-1) of 8 //
for 1=1 ton—-1 do
begin
Set t[i] to smallest integer without
violating the frequency separation
requirements specified by the matrix
C with all the previously assigned

values t[0],#[1],...,t[i — 1].
end
return max(t,t[1],...,tn —1])

end .
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Next, we describe the algorithm to resolve the channel assign-
ment problem.

B. Algorithm GA

Step 1: Set the iteration number ¢ «— 0; set cp «— 0.95; set
M — 20.
Step 2 (Initial population):

begin
for 1 =0 to M —1 do
begin
Generate a random order of the nodes
in the CAP graph and consider it as a
string S;.
end.
set q¢ <« {S0,51,...,Su—1} as the initial
population.
end

Example: For the CAP graph shown in Fig. 1(a),

with M = 4, {Sp, S1, So, Ss3} is an initial population
where S = S1 = ((21),(20),(11),(00),(10)),Ss =
((00),(20),(11),(21)(10)),and S3 =

(1), (20), (21), (00), (10))

Note that the initial population may contain multiple copies
of one or more strings. In particular, M copies of a single string
may also constitute an initial population.

Step 3: Compute Fit(S;) for each string S; (0 < < M —1)
of ¢;. Find the best string Spest1 (i.€., the string with the least
fitness value) and the worst string Syorst1 (1.€., the string with
the highest fitness value) of g;. If Spest1 OF Sworst1 18 DOt unique,
choose one arbitrarily.

Step 4: (Selection or Reproduction): Apply the selection op-
eration as described below on the strings of ¢; to generate a
mating pool gua¢ of size M.

Selection Operation

« Calculate the probability p; of selection of S; (i =
0,1, ..., M—-1)

1 __
Fit(5:)
Zl\ffl 1
i=0 TFit(S;,)

Note that with this choice of p;s, the probability of se-
lection of S; will be higher if Fit(S;) is smaller. This is
required because we are dealing with the minimization
problem.

Calculate the cumulative probability ¢; for S; (i =
0,1,...,M —1)

pi =

7
G=Y pj
=0

* Generate a random number r; from [0, 1] for
jg=0,1, ..., M — 1. Now, if r; < qo, select Sp;
otherwise, select S; (1 <i <M —1)if g1 <rj < g;.

Note that pg = gopand p; = ¢; — q;_1 for1 < < M — 1.
Remark: With this implementation, if p; is higher, i.e., the
interval (g;_1, q;] is of higher length, the probability that the
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random number generated falls within the interval (g;—1, ¢;]
will be higher. In other words, the probability of selection
of S; will be higher if Fit(S;) is smaller. In this way, from
a current population of size M, a mating pool gmat of the
same size with potential strings is constructed. Since we are
dealing with a minimization problem, we will say the string
S; is more potential than the string S; if Fit(.S;) < Fit(S;).
The strings of the mating pool then undergo crossover and
mutation. This strategy for construction of a mating pool is
close to that used in [3].

Step 5: (Crossover): Perform a crossover operation as de-
scribed below on the strings of ¢.¢ to obtain a population
Jtemp1 Of size M.

Crossover operation
Form M/2pairs by pairing the ith and
(M/24+i)th string from Gmat(i =0,1,...,(M/2-1)).
for each pair of strings do
begin
generate a random number R from [0, 1].
if ( R<ep) do
//to produce two offsprings for the
next generation.//
begin
generate two random numbers
from [0,n — 1] to define a matching
section. Use this matching
section to effect a cross through
position-by-position exchange
operation.
end.
end.

Note that the above reordering operator, known as partially
matched crossover (PMX) [16], has the effect of both inversion
and crossover.

Example: Let us assume that the two random numbers gen-
erated are 2 and 3. Then, PMX on S; = ((00), (10), (11),
(20), (21)) and Sy = ((20), (00), (21), (10), (11)) will pro-
duce the two offsprings S7 = ((00), (20), (21), (10), (11))
and S = ((10), (00), (1), (20), (21)).

Remark: We have used two-point crossover operation
and PMX operator. Multipoint crossover and other forms of
reordering operator such as order crossover (OX) and cycle
crossover (CX) [16] can also be used.

Step 6: (Mutation): Perform a mutation operation as de-
scribed below on the strings of giemp1 to obtain a population
Gtemp2 Of size M.

Mutation operation
Set q «— m_probability(t)
for each string S; of Gtempr (0< i< M—1) do
begin
for each node node;
string S; do
begin
generate a random number from [0,1],
say m.

0 < 53 < n—-1) of
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if (m < q) do
begin
exchange node; of S; with any other
randomly selected node nodep of
Si(0<k<n-—1, k+#37)
end
end
end.

Example: 1If node (00) is mutated by node (21), after muta-
tion, string S; = ((00), (10), (11),(20), (21)) be changed to
string ST = ((21),(10),(11), (20), (00)) .

Step 7: Calculate Fit(.S;) for each string S;, 0 < 1 < M —
1 of Gtemp2. Find the best string Spest2 and the worst string
Sorst2 Of Gtemp2. If Shest2 OF Sworst2 18 not unique, choose one
arbitrarily.

Step 8: (Elitism): Compare Spest1 0f ¢¢ and Spest2 Of Gremp2-
If Fit(Spest2) > Fit(Shest1), then replace Syorst2 With Shesti-
Rename gremp2 as q;.

Step 9: t — t+ 1; Go to Step 3) if t < T, else terminate.

Bhandari ef al. [3] provided the proof that an EGA converges
to the global optimal solution with any choice of initial pop-
ulation as the number of iterations goes to infinity. They also
proved that no finite stopping time can guarantee the optimal
solution. But in practice, we must terminate the process after
finitely many iterations with a high probability that the process
has achieved the global optimal solution. In our problem, the
optimal string is not necessarily unique. There may be many
strings that provide the optimal value. It was shown in [3] that
if the number of strings having the optimal value is larger,
the probability of fast convergence is higher. Practically, GA
either runs for a fixed number of iterations or terminates if no
improvement is found at some stage within the fixed number
of iterations.

V. GA ON SPECIAL CASES OF CAP

The GA presented in the previous section is applicable to
any arbitrary CAP graph. We now consider the application of
this algorithm to some special cases of the channel assignment
problem. We assume that the cellular graph is of hexagonal
structure and the channel interference extends only up to two
cells from the call originating cell. First, we consider the case
where every cell of the network has a demand of only one
channel. In fact, we apply GA on a small subset of nodes to
find its assignment and next extend the assignment regularly to
cover the whole network, for faster convergence of GA.

Here, we propose three frequency-assignment schemes de-
pending on the relative values of s; and s».

A. Scheme 1: For the Case of s1 = $2

Lemma 2: In a hexagonal cellular network of two-band
buffering with a demand of only one channel per cell, there ex-
ists a frequency-assignment scheme that requires a bandwidth
of 655 for s1 = s9.

Proof: Consider the subgraph shown in Fig. 4(a). In this
scheme, the frequency separation constraint is specified by the

(0. 4) (0 6)

EEEEL

Fig. 4. (a) A subgraph of a cellular graph and (b) frequency assignment to it
when s; = 5.

(®)

0.0 ___(01) 02) (03 (04) (05 (06 _(00)

Fig. 5.

Frequency assignment of a two-band buftering system for s; = 5.

matrix whose (7, j)th element is s (= s2) if cells 7 and j are
within distance two, and zero otherwise. With this frequency
separation matrix, we apply the GA over the subgraph shown
in Fig. 4(a). The resulting assignment is shown in Fig. 4(b).
Observe that the frequency channels (0, 0), (0, 1), (0, 2), (0, 3),
(0,4),(0,5), and (0, 6) are assigned repeatedly to the nodes over
the subgraph in a regular and symmetrical way. The symmetry
is clear from Fig. 4(b). Using this symmetry, frequencies can be
assigned to the nodes over the entire network. This assignment
is shown in Fig. 5 and is characterized as follows.

We first consider three directions x, y, and z in the cellular
graph as shown in Fig. 6. In each direction we have definite types
of lines, with each type of line being identified by the sequence
of frequencies assigned to the nodes lying on that line.

In z direction, there is only one type of line (#ype x) identified
by the repetitive sequence of period seven as: (0, 0) (0, 1) (0, 2)
(0, 3)(0,4) (0,5) (0,06) ....

In y direction, there is only one type of line (fype ) identified
by the repetitive sequence of period seven as : (0, 0) (0, 5) (0, 3)
(0, 1) (0,6)(0,4) (0,2) ....

In z direction, there is only one type of line (type 2) identified
by the repetitive sequence of period seven as: (0, 0) (0, 4) (0, 1)
(0, 5) (0, 2)(0,6) (0, 3) ...

It follows from Fig. 5 that along any of the lines of type =, type
y, and fype z, there is no conflict. Therefore, this assignment is
conflict-free over the entire network.
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Fig. 6. Three directions in the hexagonal cellular graph.
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Fig. 7. A nine-node subgraph of hexagonal cellular network.

Hence, by using the scheme described above, the frequencies
can be assigned to the nodes of the entire network using a band-
width of 655, when s; = so. O

‘We now generalize Lemma 2 and state the following theorem
for the assignment of w channels to every node of the entire
cellular network.

Theorem 3. In a hexagonal cellular network with homoge-
neous demand w and two-band buffering, there exists a fre-
quency-assignment scheme for s; = s9, which requires a band-
width of:

Case 1) (w — 1)7sy + 6s2 when sg < 7so;

Case 2) (w — 1)sg + 6s2 when sg > 7sa.

Proof: Follows from Lemma 2. O

Remark: For the second case of Theorem 3, i.e., when s1 =
s9 and s > Tso, the required bandwidth is close to (w — 1)sq.

Remark: Fors; = s, the above assignment requires a band-
width equal to the corresponding lower bound presented in The-
orem 1 for different relative values of sg, s1, and so. Hence this
assignment is optimal.

B. Scheme 2: For the Cases of i) so < s1 < 289 and ii)
S1 Z 232

Consider the nine-node  subgraph  with  nodes
a,b,c,d,e, f,g,h, and i of the cellular graph as shown in
Fig. 7.

Each node of this subgraph represents a cell of the cellular
network. Suppose that ¢(«) is the frequency assigned to node
a, a € {a,b,c,d,e, f,g,h,i}. We propose to use only these
nine frequencies to be assigned to the nodes of the entire cellular
graph in a regular and symmetrical fashion as shown in Fig. 8.
The idea behind this assignment is explained as follows.

We again consider the three directions z, y, and =z in the cel-
lular graph as shown in Fig. 6.

In z direction, there are three different types of lines identified
by the repetitive sequence of period three as:

type x1: ¢(a) ¢(b) p(c) d(a) #(b) ¢(c) -
type m2: P(d) d(e) ¢(f) ¢(d) d(e) ¢(f) - ;

tpe wa: ¢(g) B(h) $(i) $(g) B(h) $(3) ...
In y direction, there is only one type of line (fype v)
identified by the repetitive sequence of period nine as:

¢(a) (h) ¢(f) p(c) d(g) dle) p(b) d(i) ¢(d) ...
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TABLE 1
FREQUENCY SEPARATION MATRIX FOR SCHEME 2

Nodes—>|a b ¢ d e f g h i
3
a 0 81 S1 S1 81 S22 81 81 82
b s1 0 s1 sy s1 s1 S ST S
C 51 $1 0 S1 S92 81 81 82 81
d S1 S22 51 0 81 81 81 S22 81
€ §1 81 S22 S1 0 81 S1 81 82
f SS9 81 St S§1 S1 0 S92 81 81
g S1 S2 81 S1 S1 sz 0 s1 st
h 81 81 S2 sy s1 s1 s1 0 s
) S 81 81 81 Sy s1 st s1 O

In z direction, there is only one type of line (fype z)
identified by the repetitive sequence of period nine as:

¢(c) ¢(i) B(f) (b) ¢(h) ¢(e) (a) P(g) b(d) .. ..

Based on this assignment scheme, we construct a table of fre-
quency separation constraints between every pair of these nine
nodes, as shown in Table I (assuming that only one channel is
assigned to each node), such that

1) along each of the lines of type x1, type x2, and type x3 in
x direction, there is no conflict;

2) along all the lines of fype y in y direction, there is no
conflict;

3) along all the lines of #ype z in z direction, there is no
conflict.

Therefore, these nine frequencies can be repeated over the
entire network without any conflict.

It is important to note that Table I has been constructed so that
only nine frequency channels assigned to the nodes of Fig. 7
would be sufficient for the frequency assignment to nodes of
the entire cellular network following the assignment patterns as
shown in Fig. 8, without any conflict.

We now use the GA over the nine-node subgraph of Fig. 7
with the frequency separation requirements given by Table L.
Depending on the relationship between s; and s2, the results of
the algorithm can be stated by the following two lemmas.

Lemma 3: In a hexagonal cellular network of two-band
buffering with a demand of only one channel per cell, there
exists a frequency assignment scheme that requires a bandwidth
of 859 for 55 < 51 < 289.

Proof: For the case when so < s1 < 259, GA gives the
result such that ¢(a) = (0,0), ¢(b) = (0,6), ¢(c) = (0,3),
¢(d) = (0,5), ¢(e) = (0,2), ¢(f) = (0,8), ¢(g) = (0,7),
¢(h) = (0,4),and ¢(i) = (0,1). Note that the inequality 255 >
s1 has been used here, because the frequencies (0, 6) and (0,
8) are assigned to nodes distance one apart from each other.
In this case, the maximum frequency assigned is (0, 8). This
assignment is shown in Fig. 9, which is obtained by replacing
the values of ¢(a), $(b), ¢(c), (d), d(e), #(f), ¢(9), ¢(h), and
¢(4) in Fig. 8by (0, 0), (0, 6), (0, 3), (0, 5), (0, 2), (0, 8), (0, 7),
(0, 4), and (0, 1) respectively.

Hence, by using the frequency-assignment scheme described
above, the frequencies can be assigned to the nodes of the entire
network using a bandwidth of 8s5 when 255 > 51 > s9. O
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Fig. 8. Frequency assignment of a two-band buffering system using nine
frequency channels.

Lemma 4: In a hexagonal cellular network of two-band
buffering with a demand of only one channel per cell, there
exists a frequency assignment scheme that requires a bandwidth
0f4$1 for S1 Z 282.

Proof: Follows exactly in the same way as in Lemma 3.
This assignment is shown in Fig. 10. (]

Next we consider the case of homogeneous demand with w
channels. The following two theorems simply extend the results
of Lemmas 3 and 4, respectively.

Theorem 4: In a hexagonal cellular network with homoge-
neous demand w and two-band buffering, there exists a fre-
quency-assignment scheme for so < s1 < 259, which requires
a bandwidth of:

Case 1) (w — 1)9s2 + 8s2 when sg < 9s2;
Case 2) (w — 1)sg + 8s2 when sg > 9ss.

Proof: Follows from Lemma 3. For w = 2, the assign-
ments are illustrated in Fig. 11(a) and (b) for the cases sg < 9s2
and sg > 9s9, respectively. O

Remark: For the second case of Theorem 4, i.¢., when so <
s1 < 2s9 and sg > 9sa, the required bandwidth is close to
(w — 1)so.

Theorem 5: In a hexagonal cellular structure with homoge-
neous demand w and two-band buffering, there exists a fre-
quency-assignment scheme for s; > 2s9, which requires a
bandwidth of:

Case 1) ( )(481 + 82) + 481 when 80 (491 + 92)
Case 2) (w — 1)so + 4s1 when sg > (4s1 + $2).
Proof: Follows from Lemma 4. For w = 2, the corre-

sponding assignments are shown in Fig. 12(a) and (b) for the
cases sg < (4s1 + s2) and sg > (4s1 + s2), respectively. O

Remark: For the second case of Theorem 5, i.e., when s >
2s9 and sg > (4s1 + s2), the required bandwidth is close to
w(—1)s0.

(0.3 (0.0)  (0.6) (0.3) (0.0

(0.6) (0.3) (0.0}

Fig. 9.

285.

Frequency assignment of a two-band buffering system for so < 57 <

(L1 (0.0) (3.0} (Ll) (0.0}

(3.0) (L) (0.0)

IVAVAVAVAVAVAVAVAVAV
AMVAM’ANAVAVAV
AVAVAVAVAVAVAV/

Fig. 11.

Frequency assignments to nine-node subgraph for s, < 51 < 2so.

(0.0,0),04,1)... b
a

(0,1,1.(0,5.2)..... (000)(100) b ©.1LD,(1,L1).

Fig. 12.

Frequency assignments to nine-node subgraph for s; > 2.s,.
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Fig. 13. Frequency assignment of a two-band buffering system using nine
frequency channels.

C. Scheme 3 : For the Case of s1 > so

Consider again the nine-node subgraph of Fig. 7. In this
scheme as well, we propose to use only nine frequencies
assigned to these nine nodes in a regular and symmetric fashion
for the whole cellular graph as shown in Fig. 13. However, we
would use here a different frequency separation matrix as given
in Table II. The difference between Tables I and II is in the
submatrix corresponding to the rows for a, b, ¢ and columns for
g, h, and 7 . Because of this change, the repetition pattern to be
used here will be slightly different from that of scheme 2, as
discussed below.

We again consider the three directions z, ¥, and z in the cel-
lular graph as shown in Fig. 6.

In z direction, there are three different types of lines (fypes
T1, To, and x3) as in scheme 2 above.

In y direction, there are three different types of lines identified
by the repetitive sequence of period three as:

type y1: $(b) ¢(g) d(e) ¢(b) d(g) p(e) .. 5
type ya: ¢(a) ¢(i) ¢(d) P(a) ¢(i) ¢(d) .. ;
type ys: ¢(c) ¢(h) ¢(f) b(c) p(h) (f) .. ..
In z direction, there are also three different types of lines iden-
tified by the repetitive sequence of period three as:

type z1: d(g) #(d) ¢(c) d(g) ¢(d) p(c) .. ;
type z: $(b) ¢(i) ¢(f) d(b) ¢(i) S(f) -
e z3: B(h) ¢(e) ¢(a) B(h) d(c) da) ...
It follows from Fig. 13 and the frequency separation matrix
given by Table II that

1) along each of the lines of type x1, type x2, and type x5 in
z direction, there is no conflict;

2) along each of the lines of type y1, type yo2, and type y3 in
y direction, there is no conflict;

3) along each of the lines of type z1, type 22, and type z3 in
z direction, there is no conflict.

Therefore, these frequencies can be repeated over the entire net-
work without any conflict.
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TABLE 11
FREQUENCY SEPARATION MATRIX FOR SCHEME 2
Nodes—|a b ¢ d e f g h i
{
a 0 s s 81 S1 S2 S22 S1 81
b st 0 s1 sy s s1 ST 82 S
c s1 81 0 81 s2 s s1 s1 82
d s1 S22 s1 0 s 81 81 sy st
e §1 81 S22 & 0 81 81 81 82
f S 81 81 81 s1 0 sy s1 s
g S9 S1 81 81 S1 S22 0 S1 81
h S1 S92 81 82 S1 S1 81 0 S1
) S S1 S22 81 S22 81 S1 &1 0

It is important to note that Table II has been constructed so
that only nine frequency channels assigned to the nodes of Fig. 7
would be sufficient for the frequency assignment to nodes of
the entire cellular network following the assignment patterns as
shown in Fig. 13 without any conflict.

We now use the GA over the nine-node subgraph of Fig. 7
with the frequency separation requirements given by Table II.
The results of the algorithm can be stated by the following
lemma.

Lemma 5: In a hexagonal cellular network of two-band
buffering with a demand of only one channel per cell, there ex-
ists a frequency-assignment scheme that requires a bandwidth
of (2s1 + 65s2) for all values of s; and so where s; > so.

Proof: For this case, the GA gives a result such that

p(a) = (0,0), ¢(b) = (2,4), d(c) = (1,3), ¢(d) = (2,5),
p(e) = (1,4), ¢(f) = (0,2), ¢(g) = (0,1), ¢(h) = (2,6),
and ¢(i) = (1,2). Note that the maximum frequency assigned

is (2, 6). This assignment is shown in Fig. 14, which is obtained
by replacing the values of ¢(a), ¢(b), ¢(c), ¢(d), ¢(e), d(f),
$(g). $(h), and $(i) in Fig. 13, by (0, 0), (2, 4), (1, 3). (2, 5),
(1,4),(0,2), (0, 1), (2, 6), and (1, 2), respectively.

Hence, by using the scheme described above, assignment to
the nodes of the entire network can be done using a bandwidth
of (2s1 + 6s2) for all cases of 51 > so. O

We now state the following result for assigning w frequency
channels to each of the nodes of the entire cellular network by
simply extending the results of Lemma 5.

Theorem 6. In a hexagonal cellular network of two-band
buffering with a homogeneous demand w, there exists a
frequency assignment scheme for all values of s1 and s where
§1 > So2, which requires a bandwidth of:

Case 1) (w—1)(3s1 4+ 652) + (251 + 6s2), for sg < (381 +
682);
Case2) (w — 1)sg + (251 + 6s2), for s > (351 + 6s2).

Proof: Follows from Lemma 5. For w = 2, the corre-
sponding assignments are illustrated in Fig. 15(a) and (b) for
the cases s < (3s1 + 6s2) and sg > (3s1 + 6s2), respectively.
O

Remark: For the second case of Theorem 6, i.e., when sg >
(3s1 + 6s2), the required bandwidth is close to (w — 1)sq.

Remark: The results of Lemmas 3-5 are based on assigning
frequencies to a nine-node subgraph of the entire network. This
subgraph with the corresponding Tables T and IT has been chosen
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Fig. 14. Frequency assignment of a two-band buffering system for 51 > 3.
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Fig. 15. Frequency assignments to nine-node subgraph for s; > s,.

so that only nine frequency channels would be sufficient for fre-
quency assignment to the nodes of the entire cellular network.
Different choices of the subgraph or the frequency separation
matrix would give different assignment patterns. Besides that,
we obtained the results of Lemmas 3-5 by applying GA. There-
fore, it is likely that we would not always get the best solution.
Since the results of Theorems 4—6 are based on these lemmas,
we cannot claim that Theorems 4-6 give minimal bandwidth for
assignment. However, for different relative values of s; and s,
the bandwidth required by our assignment schemes is either less
than or equal to that reported in [1].

D. Overall Bandwidth Requirement

A frequency-assignment scheme was described in [1] for a
hexagonal cellular network with a demand of only one channel
per cell and two-band buffering, requiring a bandwidth of (251 +
6s9) for all cases of s1 > s9. Let I be the factor of improvement
in bandwidth achieved by our proposed schemes over thatin [1].
Summarizing all the results of Lemmas 25, we now consider
the following cases.

Case 1) When s; = so.

1_251—1—632_4
 6sy 3

leading to an improvement by 25%.
Case 2) When 55 < s1 < 2s5.

251 + 659
882 ’

I =

869

/o\/ 1\/2\/3\/4\
/\/\/7\ /8\/9\/10 11
12 13 14\ ij ilﬁj / 17

18 19 20

Fig. 16. The benchmark cellular network.
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Fig. 17. Initial assignment of problem 7.

Note that [ lies within the interval (1, 5/4], leading
to an improvement of 20% at best.
Case 3) When 259 < 51 < 389

2.‘?1 + 682
481 ’

I =

Here I lies within the interval [1, 5/4], leading to an
improvement of 20% at best.
Case 4) When s; > 3so9.

231 + 682

- 2581 + 6so a

Considering all the cases, we conclude that our proposed
schemes result in at most a 25% improvement in bandwidth at
best over that in [1].

For homogeneous demands of w channels per cell, we sum-
marize our results below (Theorems 3—6) on bandwidth require-
ment for different relative values of sq, s1, and ss.

1) When s; = s (Theorem 3):

a) (w—1)7sg+ 659 for sg < 7sa (Case 1 of Theorem
3);

b) (w — 1)sg + 659 for sg > Tsy (Case 2 of Theorem
3).

2) When s2 < s1 < 255 (Theorem 4);

a) (w—1)9s9 + 8ss for sg < 9so (Case 1 of Theorem
4);

b) (w — 1)so + 8s2 for sg > 9ss (Case 2 of Theorem
4).

3) When s1 > 2s5, Theorem 5 or 6 or whichever gives the
minimum bandwidth:
a) (w—1)(4s1 4 s2)+4s1 for s <
1 of Theorem 5);
b) (w — 1)sg + 4s1 for sg >
Theorem 5);

(451 + s2) (Case

(4s1 + s2) (Case 2 of
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TABLE 111
TwO DIFFERENT DEMAND VECTORS FOR BENCHMARK PROBLEMS

Cellmos. |0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
D, 8§ 25 8 8 8 15 18 52 77 28 13 15 31 15 36 H7 28 8 10 13 8
D, 5 5 5 8 12 25 30 25 30 40 40 45 20 30 25 15 15 30 20 20 25
¢) (w—1)(3s1 +652) + (251 + 6s2) for so < (3s1 + TABLE 1V
652) (Case 1 of Theorem 6)' THE SPECIFICATION OF BENCHMARK PROBLEMS
d) (w—1)so+(251+6s2) for so > (351 +6s2) (Case Problems T 2] 3] 4] 5] 6] 7] 8
2 of Theorem 6). Frequency sol 5| 5V 71 7| 5 5| 7|7
Example 2: Letsg =8, s; = 1, and s» = 1. In this case, the separation | s1 } % } % i % % %
. . . . constraints 82
bandwidth requirement will be given by Case 2 of Theorem 3, Demand vecio 5D DI D D, D5 Dy D

which corresponds to item 1b) above.

VI. CHANNEL ASSIGNMENT FOR NONHOMOGENEOUS
DEMANDS

So far, we have considered a cellular network with homo-
geneous demand only. However, we can extend our proposed
schemes to handle cases with nonhomogeneous demands as
well. Given a network with nonhomogeneous demand vector
W = (w;), with w; being the demand of cell i, it is evident
that a rough estimate of the minimum bandwidth requirement
is given by w(—1)sg, where w = max (w;). We also observe
that when the relative values of sq, s1, and so are such that they
satisfy the condition given by case 2 of any of Theorems 3—6,
the required bandwidth following our assignment schemes is
very close to (w — 1)sq (see remarks of Theorems 3-6). Hence,
at least for these situations, we can conclude that using our
assignment schemes for homogeneous demand of w channels
per cell, as discussed in the previous section, we may obtain a
solution to the problem with nonhomogenecous demand vector
W = (w;) where w max(w; ), keeping the bandwidth
requirement very close to the optimal one.

To establish this finding, we consider eight well-known
benchmark problems widely used in the literature [9], [10],
[18]-[20], [22]-[27], [22].

A. Benchmark Instances

These benchmark problems have been defined on a hexagonal
cellular network of 21 cells as shown in Fig. 16, with either of
two nonhomogeneous demand vectors D and D5, as shown in
Table III. Column- of Table III indicates the channel demand
from cell 2 corresponding to Dy or D-. Table I'V shows the spec-
ifications of these eight problems (problems 1-8) in terms of
the specific values of s, s1, and sy for the two-band buffering
system and the corresponding demand vector used for each of
them.

First let us consider benchmark problems 3 and 7 described
above, where the nonhomogeneous demand vectors W = (w;)
are given by D7 and Ds, respectively, and the frequency separa-
tion constraints for both of the problems are specified as sg = 7,
s1 = 1, and so = 1. If we start with frequency 0, the minimum
frequencies by which the assignments of problem 3 and 7 can
be completed are at least 76 X 7 = 532 and 44 x 7 = 308,
respectively, because 77 and 45 are the highest demands in D,
and Ds, respectively, and sy = 7 for both problems.

Let us now derive a modified problem 7’ from problem 7,
such that all other specifications remain the same and only the
demand vector D), for 7’ is homogeneous with demand 45, i.e.,
the maximum demand of problem 7. According to the relative
values of sg, s1, and so, we are to apply the result of Case 2 of
Theorem 3. It shows that the assignment of problem 7’ can be
completed with bandwidth 44 x 7+6 x 1 = 314. For problem 7',
using Lemma 2, the initial assignment chosen for allocating one
channel per node is shown in Fig. 17. The label [«] associated
with each node of Fig. 17 indicates that the frequency channel
« is assigned to that node.

Subsequent channels can be assigned to each node following
the scheme corresponding to Theorem 3 in the previous section,
leading to the frequencies assigned to various cells as shown in
Fig. 18. The label [« — /3] associated with each node of Fig. 18
indicates that the frequency channels o, + 7,...,8 = 7,53
are assigned to that node. There are 45 frequency entries per
node in Fig. 18, and in effect, we have also solved problem 7
by this process. For the assignment corresponding to problem
7, we need to select only the first w; entries from the 7th node
(0 < 4 < 20) of Fig. 18 , where w;(< 45) is the channel
requirement for cell ¢ given by Ds.

It can be checked from Fig. 18 that the benchmark problem
7 can actually be solved using frequencies from 0 to 308 only.
Essentially, the idea was to initially assign 0 frequency to node
11 (with the maximum demand of 45) for the first channel, as
shown in Fig. 17, so that we end up with the maximum fre-
quency of 308 at this node. In other words, we have solved
benchmark problem 7 with an optimal assignment.

Note that, to get the assignments of Fig. 17, we need to run
GA on a nine-node subgraph (as shown in Fig. 7) with single
demand per node. The assignments of Fig. 18 are obtained
using the results of Theorem 3. As a result, the computation
time needed to solve problem 7 is a fraction of a second on a
DEC Alpha station. Likewise, it can be verified that benchmark
problem 3 can also be optimally solved using frequencies only
from 0 to 532.

For the other six benchmark problems, if we convert the non-
homogeneous assignment problem to its corresponding homo-
geneous counterpart with w = max(w; ) demand per node, the
required minimum bandwidth as given by Theorems 3—6 will be
well above wsg. For each of these problems, we have applied
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Fig. 18. Complete assignment of problems 7’ and 7.

our proposed algorithm (Algorithm GA) to get the bandwidths
as shown in Table V.

B. Comparison of Results

In order to evaluate the performance of the algorithms for
static channel assignment problem, the quality of derived so-
lutions is generally considered to be much more important than
the computation time [18], [29].

Regarding the optimality of the solutions, results from carlier
works along with that from our proposed approach are shown
in Table V. The row Lower Bound in Table V corresponds to the
lower bound for each of the problems as reported in [18].

As we sce from this table, our proposed scheme can solve
each of the eight benchmark problems optimally. Most of the
other algorithms (except that presented in [18]) determined an
optimal assignment only for six of the benchmark problems,
excluding problems 2 and 6.

In fact, problems 2 and 6 are regarded as the most difficult in
the literature [18], [27]. For example, the assignment algorithm
given in [19] required 165 h of computing time for problem 6 on
an unloaded HP Apollo 9000/700 workstation, but giving only a
nonoptimal solution with 268 channels (optimality requires only
253 channels). Later, however, the authors in [18] proposed an
algorithm that provided an optimal solution for problem 6 with
a running time of 10 min on the same workstation. Among the
later works, the frequency exhaustive strategy with rearrange-
ment algorithm in [20] and the randomized saturation degree
(RSD) heuristic presented in [27] also produce only nonoptimal
solutions to benchmark problems 2 and 6. However, combining
their RSD heuristic with a local search algorithm, the authors in
[27] were able to find an optimal solution for problem 2 but not
for problem 6. Most recently, an efficient heuristic algorithm has
been proposed in [29], which also produced nonoptimal results
for problems 2 and 6 with 463 and 273 channels, respectively.

The exact computation times have not been mentioned in
most of the earlier works for benchmark problems 1, 3, 4, 5,
7, and 8. Some papers only mentioned the order of computation
time, e.g., a few seconds, etc. Also, the workstations on which
the algorithms run are different. However, to have an idea about
the respective computation times, we have included Table VI,
showing the times of our approach and some recent works that
mentioned the computing times as well as produced optimal
results.

For fair comparison, we may normalize the speeds of dif-
ferent machines mentioned in Table VI by using the SPECint95
and SPECfp95 parameters.! For example, the SPECint95 and

ISee http://www.specbench.org/osg/cpu95/results/cint95(cfp95).html.

TABLE V
PERFORMANCE COMPARISONS

Problems 1 2 3 4 5 6 7 8

Lower Bound 381 427| 533| 533} 221| 253| 309| 309
Our approach | 381| 427| 533| 533| 221| 253| 309| 309
(2001)[29] 381 463| 533| 533} 221| 273| 309| 309
(2001)[27] 381 427| 533| 533} 221| 254| 309| 309
(2000)[20] - 381| 433| 533| 533| - | 260 - | 309
(1999)[18] 381| 427] 533| 533| 221) 253| 309| 309
(1998)[19] - - - - | 221} 268 - | 309
(1997)[22] 381 - | 533| 533| 221} - | 309 309
(1997)[23] 381 436 533 533| - | 268 - | 309
(1996)[24] 381 - | 533 533| - - - -

(1996)[10] 381 433| 533} 533| 221| 263| 309| 309
(1994)[25] 381| 464| 533| 536 - | 293| - | 310
(1992)[26] 381 - | 533| 5337 221| - | 309| 309
(1989)[9] 381| 447| 533| 533f - | 270f - | 310

SPEC{p95 parameters of the DEC Alpha station 200 4/233 used
by us are given by 3.39 and 4.32, respectively, whereas those
for HP 9000 Series 700 Model 712/100 are 3.76 and 4.03, re-
spectively. It shows that these two systems are of comparable
performance.

Finally, it is to be noted that our technique finds optimal
results for all benchmark instances. However, the computation
times required by our technique for problems 3 and 7 are much
better; and for problems 1, 4, 5, and 8, the computation times
are comparable with those reported earlier. For problems 2 and
6, however, our computation time for the optimal assignment
varied between 12-80 h for different runs on DEC Alpha
station. Hence, our results are better with respect to either
optimality and/or computation time for all benchmark instances
except problems 2 and 6, for which optimal results have been
reported in [18] with lesser computation time. It is to be noted
that our proposed approach and that in [18] are both based on
the applications of genetic algorithm. However, the approach
in [18] starts by estimating the lower bound Z on bandwidth
and attempts to satisfy all the constraints. If no solution is
found, then it increments Z by one and repeats the procedure.
Therefore, it is evident that the computation time will be highly
dependent on the proximity of the estimated lower bound for
the given problem to the optimal value of the bandwidth. But
the problem of finding an achievable lower bound itself is
an NP-complete one [26]. Our proposed technique, however,
does not depend on any initial estimate of the lower bound
and achieves optimal bandwidths for all benchmarks.

VII. CONCLUSION

In this paper, we have derived tighter lower bounds on the
required bandwidth for assigning w channels to each node
of a hexagonal cellular network with two-band buffering for
different relative values of sg, s1, and so. Next, we presented
an algorithm based on GA for solving the channel-assignment
problem in its general form. We then showed how this technique
can be effectively applied to the special cases of hexagonal
cellular networks with homogeneous demands and two-band
buffering. We have also shown that our methodology can easily
be applied to cases of nonhomogeneous demands. The appli-
cation of our algorithm to the eight well-known benchmark
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TABLE VI
COMPUTATION TIME COMPARISONS BETWEEN THE EXISTING CAP ALGORITHMS AND OUR APPROACH

Problems 1 3 4 5 7 8 Workstation

Our approach | 2 —5sec | 0.5 —1.0sec |6 —12sec |2 —"Tsec | 0.5 —1.0sec| 6 —17 sec DEC Alpha station

(2001)[29] 7.5 sec 8.2 sec 11.1 sec 6.9 sec 6.0 10.2 sec DEC Alpha station

(2001)[27] <1 sec <1 sec < 1 sec <1 sec <1 sec < 1sec | DECAlphaServer 2100

(2000)[20] - - —~ — - - -

(1999)[18] few sec few sec few sec | few sec few sec few sec HP Apollo 9000/7000

(1998)[19] - - - — 19365 sec 89196 sec | HP Apollo 9000/7000
(£16782) (£64846)

problems, including the most difficult two, produces an optimal
solution in each case. It performs better in terms of optimality
of bandwidth and/or computation time, in general, compared to
those presented in earlier works, except the computation time
for the benchmark problems 2 and 6. However, we present a
technique for improving the computation time for these two
difficult problems following this approach in [30].

APPENDIX |
PROOF OF LEMMA 1

Since any two nodes of the subgraph shown in Fig. 2 are either
at distance one or two from each other, the frequencies assigned
on any two nodes of this subgraph must be separated by at least
s1 or se depending on whether they are distance one or two
apart, respectively. In Fig. 2, d is the central node and all the
remaining nodes a, b, ¢, e, f, and g of this subgraph are distance
one apart from d. We divide the six nodes a,b, ¢, e, f, and g
into two sets A and B in such a way that any two nodes of a
set are at distance two from each other. Let A = {a, e, f} and
B = {b, ¢, g}. The minimum frequency that can be assigned to
any node of this subgraph is (0, 0). We now have the following
cases.

Case 1) Let frequency (0,0) be assigned to the central node
d. Now, we assign frequencies to the nodes of set A
(or B). After the assignment of all the nodes of set
A (or B), we will assign frequencies to the nodes of
set B (or A). The minimum frequency that can be as-
signed to any node of set A is (1,0) because any node
of set A is distance one apart from d, which has al-
ready been assigned a frequency (0, 0). Without loss
of generality, let (1,0) be assigned to node a. Now, the
minimum frequency that can be assigned to either node
f ornode e is (1, 1), because both nodes e and f are
distance two apart from a [which has already been as-
signed a frequency (1, 0)] and distance one apart from
d with assigned frequency (0, 0). Without loss of gener-
ality, let (1, 1) be assigned to f. Then, it follows from
a similar argument that the minimum frequency that
can be assigned to e is (1, 2). We can now start as-
signing frequencies to the nodes of set B. Note that
e has been assigned the highest frequency among all
the previously assigned nodes d, a, f, and e. Node ¢ of
set B is at distance two from node e, i.c., it requires
less frequency separation from e. To satisfy the fre-
quency separation requirements with all the previously

assigned nodes d, a, f, and e, the minimum frequency
that can be assigned to node ¢ of set B is i) (1, 3) when
s9 < s1 < 289 and ii) (2, 1) when s; > 2s5. By sim-
ilar arguments, it follows that the minimum frequencies
that can be assigned to nodes b and g are : i) (1, 4) and
(1, 5), respectively, when so < s1 < 2s9 and ii) (2,
2) and (2, 3), respectively, when s; > 2s,. The corre-
sponding assignments for so < s1 < 259 and $1 > 259
are shown in Fig. 19(a) and (b), respectively.

Note that, in Fig. 19(a), the inequality s; < 2s- has
been used because the frequencies (1, 1) and (1, 3) are
assigned to nodes f and c¢, respectively, which are at
distance one from each other.

Similarly, in Fig. 19(b), the inequality s; > 2s5 has
also been used, because frequencies (1, 2) and (2, 1)
are assigned to nodes e and ¢, respectively, which are
at distance two from each other.

It shows clearly that s; = 2s9 is the critical point

to determine the minimum bandwidth requirement for
the seven-node subgraph.
Let channel (0, 0) be assigned to any node other than
the central node. Without loss of generality, let (0, 0)
be assigned to node e. As e € A, our next attempt
is to assign frequencies to a or f. The minimum
frequency that can be assigned to a or f is (0, 1)
because both of them are at distance two from e,
which has already been assigned a frequency (0, 0).
Without loss of generality, let (0, 1) be assigned to a.
Then, the minimum frequency that can be assigned
to f is (0, 2) because f is at distance two from both
a and e. We now need to assign frequencies to the
central node d and the nodes of set B. Note that
f has been assigned the highest frequency among
all the previously assigned nodes a, e, and f. Node
b of set B is at distance two from node f, i.e., it
requires minimum frequency separation from f. Now,
satisfying the frequency separation requirements with
all the previously assigned nodes a, e, and f, the
minimum frequency that can be assigned to node b
is 1) (0, 3) when s2 < s1 < 2s9 and ii) (1, 1) when
$1 > 2s9. By similar arguments, we can say that the
minimum frequencies that can be assigned to nodes
g and c are : 1) (0, 4) and (0, 5), respectively, when
s9 < 51 <259 and ii) (1, 2) and (1, 3), respectively,
when s; > 2s5.

Since the central node d is at distance one from all
the remaining nodes, the minimum frequency that can

Case 2)
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Fig. 19. Different frequency assignments to seven-node subgraph with
minimum channel at central node for (a) so < 51 < 255 and (b) 51 > 255.

be assigned to d is (1, 5) if so < s1 < 2s9 and (2, 3) if
S1 Z 282.

If, after assigning frequencies to the nodes of set A,
we first assign frequencies to the central node d fol-
lowed by the nodes of set 13, then, proceeding in a sim-
ilar way, we see that the minimum bandwidth required
will be (2, 4) for both the cases of i) so < 51 < 239
and 11) S1 2 282.

Fig. 20(a) shows the assignment with a bandwidth
of (1, 5) for so < 51 < 2s9 and Fig. 20(b) shows the
assignment with a bandwidth of (2,3) for s; > 2s,.

Hence, whatever the case, all the nodes of the sub-
graph can be assigned frequency channels without any
interference by using a bandwidth of (s1 + 5s2) when
S92 S S1 S 282; or (281 + 382) when 51 Z 282. O

APPENDIX 1l
PROOF OF THEOREM 1

Let us consider the seven-node subgraph of a hexagonal cel-
lular network as shown in Fig. 2. Suppose, using the frequency
channels within the closed interval [0, p], it is possible to assign
w frequency channels to each of the nodes of the subgraph sat-
isfying all other constraints. Therefore, our objective is to find
minimum p.

Note that any two nodes of the subgraph are within distance
of two from each other. Therefore, any two frequencies assigned
to two nodes of the subgraph must be separated by at least s5.
Suppose that the frequency channel y (€ [0, p]) is assigned to
any node of the subgraph. Then, to satisfy the interference cri-
teria, no frequency channel within the open interval (y — s2, y)
and (y, y + s2) can be assigned to any node of the subgraph (in-
cluding the node itself, since sy > s2). That is, there would be
an unusable gap of (y — s2,¥) before y and also another such
gap of (y, y + s2) after y, on the frequency spectrum line, where
gap (a, b) implies that the integers within the open interval (a, b)
cannot be assigned to any node of the subgraph. We refer to
(b — a) as the length of gap (a, b). Obviously, for y = 0 (or p),
one of these gaps of unusable frequencies, e.g., (y — s2,y) [or
(y,y + s2] will be beyond the interval [0, p].

In addition to that, the central node d is at distance one from
each of the other nodes of the subgraph. Suppose, during the
assignment, that a frequency channel 2 (€ [0,p]) is assigned
to the central node d. Then, to satisfy the interference criteria,
no frequency channel within the open interval (z — s1,x) and
(z,x + s1) can be assigned to any node of the subgraph (in-
cluding the central node itself, since sy > s1). That is, there
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Fig. 20. Different frequency assignments to seven-node subgraph with
maximum channel at central node for (a) s < 51 < 255 and (b) 81 > 255,

must be unusable gaps ( — s1,2) and (2,2 + s1) before and
after x, respectively. If 2z = 0 (or p), one of these gaps of unus-
able frequencies, e.g., (x — s1,x) [or (z,z + s1)] falls beyond
the interval [0, p].

Since s1 > $9, it follows from the above that we can have
more usable frequency channels if the minimum and maximum
frequencies are assigned to the central node d rather than to any
other node.

It is always possible to assign either the minimum frequency
or the maximum frequency to the central node d, but depending
on the relative values of sq, s1, and so, it may or may not be
possible to assign both of these to the central node for keeping
p minimum.

Let us now consider the cases where we can do that and where
we cannot.

Lemma 1 states that when so < 51 < 289, (51 + 5s2) is
the minimum bandwidth required to assign only one frequency
channel to each of the nodes of the subgraph. Note that, for
this assignment, the minimum frequency 0 [or, the maximum
frequency (s1+ 5s2)] is assigned to the central node d as shown
in Fig. 19(a) [or Fig. 20(a)]. Without loss of generality, let us
start with the single channel assignment of Fig. 19(a). Next, we
are left to assign (w—1) additional frequency channels. In this
process, we are to see whether the maximum frequency channel
can also be assigned to the central node d, keeping p minimum.

We see that in Fig. 19(a), node g has been assigned the fre-
quency (s1 + 5so). The frequency assigned to node a is the
minimum of all assigned frequencies to the nodes at distance
two from node g, and the frequency assigned to node d is the
minimum of all assigned frequencies to the nodes at distance
one from g. To assign the second channel to each node, we can
start with assigning the next available minimum frequency ei-
ther to a (a peripheral node) or to d (the central node). For the
first case, the minimum frequency that can be assigned to a is
(81 + 582) + 82, if 59 < 652 (to avoid interference between
two channels assigned to a) and (sg + s1), otherwise. For the
second case, the minimum frequency that can be assigned to d
is (s1 + 5s2) + s1, if so < (2s1 + 5s2), and sg, otherwise. It
follows from these observations that for 6so < so < (s1+5s2),
it is more economical to start with assigning the minimum fre-
quency for the second channel to node a than to node d. We now
have the following cases.

Case 1) When sy < 6sy [or 6s2 < sg < (s1 + 5s9)]: To as-
sign the second and successive channels to the nodes in
Fig. 19(a), we first start with assigning the frequency
(81 + 682) (fOI' S0 S 682) or (80 + 81) (fOI' 682 S
so < (81 + 5s2)) to node a. Our objective is to end
up with the maximum frequency at the central node
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(0.1.0).(0.1.6)(0,1.12)....  (0.14).(0.1.10)0.1.16).....
a b

frequencies, we can end up with a frequency of
(s14+582)+ (w—1)(652)+s1+ (w—2)s¢ at node
d. Since we finally end up with the assignment
of both the minimum and maximum frequencies
to the central node d along with minimum gaps
between successively assigned frequencies, the
required p will be minimum whose value is given
by: (s1 4+ 5s2) + (w — 1)(652) + s1 + (w — 2)sg
= (251 + 582) + (w — 2)(sg + 6s2) + 652, when

(0.1.0).(0.1,6).(0.3.11)..... (0.14).(0.1.10).(0.3.15)..... (0.1.0).(1.1,0).(1.3.5)..... (0.1,4),(1.1.4).(1,3.9)....
a b a h S1 < S0 (291 - 92)

Fig. 21?21) illustrates the assignments up to the
third channel to each node following this method.
ii) When (251 —s2) < sg < 659 [or 655 < 59 < (514
5s9)]: It would be more economical to complete
the assignments of channels in each round to all the
nodes, including the central node.
As shown in Fig. 21(b), (for (2s1 — s2) < sp <
6s2), we assign the second-round frequencies (0,
1,7). (0, 1, 8), (0, 1, 9), (0, 1, 10), (0, 1, 11), and
(0,2, 11) to the nodes f, e, ¢, b, and d, respectively.
To assign the remaining (w—2) channels to each of
\ the nodes of the subgraph, we follow the same or-
f 8 / 1 . .
(0.1,1).(03.6).05.10 . (0.15).(03,10).(0.5.15)..... @1I(LLI2T D (0.1,5),(1.1.5).2.15)..... derlng ofnodes, ie., a, f, e, c, b7 and g, S0 that each
@ © node is assigned with the next available minimum
frequency at that time. Fig. 21(b) illustrates the as-
Fig. 21. Different frequency assignments to seven-node subgraph for s, < signments up to the third channel to each node fol-
s1 < 285 when (a) s1 < 59 < (281 — 82), (D) (281 — s2) < 59 < 6o, . . . .
(©) 652 < $0 < (514 552). (d) (51 4 582) < s0 < (251 + 5s5), and lowing this method. Since we finally end up with
(€) s0 > (251 + 5s2). the assignment of both the minimum and maximum
frequencies to the central node d along with min-
imum gaps between successively assigned frequen-
cies, the required p will be minimum whose value

(0.10)(0.35)(0.5.10)....  (0.14),03.9),(0.5.14)..... (0.1.0)(1.1.0).(2.1.0)..... (0.1,4).(1.1.4).2.1.4)...
a b a b

d along with minimum gaps between successively as-
signed frequencies to keep the required p minimum.

i : is given by:
Let us now consider the following two subcases. 1S gtven by
. a) (81 + 582) + (81 + 682) + (w — 2)(81 +
i) When s; < sg < (281 — s2): After the comple- (514555)) = (w—1)(281 + 5sa) + 65, for
tion of second-round channel assignment to all pe- (251 — 89) < 59 < 650
ripheral nodes {a,b, ¢, e, f, g}, if we go to assign b) (51 + 5sa) + (30 +os1) + (w — 2)(s1 +
a channel to the central node, then the minimum (s1+ 582))= (w — 1)(2s1 + 5s2) + so, for
gap would be s;. Also for the next round, we are 655 < 50 < (51 + 552). ’

to keep another gap of length s; before assigning
to node a. Instead, it would be more economical to
complete the assignments of all w channels to the
peripheral nodes only, and after that assign the re-
maining (w—1) channels to the central node.

Fig. 21(c) illustrates the assignment when 6s, <
so < (81 + 5sg) forw = 3.

Case 2) When (s1 + 5s2) < sg < (2s1 + 5s2) [or sg >
(281 +5s2)]: To assign the second and successive chan-
As shown in Fig. 21(a), we assign the second- npls to the nodes in Fig. 19(a), we first start with as-
round channels to all the nodes except the central signing the frequency (2s1 + 582) (for (s1 + 5s2) <
node as (0, 1, 7), (0, 1, 8), (0, 1, 9), (0, 1, S0 < (281 + 5s2)) or sq (for sg > (251 + 5s2)) to the
10), and (0, 1, 11) to the nodes f,e,c,b, and central node d. However, in this case, after the assign-
ment of the second channel to every node, we end up
with assigning the maximum frequency to a noncen-
tral node (say, ¢). This is illustrated in Fig. 21(d) (for
(91 + 589) < s9 < (281 + 5s2)) and Fig. 21(e) (for
S0 > (2814 5s2)), respectively, for w = 3. Proceeding
similarly for the third, fourth, . . . ; and wth channel, we

can end up at node g with a frequency of:

g, respectively. To assign the remaining (w—2)
channels to each of nodes {a,b,c,e, f, g} of the
subgraph, we follow the same ordering of nodes,
ie.,a, f,e,c, b, and g so that each node is assigned
with the next minimum frequency available at that
time. Proceeding similarly for the third, fourth,

.., and wth channel, we can end up at node g

with a frequency of (s + 5s2) + (w — 1)(6s2), a) (s1+5s2) 4 (281 4+ 5s2) + (w —2)(s1 + (51 +
for 51 < 59 < (281 — s2). Now we are left to 589)) = (w — 1)(2s1 + 5s2) + (51 + 5s2), for
assign (w—1) frequencies to the central node d. (81 + 5s2) < 50 < (281 + 5s2);

For that, the minimum frequency by which we can b) (s1+5s2)+(s0) +(w—2)(s0) = (w—1)(s0) +

start at node d is (s1 +5s2) + (w —1)(6s2) + s1. (81 + 5s2)), for so > (251 + 5s2).
Therefore, after the assignment of remaining (w—2) Hence the proof. O
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APPENDIX 111
PROOF OF THEOREM 2

We start from Fig. 19(b) and proceed in a similar way as in
the proof of Theorem 1 to get the desired result.
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