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Abstract

We prove the Khinchin’s Theorems for following Gelfand pairs (G, K) sat-
isfying a condition (*): (a) G is connected; (b) G is almost connected and
Ad (G/M) is almost algebraic for some compact normal subgroup M; (c¢) ¢
admits a compact open normal subgroup; (d) (G, K) is symmetric and G is 2-
root compact; (e) G is a Zariski-connected p-adic algebraic group; (f) compact
extension of unipotent algebraic groups; (g) compact extension of connected
nilpotent groups. In fact, condition (*) turns out to be necessary and sufficient
for K-biinvariant measures on aforementioned Gelfand pairs to be Hungarian.
We also prove that Cramer’s theorem does not hold for a class of Gaussians on
Compact Gelfand pairs.

KEY WORDS Locally compact groups, Lie groups, algebraic groups, Gelfand pairs, proba-
bility measures and factorization theorem, Khinchin’s central limit theorem, limit theorem, Cramer
theorem and anti-indecomposable measures, infinite divisibility and embedding.

1 Introduction

A classical theorem of Khinchin known as Khinchin factorization theorem which we
would call Khinchin’s first theorem says that any probability measure on R can be
written as a countable product of indecomposable measures (possibly infinite) and
a probability measure without indecomposable factors. Khinchin’s factorization the-
orem was extended to all commutative Hausdorff metrizable groups by Ruzsa and
Szekely (see [RS]). In [RS] Khinchin’s factorization for measures on abelian Hausdorff
groups is achieved by proving that the semigroup of probability measures on such
groups form a first countable Hungarian semigroup. The notion of Hungarian semi-
groups was introduced by Ruzsa and Szekely and it was studied in [RS]. It is shown
in [RS], that any element in a first countable Hungarian semigroup is a countable
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product of indecomposable elements (possibly infinite) and an anti-indecomposable
element. It is shown in [R] that semigroup of K-biinvariant probability measures on
real or p-adic reductive symmetric spaces is a Hungarian semigroup and hence the
factorization theorem holds for such semigroups.

Another classical theorem of Khinchin which we would call Khinchin’s second
theorem says that any antiindecomposable measure on R is infinitely divisible. This
result was extended to many other groups by various authors. In [RS], Khinchin’s
second theorem is also proved for anti-indecomposable measures on first countable
abelian Hausdorff groups by showing that semigroup of measures on such groups
form a normable Hungarian semigroup.

At this point we would like to note that Delphic semigroup is another approach
to prove the Khinchin’s Theorems for abelian semigroup. It has been proved in [G3]
that the semigroup of measures on noncompact symmetric spaces form a Delphic
semigroup but it can easily be seen that measures on compact symmetric spaces do
not form a Delphic semigroup (see [G3] for definition of Delphic semigroup).

The study of probability questions on Gelfand pairs has been initiated by Letac
in [Le] and by Heyer in [Hel] and [He2] where the author proves the Khinchin type
factorization result for some class of Gelfand pairs.

In this article we attempt to prove Khinchin’s Theorems for measures on Gelfand
pairs. In section 2 we introduce the concept of Gelfand pair and we also prove some
preliminary results which are needed in the succeeding sections to prove Khinchin’s
Theorems. In the section 3 we prove results on factor compactness which are needed
in proving IKhinchin’s Theorems. In section 4, we prove Khinchin’s Theorems for
connected Gelfand pairs. In sections 5 and 6, we prove Khinchin’s Theorems for
certain Gelfand pairs which include discrete groups and doubly transitive groups and
p-adic algebraic groups.

One of the axioms of Hungarian semigroup is that the set of factors of an element
is compact modulo the group of units. Some applications of this type of factor
compactness in analysis and arithmetic of probability measures are limit theorems
and embedding of infinitely divisible measures: see [S] and [Te] for more details
on limit theorems on general locally compact groups. In section 7 we obtain limit
theorems for measures on certain Gelfand pairs and we also obtain the embeddability
of infinitely divisible meausres on certain Gelfand pairs: the embedding problem for
general groups are studied by various authors (see [Mc]).

One more classical theorem of Khinchin which we would call Khinchin’s third the-
orem says that infinitesimal limits are infinitely divisible. This result was extended
by Ruzsa and Szekely to abelian metrizable groups such that the set of characters
separates points of the groups by showing that the semigroup of probability measures
on such groups form a stable normable Hungarian semigroup (see [RS]). In the sec-
tion 8 we prove the normability which in turn proves second and third theorems of
Khinchin for Gelfand pairs.

In section 9 we discuss Gaussian measures on compact Gelfand pairs and prove



that Gaussian measures are not in the class of anti-indecomposable measures. This
in particular implies that Gaussian measures on certain compact Gelfand pairs do
not satisfy Cramér theorem: Cramér theorem says that Gaussian measures on reals
have only Gaussian factors and Cramér theorem was generalized to abelian groups by
various authors (see [Fe]) and to symmetric spaces of non-compact type by Graczyk
(see [G2]). While proving this we obtain a class of measures which have indecompos-
able factors. In the last section we make some remarks on central limit theorems of
Lindeberg-Feller type for probabilities on Gelfand pairs.

2 Preliminaries

Let GG be a locally compact second countable group and K be a compact subgroup of
(. Then we say that the pair (G, K) is a Gelfand pair if the convolution semigroup
Pr(G) of all K-biinvariant probability measures on (7 is a commutative semigroup;
see [BJR], [F], [GV] and [MV] for more on harmonic analysis on Gelfand pairs. For any
probability measure p1, S(u) denotes the support of y and for any compact subgroup
M of ¢, wys denotes the normalized Haar measure on M.

Examples (1) For any locally compact abelian group G and any compact subgroup

K of G, (G, K) is Gelfand.

emigroup of probability measures on a real reductive grou at are K-
2) Semigroup of probability | reductive group G that K
biinvariant for a maximal compact subgroup K of (G is commutative and hence

the pair (G, K) is a Gelfand pair (see [R]).

(3) The semigroup of probability measures on the Euclidean motion group G that
are SO(n)-biinvariant is commutative and hence (G, SO(n)) is a Gelfand pair.

Proposition 2.1 Let G be a locally compact second countable group and K be a
compact subgroup of G'. Then the following are equivalent:

1. (G, K) is a Gelfand pair;
2. foranyz,y € G, Ke KyK = KyKaK;
3. foranyx,y € G, vy € KyKaK;

4. the algebra Ly (G) of K-biinvariant integrable functions on G is a commutative
algebra.

Proof One may prove that (1) implies (2) by considering the K-biinvariant measures
wipwr and widwr, for z,y € GG and that (2) implies (3) is obvious.



We now prove (3) implies (4). We first prove that (3) implies G is unimodular.
Let m be a left invariant Haar measure on GG. Let U be a compact neighbourhood of

e such that KUK = U. Then for g € GG,

m(Ug) = [ xv(zg)dz
= [ xg(gkz)dz (k depends on z)
= [xv(z)dr (yde =dx, y€ G and KUK =U)
=m(U)

This proves that G is unimodular. The rest of the proof of (3) implies (4) is quite
similar to Theorem 1.12 of [BJR].
The implication (4) implies (1) follows from the existence of approximate identity

sequence in Lj (G) (see Lemma 1.6.8 of [GV] or Theorem 2.2.28 of of [BH]). 0

Thus, the above result says that our definition of Gelfand pair agrees with the
classical notion of Gelfand pair. We now prove that Gelfand pair property preserves
quotients.

Proposition 2.2 Let (G, K) be a Gelfand pair and H be a normal subgroup of G.
Let M = KH/K. Then (G/H, M) is also a Gelfand pair.

Proof Let x,y € G. Since (G, K) is a Gelfand pair, by Proposition 2.1, xy €
KyKax K, that is there exist kq, ky and ks such that xy = kyykoxks. This implies that
ctHyH € kyHyHkyHx Hks H. Again by Proposition 2.1, (G//H, M) is also a Gelfand

pair.

In this article we attempt to prove all three theorems of Khinchin for Gelfand
pairs. This is achieved by applying the Hungarian semigroup theory: see [R] and
[RS] for more details on Khinchin’s theorems and Hungarian semigroups.

Let S be a commutative Hausdorff semigroup with identity e. Let ~ be a relation

defined on S for z,y € S, by
r~y<sx=ry and y = sx

for some r,s € 5. Any two elements x and y of S are said to be associates if x ~ y.
An element u of S is called unit of S if it is invertible in S. Let S* be the quotient
semigroup corresponding to the relation ~ and ¢: 5 — S* be the canonical quotient
map (this notation is followed throughout the article). We say that the semigroup 5
is Hungarian if it satisfies the following properties:

(H-1) the set of associate pairs is a closed subset of S x S
(H-2) if @ and y are associates, then # = uy for some unit u in S;

(H-3) the set of divisors (factors) of any element in S* is compact.



For any two subsets A and B of S and any s,t € 5, let us write A; ~ ;B if for any
a € A, there exists a b € B such that ¢ = sb and b = ta. A Hungarian semigroup S
is called uniformly Hungarian if for any s,t € S and subsets A and B of S such that
A,y ~ B there exist units v and v in S such that A, ~ ,B. The notion of uniformly
Hungarian semigroup was introduced by A. Zempléni in [Z] to study the heredity of
Hun and Hungarian semigroups.

A sequence (x,) in a topological space X is said to be relatively compact or bounded
if it is contained in a compact subset of X.

We first prove following elementary results that are needed in proving the main
results. First of such results characterizes all units in the semigroup of probability
measures on Gelfand pairs.

Proposition 2.3 Let G be a locally compact group and K be a compact subgroup of
G. Suppose A and p are K-biinvariant probability measures on GG such that p\ =
Mt =wg. Then A = zwg for some x in N(K), the normalizer of K. Suppose (G, K)
is a Gelfand pair and S is the semigroup of K-bitnvariant probability measures on G.
Then X is a unit in S if and only if X\ = awg for some v € N(K).

Proof Let A and g be K-biinvariant probability measures on G such that
Ak [l = wg = [L*k A
This implies that
SA)S () US(p)S(A) € K

and hence for any g € S(p), Ag is a left K-invariant probability measure supported
on K. Thus, \g = wg. Since S(A) C Kg™', we have wgr = wrg™" for all x € S(N).
Thus,

A= wKT

for any x € S(A). Similarly we may prove that
A= zwi
for all @ € S(A). This implies that
:I;wK:I;_l = WK

and hence # € N(K'). Second part of the proposition follows from the fact that any
measure of the form xwg, for x € N(K) is K-biinvariant and ~'wy is the inverse of

TWE . |

The following lemma is very useful and used often in the sequel without even
referring to it.



Lemma 2.1 Let GG be a locally compact group and K be a compact subgroup of G.
Suppose (G, K) is a Gelfand pair. Then any compact subgroup M containing K is
normalized by N(K'), the normalizer of K and (G, M) is also a Gelfand pair.

Proof Let v+ € N(K). Then azwg and wga™' are K-biinvariant probability mea-
sures. Since (G, K') is a Gelfand pair, this implies that

-1 -1
WeMzr—1 — TWKWANMWEK T = WpMITWKT = WMWK = WHr.

Thus, Mz~ = M. The second part of the theorem follows from the fact that
M-biinvariant probability measures are also K-biinvariant. 0

The next lemma determines when the semigroup of probability measures on a

Gelfand pair satisfies (H-2).

Lemma 2.2 Let G be a locally compact group and K be a compact subgroup of GG. Let
S be the semigroup of all K-biinvariant probability measures on Gi. Suppose (G, K)
is a Gelfand pair. For any subgroup H of G, N(H) denotes the normalizer of H in
G. Then the following are equivalent:

1. (H-2) holds for S;

2. for every compact subgroup M of G' containing K and x € G such that x Kz™" C
M, we have x € N(K)M;

3. for every compact subgroup M of G containing K, N(M) = N(K)M.

Proof Suppose S satisfies (H-2). Let M be a compact subgroup of (¢ containing K.
Suppose x € (¢ is such that

K and aKz2~'C M. (1)

Consider
A=wy and g = wgdw. (17)

Then A and p are in S. Let

V] = widpwr and 1y = wrd,—1wi.
Then vy, € S and by (1) we get that

[ = WOy = WK Owwy = 1A

and
A=Wy = WKW = WK O—1WEK O = V2l



Thus, A and p are associates. Then A = up for some unit w in S. By Proposition 2.3,

A =up = gwip = gp

for some g € N(K'). Thus, by substituting (i7), we have

WK OWM = gwnm

and hence KaM = gM for some g € N(K'). This implies that « € gM C N(K)M.
This proves that (1) implies (2).
Suppose (2) holds. Let M be a compact subgroup of (¢ containing K. Then

eKa ' CaMa™t =M

for all @ € N(M) and hence by assumption @ € N(K)M for all € N(M). This
implies that N(M) C N(K)M. Since K C M, N(K) normalizes M, that is N(K) C
N(M). Thus, N(M) = N(K)M. This proves that (2) implies (3).

Suppose for every compact subgroup M of i containing K, we have N(M) =
N(K)M. We now prove that S satisfies (H-2). Let p, A, v and 15 be in S. Suppose

=1 and A= ypu.

Then
H =l

and hence by Theorem 1.2.7 of [He], S(11)S(12) C{g € G| g = p = pg} = M, say.
Since p 1s K-biinvariant, K C M. Replacing v; by wys * 1, for i=1,2, if necessary we
may assume that v; * wy = 14, for 1 = 1,2. Then we have,

Ny = Wpr = al.

By Proposition 2.3, v; = x;wy for some x; € N(M) for ¢« = 1,2. This implies that
z; € N(K)M = MN(K) fori = 1,2. Thisimplies that v; = gwas for some g; € N(K)
for i =1,2. Thus, p = g1 A for g1 € N(K'). This proves that (3) implies (1). .

We say that a pair (G, K') consisting of a locally compact group G and a compact
subgroup K of G satisfies condition (*)if (2) or (3) of Lemma 2.2 is satisfied. Thus, a
Gelfand pair (G, K') satisfies condition (*) if and only if the semigroup of K-biinvariant
probability measures on (7 satisfies (H-2). We will see that this condition plays a vital
role in proving Khinchin’s Theorems.

It is easy to see that when K is a maximal compact subgroup, condition (*) is
satisfied. It is also easy to see that (G, K') satisfies condition (*) when (7 is a connected
Lie group and K is a maximal torus which may be seen as follows: suppose M is a
compact group containing K, then forx € N(M), s Ka=" = mKm™! for some m € M
and hence N(M) = N(K)M. Also if there exists a compact group L contained in K



such that (G, L) satisfies condition (*), then (G, K') also satisfies condition (*) which
follows from the equation that

N(M) = N(L)M = N(L)KM = N(K)M

for any compact subgroup M containing K.
We now prove that the Gelfand pair (G, K) satisfies the condition (*) when G/ K
is a compact Riemannian symmetric space. We first observe the following:

Proposition 2.4 Let G/K be an irreducible Riemannian symmetric space. Then K
is a mazximal proper compact connected subgroup of G

Proof Let H be a compact connected subgroup of G containing K properly. Let
G, K and ‘H be the Lie algebras of (G, K and H respectively, with G = K & P. Since
(// K isirreducible, Ad (K') acts irreducibly on the subspace P where Ad is the adjoint
representation of (¢ on its Lie algebra G. Since H contains K, the subspace H NP
is a Ad (K )-invariant subspace of P and hence H NP = (0) or P. This implies that
H = K or H = (. This proves the proposition. 0

Lemma 2.3 Let G/K be a compact Riemannian symmetric space. Then the Gelfand
pair (G, K) satisfies the condition (*).

Proof Let (G, K) be a compact Riemannian symmetric pair. Let G be the simply
connected covering of G and p: G — G be the covering map of (. Let K = p (K.
Let M be a compact subgroup of & containing K such that xKz=! C M for some
x € (G. We now claim that © € N(K)M. Let Gy,Gy, -+, G, be finite set of simple
Lie subgroups of Gy such that

G:é1><é2><"'><ém.

Now for each i, 1 <1 < m, there exists a compact subgroup K; of i such that CN?Z/IK’Z
is a irreducible Riemannian symmetric space and

K=K x Ky x- % Kp.
Now let M = p~'(M). Then by Proposition 2.4, we have
M=Ky x - x K, X Gryy X --- x G,

for some r, 0 < r < m where M° is the connected component of identity in M. Now
let yy = (21,2, -, &) be in p~'(z). Since K is connected, we have that y Ay~ and
R are contained in M°. This implies that :1;2'[{}:1:;1 - ﬁ’i, for 1 <1 < r and hence since
K is a connected Lie group, we have z; € N([g’i), for 1 < < r. This implies that
y € N([{’)M and hence p~!(z) C N([%)M. Thus, = € p(N([g’)M) = p(N([g’))M C

N(K)M. This proves condition (*) for any compact Riemannian symmetric space.



Remark The following gives an example of a Gelfand pair which does not satisfy
the condition (*). Let @, be the additive group of 2-adic integers and |-| be the 2-adic
norm on Q,. Let L = {x € Qq | |#| = 1}. Let K be the subgroup of automorphisms
generated by the automorphism = +— —z. Let G be the semidirect product of A
and Qy. Let o € @y be such that xg ¢ L but 229 € L. Then the semigroup of
all K-biinvariant probability measures on (G is isomorphic to the semigroup of all
symmetric probability measures on Qz. Thus, (G, K) is a Gelfand pair. Let M be
the compact subgroup of (G generated by L and K. Then since 2xg € L, it is easy to
see that ¢ normalizes M. Since N(K) = K and x¢ € M, we get that N(K)M = M
is a proper subgroup of N(M). Thus, (G, K) is a Gelfand pair which does not satisfy
the condition (*).

We now present various types of Hungarian semigroups which are useful in proving
the heredity of Hungarian semigroups and limit theorems. For any subset (' of a
semigroup P, let T be the set of all factors of elements of C'. Let ¢: .5 — 5* denote
the canonical quotient map. A Hungarian semigroup S is called stable if for every
compact set ' of S*, Ty is compact. A Hungarian semigroup S is called division
compact if for any two compact subsets C' and L of S, the set C'/L = {s € 5 |
there exists a [ € L,sl € C'} is compact. It is shown in [RS] that the semigroup of
all compact-regular probability measures on an abelian Hausdorff topological group
(¢ is a stable division compact Hungarian semigroup (see Chapter 3, Theorem 1.1 of
RS]).

A Hungarian semigroup S is called strongly stable if for any compact set C' of
S, there is a compact set L of S such that ¢(T¢) = ¢(L). It should be noted that
strongly stable Hungarian semigroups are stable. A. Zempléni introduced the notion
of strongly stable Hungarian semigroups in [Ze]. It is shown in [Ze] that for a lo-
cally compact first countable abelian group G, the semigroup P(P(---(G)--+)) is a
strongly stable division compact uniformly Hungarian semigroup with Prohorov prop-
erty. In [R], it is proved that P(P(---(5)---)) is a strongly stable division compact
uniformly Hungarian semigroup with Prohorov property when S is the semigroup of
K-biinvariant probability measures on a real reductive symmetric space. Here we
prove a similar result for certain Gelfand pairs.

In order to achieve Khinchin’s second and third Theorems, that is any anti-
indecomposable measure or any infinitesimal limit is infinitely divisible, Ruzsa and
Szekely introduced the concept of normable Hungarian semigroups. For any s in a
Hungarian semigroup S, define H(s) as the maximal idempotent factor of s in 5
(see 22.11 of [RS] for the existence of H(s)). A normable Hungarian semigroup is a
Hungarian semigroup S satisfying the condition that for every s € S that is not an
associate of an idempotent, there exists a map Ag: Ty — [0, 00) such that

As(ab) = Ag(a) + Ay(b) (p)

for any a,b € Ty with ab € T, As(s) > 0 and A is continuous at H(s) where T is
the set of factors of s. Any map satisfying condition (p) is called a partial homo-



morphism. It is proved [RS], that the semigroup of probability measures on a locally
compact abelian group is a normable Hungarian semigroup. Combining the Kendall
homomorphism of [G] with the results in [R], we get that the semigroup of probability
measures on a reductive symmetric space is a normable Hungarian semigroup. In the
next sections we prove that the semigroup of A'-biinvariant probability measures on
Gelfand pairs is also normable.

Another application of normable stable Hungarian semigroup is the infinite divis-
ibility of an infinitesimal limit, that is Khinchin’s third Theorem. We will answer this
question affirmatively in the section 8.

3 Factor compactness

The following lemma is an important tool in proving the factor compactness which is
useful in establishing the strong stability and limit theorems: see [DM], [DR] and [M]
for results on factor compactness for measures on general locally compact groups.

Lemma 3.1 Let N be a connected nilpotent Lie group and A be a group acting on N
by automorphisms such that the induced action on the Lie algebra of N is semisimple.
Let X be a subset of N such that for any sequence (x,) in X, the sequence

(zna(z;h))

is relatively compact for every o € A. Then for each x € X, there exists a, and b,
such that
x = bya,,

{bs}rex is relatively compact and o(a,) = a, for all v € X and o € A. In other
words, X is relatively compact in N/N* where N denotes the group of all A-fired
points in N.

Proof Let L(N) be the Lie algebra of N. We first consider the case when N is
abelian. There is no loss of generality in assuming that N is a vector group. Let U

be the subspace of L(N) consisting of all v € L(N) such that
da(v) =wv
for all @ € A. Then there exists a A-invariant subspace W of L(N) such that
LINy=UagW.

Now for each =z € X, there are a, and b, in the exponential image of U and W
respectively, such that
T = bya,.

10



Suppose {b;}sex is not relatively compact, then there exists a sequence (x,,) in
X such that
b, = b, — oo.

Let Y,, € W be such that
exp(Y,) = b,.

Since exp is a diffeomorphism, we have
Y, — o0
and (da(Y,) —Y,) is relatively compact for all & € A and hence

LSS I
Yl ™ {1¥a]]

dof 0

for all o € A where ||-]| is the Euclidean norm on L(N). By passing to a subsequence,
if necessary we may assume that

Ya

—Y
1Y, ]|

and hence Y is a nonzero vector in W such that
da(Y)=Y

for all @ € A. This is a contradiction. This proves that {b,},cx is relatively compact.

We now consider the general case. The rest of the proof is based on induction
on dimension of L(N). Suppose dimension of L(N) is one, the result follows from
the abelian case. Now let Z be the center of N and L(Z) be the Lie algebra of Z.
Since the action of A on L(N) is semisimple, there exists a A-invariant subspace W
of L(N) such that

LIN)=L(Z)s W.

Since N is nilpotent, Z(N) is of positive dimension, now applying induction hypoth-
esis to N/Z(N) yields that for each @ € X, there are a,, b, and z, such that

T =bya,z,

where a7 is fixed by all elements of A, z, is in Z for all x and {b,},cx is a relatively
compact subset of N. Let exp be the exponential map of L(/N) into N. Since N is
a connected nilpotent Lie group, by Theorem 3.6.1 of [V], exp is an onto map. Since

L(N)=L(Z)+ W, for each x € X, there exists a v, € L(Z) and w, € W such that
exp(v, + w;) = ay

and hence, since v, belongs to the center of the Lie algebra, by Corollary 2.13.3 of
[V], we have

eXp(wx) eXp(Ux) = lg

11



for all @ € X. Thus, for each € X, replacing a, by a,exp(—uv,), we may assume
that
a; € exp(W)

for all x € X.
We now claim that a, is fixed by all elements of A. Let w, € W be such that
exp(w;) = a,. Since a7 is fixed by elements of A, we have

olexp, (e, + L(Z)) = exp,(w, + L(Z))

for all a € A where exp, denotes the exponential map of the Lie group N/Z. Since
N is a connected nilpotent Lie group, exp, is a diffeomorphism of the Lie algebra

L(N)/L(Z) onto N/Z (see Theorem 3.6.2 of [V]). This implies that
a(w, + (7)) = w, + L(7)
for all @ € A and hence
a(w,) —w, € L(Z)
for all @ € A. Since w, € W which is an A-invariant subspace, we have
a(w,) —w, €e WNL(Z) = (0)
for all @ € A. This implies that a(w,) = w, for all & € A and hence
alay) = ay

forall @ € A and all z € X.

Now for any sequence (z,,), and for each o € A,

zpafa ) = by ap, 20, a(z; Dala; (b)) = 2, 02 be, a(b))).

This implies that ({z,,a(z;")) is relatively compact. Now the result follows from the

n

abelian case. .

Lemma 3.2 Let U be a unipotent algebraic group and K be a compact group of
automorphisms on U. Let X be a subset of U such that for any sequence (x,) in X,
the sequence (z,a(x; ) is relatively compact. Then XU is relatively compact in

UJUR where UK is the group of all K-fired points of U.

Proof Since U is a unipotent algebraic group, exponential is a diffeormorphism of
the Lie algebra of U onto U. Since K is compact, the induced action of K on the Lie
algebra of U is semisimple. Thus, one may prove the lemma by arguing as in Lemma

3.1.

The next result extends Lemma 3.1, to connected solvable groups with a faithful
representation and when the group of automorphisms is a compact connected group.

12



Lemma 3.3 Let GG be a connected solvable Lie group with a faithful representation
and K be a compact connected group of automorphisms of G'. Suppose X is a subset
of G such that for every sequence (x,) in X, the sequence (v, a(x,)™") is relatively
compact for all o« € K. Then for each x € X, there exist (b,) and (a;) in G such that

x = bya,,
{b; | ¥ € X} is relatively compact and a(a,) = ay, for all o € K and all v € X.

Proof Let G be a connected solvable Lie group with a faithful representation. Then
there exists a compact connected abelian subgroup T' of (¢ and a simply connected
normal subgroup H of i such that G = T'H (see [Ho]). Let N be the nilradical of H
and H be the Lie algebra of H. Let H; be the Lie subalgebra of H such that

Hi=A{veH|alv)=uv, for all ke K}.

Let Hy be the connected Lie subgroup of ' corresponding to the subalgebra H,.
Then Hy is a simply connected closed subgroup of H (see Theorem 3.18.12 of [V])

and a(h) = h for all h € Hy and all o« € K. By Leptin’s Theorem (see [BJR]),
H = NH,. Now the lemma follows from Lemma 3.1. 0

We need the following lemmas which are quite useful in establishing the main
result of this section.

Lemma 3.4 Let GG be a locally compact second countable group and K be a compact
subgroup of G. Let (1) be a sequence of automorphisms of G. Suppose (7,(wk)) is
a relatively compact sequence in P(G). Then (7,(k)) is a relatively compact sequence

in G, forallk € K.

Proof Suppose (7,(ko)) is not relatively compact for some kg € K. Then by pass-
ing to a subsequence, if necessary we may assume that (7,(ko)) has no convergent
subsequence and 7,(wx) — p € P(G). Since each of 7,(wk) is an idempotent, p is
an idempotent and hence p = wyy for some compact subgroup M of GG (see Theorem
1.2.10 of [He]). Since (7 is second countable, P(() is metrizable. Let (U;) be a de-
creasing sequence of compact neighbourhoods of M. Since 7,(wk) — wy, for each
1 > 1, there exists an n; such that

wK(Tm (U;) >1-— oH
(see [P]) and we may assume that n; < n;4q for all ¢ > 1. Let

B=uUyx_ N2 ().

=m 7’L

Then B is a Borel subset of ¢ and

WK G\B Si

i=m

o) -
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for all m > 1. This implies that wx(B) = 1. Let b € B. Then there exists a m > 1
such that 7,,(b) € U; for all ¢ > m. Since (U;) is a decreasing sequence, we have
Tn, (b) € Uy, for all i > m and hence (7,,(b)) is relatively compact for all b € B. Let H
be the set of all k£ in K such that (7,,(k)) is relatively compact. Then H is a co-null
subgroup of K. By Proposition B.1 of [Zi], H = K. This implies that (7,(ko)) has a
convergent subsequence. This is a contradiction. Thus, we prove the lemma. 0

We make the following observation which is essentially Lemma 2.1 of [DR].

Lemma 3.5 Let V be a finite-dimensional algebra over real or p-adic field. Let (7,)
be a sequence of algebra automorphisms of V. Then there exists a subalgebra W of V
such that

1. W={weV]|(r(w)) is bounded } and
2. if (to(p)) is relatively compact for € P(V'), then p is supported on W.

Proof Since V is of finite-dimension, there exists a vector subspace W of V' such
that (7,(w)) is bounded if and only if w € W. Now let i € P(V') be such that (7,(u))
is relatively compact. We now claim that the support of i is contained in W, in other
words, for each v € S(u), (7,(v)) is a bounded sequence. Suppose for some v € V,
the sequence (7,(v)) is not bounded. Then there exists a subsequence (74, ) of (7,)
such that

T, (V) = 00 and 7, () — v

for some v € P(V). Then by Lemma 2.1 of [DR], there exists a subspace Wy of V
such that (7, (w)) converges for all w € Wy and p is supported on Wy. This implies
in particular, that (74, (v)) converges. This is a contradiction. Thus, v € W. This
proves the lemma. 0

Proposition 3.1 Let G be an almost connected Lie group and G° is a semisimple
Lie group. Let K be a compact subgroup of G'. Suppose (G, K) is a Gelfand pair
and S is the semigroup of all K-biinvariant probability measures on G. Let (u,,) be a
relatively compact sequence in S and (A,) be a seqeunce such that for each n > 1, X,
is a factor of p,. Then there exists a sequence (x,) from the center of G such that
(xnAn) is realtively compact.

Proof Since (p,) is relatively compact, by Theorem 1.2.21 of [He], there exists
a sequence (g,) in GG such that (g,A,) is relatively compact. Let Ad be the adjoint
representation of GG and let H = Ad (). Then H is a connected algebraic semisimple
group. Thus, the center of H is finite and H ~ (G/Z where Z is the center of G. By
Proposition 2.2, we have (H,KZ/Z) is also a Gelfand pair. Let M be a maximal
compact subgroup of H containing K7/Z. Then (H, M) is a Gelfand pair. Let
p: G — H be the cannonical quotient map. Then (p(p,,) * war) is relatively compact
and p(A,) % wy is a factor of p(u,) for all n > 1. Then there exists a sequence (h,,)
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in H such that (h,war*p(A,)) and (p(A,) * warhy,) are relatively compact (see [DM]).
This implies by Theorem 1.2.21 of [He], that (h,warh, ') and (h;*warh,,) are relatively
compact. By Cartan decomposition (see [W]), H = M AM for an abelian group A
and hence for each n > 1, there exist a,, € A and m,,,m!, € M such that h, = m,am!,.
This implies that (a,wya;t) and (a;'wya,) are relatively compact. By Lemma 3.4,
(a,ka;') and (a,'ka,) are relatively compact for all k € M. Let p: H — GL(V) be a
faithful rational representation of H and W be the subalgebra of End (V') generated
by H. For each n > 1, define 7,: W — W by 7,(w) = a,wa; . Then by Lemma 3.5,
there exists a subalgebra Wy of W such that (7, (w)) is relatively compact if and only if
w € Wy. Since A is abelian and (a, ka; ") is relatively compact for all k € M, we have
KA CW,y. Since H= MAM, we have H C Wy. Since H generates W, W = W, and
hence (7,) is relatively compact in End (W). Since (a, 'ka,) is relatively compact, we
may prove in a similar manner that (7!) is relatively compact in End (W). Thus,
(7,) is relatively compact. Since H is semisimple algebraic group, the center of H
is finite. This implies that (a,,) is relatively compact in H. This proves that (h,) is
relatively compact and hence (wpr*p(A,,)) is relatively compact. By Theorem 1.2.21 of
[He], (p(An)) is relatively compact. Since (g, A,) is relatively compact, once again by
Theorem 1.2.21 of [Hel, (p(g,)) is relatively compact. Thus, there exists a relatively
compact seqeunce (b,) in GG and a sequence (x,) from Z such that g, = b,x, for all
n > 1. Since (g, Ay ) is relatively compact, (x,A,) is relatively compact. .

We now prove the factor compactness for connected Gelfand pairs when K is a
maximal compact group.

Proposition 3.2 Let G be a connected locally compact group and K be a mazximal
compact subgroup of G. Suppose (G, K) is a Gelfand pair and S is the semigroup of
K -biinvariant probability measures on G. Let (p,) be a relatively compact sequence
in S and (\,) be a sequence in S such that for each n > 1, A, is a factor of yi,.
Then there exists a sequence (x,) in G such that (x,)\,) is relatively compact and the
sequence (x,) is relatively compact in G/N(K) where N(K) is the normalizer of K
in G.

Proof Since (G is a connected group, there exists a compact normal subgroup M of
G such that GG/M is a connected Lie group. Since K is a maximal compact subgroup,
M is contained in K. Thus, by replacing G by G/M, we may assume that G is a
connected Lie group.

Let (41,) be a sequence of K-biinvariant probability measures on i and () be a
sequence in S such that for each n > 1, A\, is a factor of p,. Let R be the solvable
radical of G. Then G/R is a connected semisimple Lie group. Then there exists a
sequence (x,) in G such that (2, A, ) is relatively compact and by Proposition 3.1, (z,)
is relatively compact in (G/R)/Z(G/R). This implies that there exists a sequence
(9n) in G such that x, = gug, for all n > 1, g, R € Z(G/R) and (q,) is relatively
compact. This implies that (g,A,) is relatively compact and ¢,g9.'¢™' € R for
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all ¢ € G and all n > 1. Since )\, is K-biinvariant, we have that (g,wxg, g, )
is relatively compact and hence by Theorem 1.2.21 of [He], (g.wrg,') is relatively
compact. By Lemma 3.4, we have (g,kg; ') is relatively compact for all k € K. Thus,
(goAn) and for k € K, (g.kg,") are relatively compact. Let H = Ad (). Then
H is a connected Lie group with a finite-dimensional faithful representation. Let S
be the solvable radical of H. Then S contains Ad (R). Let h, = Ad (g,). Then
hhhth=t € S for all h € H. This implies that (%,S5) is contained in the center of
H/S which is a semisimple algebraic group and hence (h,5) is relatively compact.
There exists a relatively compact sequence (¢,) in H such that h, = ¢,y, and for
some y, € S for all n > 1. Since (¢,) is relatively compact, we have y,ky; ! is
relatively compact for all & € Ad (K). This implies that the sequence (y,ky, k™)
in S is relatively compact in S for all £ € Ad (K'). Now by Lemma 3.3, there exists a
relatively compact sequence (b,) in S and a sequence (a,) in S such that y,, = b,a,
and ka, k™' = a, for all k € Ad (K) and all n > 1. Thus, h, = ¢,b,a, where (¢,b,)
is relatively compact and ka,k™" = a, for all k € Ad (K') and all n > 1. This implies
that there exists a relatively compact sequence (d,) in GG and a sequence (u,) in G
such that
T, = dy,u, and kunk_lugl ez

for all n > 1 and all £ € K where Z is the center of (G. Now for each n > 1, the map
k> ku,k™'u; ! is a continuous homomorphism of K into Z. Since K is a maximal
compact subgroup, we get that ku,k 'u ' € K and hence u, € N(K) for all n > 1.
Thus, (@) is relatively compact in G/N(K). 0

We now prove the factor compactness result for certain almost connected Gelfand
pairs. To do this we need the following results on the structure of Gelfand pairs. The
following proves that Gelfand pair is invariant under conjugation.

Proposition 3.3 Let (G, K) be a Gelfand pair and 7 be an automorphism of G.
Then (G, 7(K)) is also a Gelfand pair.

Proof Let A and u be 7(K)-biinvariant probability measures. Define X = 771(})
and ¢/ = 77(p). Then

wrNwi = wrT (Mwr = 77 (w0 A () = N

This shows that A" and ' are K-biinvariant probability measures on (. Since (G, K)
is a Gelfand pair, we have

M =TN)r(p) = 7(Np) = 7(0'X) = pA.
This proves that (G, 7(K)) is also a Gelfand pair. .

Proposition 3.4 Let G be a almost connected Lie group and (G, K) be a Gelfand
pair. Let GY be the connected component of identity in G and Ad be the adjoint
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representation of G on its Lie algebra. Suppose Ad (G°) is an almost algebraic group.
Let S be the solvable radical of Ad (G°). Then S is type R, that is S is a compact

extension of a connected nilpotent normal subgroup of Ad (G).

Proof Since S is a solvable almost algebraic group. There exists a compact abelian
subgroup T"and a diagonalizable almost algebraic group D such that S =T DU where
U is the unipotent radical of G. To prove the lemma it is enough to prove that D
centralizes U. Now let u € U and (d,) is a sequence in D such that d,ud;' — e.
Let M be a maximal compact subgroup of Ad () containing 7. Since Ad (K) is
contained in a coset of G, by Proposition 3.3, we get that (Ad (G), M) is also a
Gelfand pair. Now for each n > 1, d,u = ¢, uc, d,c,” for some ¢,, ¢/, and ¢,” in M.
This implies that
dnudgldncn”dgl = cuc,

for all n > 1. Since (¢,) and (¢},) are relatively compact, by passing to a subsequence,
we may assume that ¢, — ¢, ¢, — ¢ and d,ud ' — e. This implies that d,c,”d " —
cuc. Let R be the semisimple Levi subgroup of Ad (G) containing M°. Then it is
easy to see that R contains D and hence u € RM. Since RM is a finite extension of
a semisimple group, it does not contain any unipotent normal subgroup but U N RM
is an unipotent normal subgroup of RM and hence u = e. Thus, D centralizes U.
This proves the proposition. 0

We now prove the factor compactness.

Proposition 3.5 Let G be an almost connected group and K be a maximal compact
subgroup of G. Suppose (G, K) be a Gelfand pair and there exists a compact normal
subgroup M of G such that G/M is a Lie group and Ad (G/M) is an almost algebraic
group. Let S be the semigroup of K-biinvariant probability measures on G. Let (u,,)
be a relatively compact sequence in S and (\,) be a sequence such that for eachn > 1,
A s a factor of p,, in S. Then there exists a sequence (x,) in N(K) such that (x,\,)
is relatively compact.

Proof Since K is a maximal compact subgroup of (G, M is contained in KA. Since
considered measures are all K-biinvariant, we may assume that & is a Lie group. Let
S be the solvable radical of G°, the connected component of identity in G. Then S is
normal in G and G/S is a finite extension of a connected semisimple Lie group. Let
p: G — G/ R be the canonical quotient map. Since p(A,) is a factor of p(u.,,) for all
n > 1 and (p,) is relatively compact, by Proposition 3.1, there exists a sequence (z,,)
in G such that (z,A,) is relatively compact and x,gz,;'¢g™" € R for all ¢ € G. Since
(& is almost connected we may assume that z, € G° for all n > 1. Since A, is K-
biinvariant, we have that (z,wr, 'z, A, ) is relatively compact and hence by Theorem
1.2.21 of [He], (z,wr ") is relatively compact. By Lemma 3.4, (z,kx ") is relatively
compact. Let ¢: G — G/Z ~ Ad (G) be the natural map and S be the solvable radical
of Ad (G°). Then for g, = ¥(x,) for all n > 1, we have g,zg, 'z~' € Ad (5) for all
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n > 1 and (g,kg, ") is relatively compact. Since center of HY/S is finite, there exists
a relatively compact sequence (d,) and a sequence (y,,) in S such that g, = d,y,.
This implies that (y,ky 'k™") is relatively compact for all k € K. By Proposition
3.4, S is a compact extension of its nilradical. Thus, there exists a sequence u,, in the
nilradical, say N of S such that (z,u,!) is relatively compact and hence (u,ku; k™)
is realtively compact. By Lemma 3.1, there exists a bounded sequence (b,) and
sequence (z,) such that w, = b,a, and ka,k™' = a, for all n > 1. Thus, there exists
a bounded sequence (¢, ) and a sequence (h,) such that

9n = cnhn and khnk_lhgl =€

for all n > 1 and all & € Ad (K'). This implies that there exists a sequence (z,) in ¢
such that (z,A,) is relatively compact and z kx k€ Z for all n > 1 where 7 is the
center of (i. Since K is a maximal compact subgroup of &, we get that z, Ka ' C K
for all n > 1, since K is a Lie group, z,Kx;' = K for all n > 1. Thus, (z,\,) is
relatively compact and x, € N(K). 0

4 Khinchin’s first Theorem for connected Gelfand
pairs

In this section we prove the Khinchin’s factorization theorem for Gelfand pairs when
(G is a connected locally compact group. We now look at shift compactness in a
general Hausdorff commutative topological semigroup. Let S be any commutative
Hausdorff topological semigroup and X C 5. Then we say that

(1) X is weakly shift compact if for every sequence (z;) in X, there is a relatively
compact sequence (y;) in S such that x; is an associate of y;.

(2) X is strongly shift compact if there exists a compact set Y of S such that every
element of X is an associate of some element of Y.

We now use a version of an argument in Section 3.6 of [RS] to prove the following
lemma; it proves the converse of Statement 21.8 of Chapter 2 of [RS] in the case of
the semigroup of probability measures on Gelfand pairs.

Lemma 4.1 Let G be a locally compact o-compact group and S be a closed abelian
subsemigroup of probability measures on G satisfying (H-2). Suppose the group of
units in S is exactly equal to {gn | g € H} for some subgroup H of G where n is the
identity in S. Then weakly shift compact subsets of S are also strongly shift compact.

Proof Let X be a weakly shift compact subset of S. For any 1 € S and any compact
subset M of G, let

18



Clp; M) = sup,cyu(eM).

We first claim that for any given 0 < 6 < 1, there exists a compact subset M of
G such that C(p; M) > 6 for all ¢ € X. Suppose for some 0 < 6§ < 1 and for
each compact subset M of (7, there exists p € X such that C(y; M) < 6. Let
My, C My C ---M, C --- be a sequence of compact sets in G such that M, is
contained in the interior of M, 41 and G = UM,, (this is possible because (i is locally
compact o-compact). Then for each n there exists a y,, € X such that C'(p,; M,) < 9.
Since the sequence (u,,) is in X, there exists a relatively compact sequence (A,) in
S such that A, ~ p,. Since S is Hungarian, there exists a sequence (x,) in H such
that (@) is relatively compact and hence there is a compact subset M of GG such
that g, (z;* M) > 0 for all n. This implies that C'(u,; M) > 0 for all n. Since M is
compact there exists an M, such that M C M, and hence C(u,; M,) > 6. This is a
contradiction. Thus, our claim is proved.

Let M be a compact subset of ¢ such that C'(u; M) > 1/2 for all p € X. Let
B = {X e S| oA € ¢(X)and A(M) > 1/2}. We claim that B is relatively
compact and ¢(X) C ¢(B). Let § > 1/2. Then there exists a compact set L of GG
such that C(p; L) > 6 for all p € X. Let A € B. Then A(M) > 1/2 and A(ul) > 0
for some v € H. This implies that « € ML™" and hence A(ML™'L) > #. This shows
that B is relatively compact. Suppose p € X, then there exists v € H such that
up(M) > 1/2. This implies that upy € B. Thus, ¢(X) C ¢(B). Now let Y = B.
Then Y is compact and every element of X is an associate of some element of Y.
Thus, X is strongly shift compact. 0

The following result is an useful lemma to prove (H-3) and strong stability.

Lemma 4.2 Let GG be a locally compact second countable o-compact group and (G, K)
be a Gelfand pair satisfying condition (*). Let S be the semigroup of all K -biinvariant
probability measuures on G. Suppose C is a compact subset of S, such that Te s
weakly shift compact. Then ¢(T¢) is compact where ¢: S — S* is the natural map.

Proof Let ' be a compact subset of S such that T is weakly shift compact. Let
N(H) denote the normalizer of H for any subgroup H of (. By the hypothesis S is
a commutative subsemigroup of probability measures on (i satisfying (H-2) and the
group of units in S is N(K)wg. Thus, by Lemma 4.1, T¢ is strongly shift compact.
This implies that ¢(T¢) C ¢(X) for some compact subset X of S, in particular, ¢(T¢)
is relatively compact.

We now claim that ¢(T¢) is closed. Let (A,) be a sequence in T¢ and ¢(A,) —
s € 5*. Since Ty is weakly shift compact and by passing to a subsequence, we may
assume that there exists a sequence (u,) in N(K') such that u,A, — X € 5. Then

¢(An) = Punhn) = G(X) (7)
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and hence ¢(A) = s. Since u,, € N(K), for all n > 1, u, A, is also in T¢ for all n > 1,
that is there exists p,, € ' such that

Un Ay * Uy = fip (17)

for all n > 1 and (v,) is a sequence in S. By Theorem 1.2.5 of [He|, (1) is relatively
compact and hence since C' is compact, by passing to a subsequence, we may assume
that u, = € Cand v, — v € S. By (1) and (i2), we get that A = u. This proves

that A € T and hence s € ¢(T¢). Thus, ¢(T¢) is a closed set. This proves that for
any compact set C', such that 7T is weakly shift compact, ¢(7¢) is compact in S*.

We now prove the main result of this section.

Theorem 4.1 Let G be a connected locally compact group and (G, K) be a Gelfand
pair. Let S be the semigroup of all K-biinvariant probability measures on G. Sup-
pose the pair (G, K) satisfies condition (*). Then S is a strongly stable Hungarian
semigroup and hence Khinchin’s factorization theorem holds for the semigroup S.

Proof It is very routine to verify condition (H-1). By Lemma 2.2 (H-2) is satisfied
if and only if the condition (*) is satisfied. We now claim that for any compact set
C, ¢(Tc) is compact. Let N(H) be denote the normalizer of H in G, for any closed
subgroup H of the group (. Since (i is a connected group, there exists a compact
normal subgroup M of i such that G//M is a Lie group. Let (u,,) be a sequence in
S and (A,) be a sequence such that A, is a factor of p, in S and (p,) is relatively
compact. Let L be a maximal compact subgroup of ¢ containing K" and M. Then
the semigroup Sy of all L-biinvariant probability measures on ' is a commutative
subsemigroup of P(G). Since A, is a factor of p,, we have that A, % wy, is a factor
of p1, * wr. By Proposition 3.2, there exists a sequence (x,,) such that (z,A, * wr) is
relatively compact and x, € N(L) for all n > 1. By Theorem 1.2.15 of [He]|, (x,A,)
is relatively compact. Now for € N(L), we have  Ka=' C L. Since (G, K) satisfies
condition (*), we get that « € LN(K). Thus, there exist sequences (b,) and (u,) in
(G such that

Ty = bnun

where (b,,) is relatively compact and w, € N(K) for all n > 1. This implies that
(unAy,) is relatively compact and u, € N(K) for all n. By Proposition 2.3, we have
A, and a, A, are associates in S for all n. Thus, for any relatively compact set N of
S, the set of factor Ty of N is weakly shift compact. Thus, by Lemma 4.2, for any
compact subset C' of S, ¢(T¢) is compact.

We now verify condition (H-3). Let @ € S* and p € S be such that ¢(u) = x.
Suppose s € S* is a factor of . Then st = x for some ¢ € S. Let A and v in S
be such that ¢(A) = s and ¢(v) = t. Then Av = uy for some unit w in S. Thus, A
is a factor of p in S. This implies that T, = ¢(7},) and hence by Lemma 4.2, T, is
compact. Thus, (H-3) is verified. Hence S is a Hungarian semigroup. Since (i is a
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second countable group, S is metrizable and hence Khinchin’s factorization theorem
holds for S (see [RS]).

We now prove that S is strongly stable. Let C' be any compact set in S. Then
by Lemma 4.2, T¢ is strongly shift compact and ¢(7T¢) is a compact set. Let X be a
compact set in S such that

o(Te) C P(X). (4)
Let
Y =Xno ' (o(T0)).

Then Y is a compact subset of S and ¢(Y) C ¢(T¢). Let A € Te. Then by (1), there
exists a v € X such that

o(v) = (A)
and hence v € Y. This proves that ¢(Te) = ¢(Y). Thus, S is a strongly stable

Hungarian semigroup. 0

We now prove Khinchin’s Theorem for certain almost connected Gelfand pairs.

Theorem 4.2 Let GG be an almost connected second countable group and contains
a compact normal subgroup M such that G /M is a Lie group and Ad (G/M) is an
almost algebraic group. Suppose (G, K) is a Gelfand pair satisfying the condition
(*) and S is the semigroup of K-biinvariant probability measures on G. Then S
is a strongly stable Hungarian semigroup. Also, S is metrizable and the Khinchin’s
factorization theorem holds for S.

Proof The proof of (H-1) is trivial and since (G, K) satisfies condition (*), (H-2) is
verified. Now let C' be a compact set and T be the set of factors of C'. We now claim
that ¢(T¢) is compact. Let (i) be a relatively compact sequence and for each n > 1,
A 1s a factor of p,. Let L be a maximal compact subgroup of (¢ containing K and M.
Then (p, *wp) is relatively compact and A, *wy, is a factor of p, *wr. By Proposition
3.2, there exists a sequence (x,) in N(L) such that (x,A, *wy) is relatively compact
and hence by Theorem 1.2.15 of [He], (z, * A,,) is relatively compact. Since (G, K)
satisfies the condition (*), we have N(L) = LN(K). Thus, z,L = g,L for some
gn € N(K), for all n > 1. Thus, (g,A,) is relatively compact. This proves that T¢
is weakly shift compact. By Lemma 4.2, ¢(T¢) is compact. Now (H-3) and strong
stability may be proved by arguing as in Theorem 4.1. 0

As an application of strongly stable Hungarian semigroups we obtain the following

Corollary 4.1 Let (G, K) be a Gelfand pair and S be the semigroup of probability
measures on G that are K-biinvariant. Let T = P(P(---(S)---)). Suppose the pair
(G, K) satisfies the condition (*) and

(a) G and K are as in Theorem 4.1
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OR
(b) G and K are as in Theorem 4.2
OR

(c¢) G is a compact metric group.

Then we have the following:

1. T is a strongly stable division compact uniformly Hungarian metric semigroup
with Prohorov property and consequently Khinchin’s factorization theorem holds

forT';
2. the set of infinitely divisible elements in T' is a closed set;

3. the set of indecomposable elements in T and the set of anti-indecomposable
elements in T are of type Gis (that is, a countable intersection of open sets).

Proof By Theorem 4.1 and Theorem 4.2 we get that S is a strongly stable Hungarian
semigroup. The divsion compactness and the Prohorov property of S is a consequence
of Theorem 2.1 of Chapter 3 and Theorem 6.7 of Chapter 2 of [P].

We now prove that 5 is uniformly Hungarian. Let A and B be subsets of S and
vy and vy be in S such that for every A € A there exists a ¢ € B such that A = vy
and p = 1pA. For any A € 5, define

M) ={g € Glgh=Xr= g},
then by Theorem 1.2.4 of [He], M(A) is a compact group and
wM(A) * A== A% (.UM(/\),

also

vid=A=Axv & S(v) C M(A)

for any v € P(() (see Theorem 1.27 of [He]). Let M = NyeaM(A). Then M contains
K and M(v;) for ¢ = 1,2. Now by replacing v; by v; *wys for ¢ = 1,2, if necessary we
may assume that M(rv;) = M for i« = 1,2. Now for any A € A, there exists a p € B
such that A = vy and g = 1y X and hence A = vypp. Thus, we have

S(11)S(r2) C M(A)

for all A € A. This implies that S(14)S(r2) C M. Now arguing as in Lemma 2.1, we
get that
Uy = giwm
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for some ¢g; € N(M) and for all i = 1,2. Since M contains K and (G, K') satisfies the
condition (*), we have g; € N(K)M. This implies that

Vi = TiWpm

for some x; € N(K) and for all i = 1,2. Thus, since wys is an idempotent factor of
each element of A, for each element A € A, there exists a pr € B such that A = xyp
for z; € N(K) and hence = z7'A. This proves that S is a uniformly Hungarian
semigroup. Thus, we have proved that S has all the properties in (1).

Now by applying Theorem 2 of [Ze], we get that the semigroup 7" also has all these
properties and hence the second part of (1) follows from Section 2.23 of [RS]. This
proves (1) and the results (2) and (3) follow from (1) and Theorem 26.4 of [RS]. [

5 Khinchin’s Theorems for certain Gelfand pairs

We first prove the analogue of Theorem 4.1, for a class of groups which includes
discrete groups.

Proposition 5.1 Let G be a discrete group and (G, K) be a Gelfand pair. Let S be
the semigroup of all K-biinvariant probability measures on GG. Then the factor set of
a relatively compact set is weakly shift compact. In fact, for every seqeunce (\,) in
Te, there exists a sequence (x,) from Z(K) such that (x,),) is relatively compact.

Proof Let C be a relatively compact set in .S and (g, ) be a sequence in C. Let (A,)
be a sequence in S such that A, is a factor of u, for all n > 1. Then by Theorem
1.2.21 of [He], there exists a sequence (x,) such that (z,A,) is relatively compact.
This implies that (z,wxa;") is relatively compact. Since K is finite, we have that
(vnka, ') is relatively compact for all k € K. Let K = {ky, ks, - ky,}. Then for
i =1,2,---,m, (x,k;x,) is finite. This implies that there exists a subsequence (z,, ;)
such that (:zjmkzxgi) is a constant sequence for i=1. Now for ¢ + 1, let (x,41) be
a subsequence of (x,;) such that (2, ;y1ki412,,41) is a constant sequence. Thus, for
k = |K|, we have that (l’nkkzl';i) is a constant sequence for all k; € K. Thus, (x,),
in fact every subsequence of (x,) has a relatively compact subsequence in G/Z(K).
This shows that (x,) is relatively compact in /Z(K). Thus the set of factors of a
relatively compact set C' of S is weakly shift compact in S. 0

Corollary 5.1 Let GG be a locally compact second countable group admitting a com-
pact open normal subgroup U and (G, K') be a Gelfand pair. Let S be the semigroup
of all K-biinvariant probability measures on G. Suppose (G, K) satisfies condition

(*), then the set of factors of a relatively compact set C' of S is weakly shift compact
in S.
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Proof It is easy to see that G is o-compact. Let p:G — G/U be the canonical
quotient map. Since U is an open normal subgroup, G/U is discrete. Let M =
UK = KU. Then (G/U,M/U) is a Gelfand pair. Let (u,) be a relatively compact
sequence in S and (A,) be a sequence in S such that for each n > 1, A, is a factor
of pn, in S. Then (p(i,)) is relatively compact and p(A,) is a factor of p(u, ) for all
n > 1. By Proposition 5.1, there exists a sequence (g,) in GG such that (p(g,)A,)
is relatively compact and for every n > 1, p(g,) € Z(M/U) the centralizer of M in
G//U. In particular, for every n > 1, g, € N(M), the normalizer of M in (. Since
(G, K) satisfies the condition (*), we have N(M) = N(K)M. Thus, there exists a
sequence (x,) in N(K) such that (x,),) is relatively compact. This proves that T
is weakly shift compact when (' is relatively compact. O

The following proves the Khinchin’s Theorem for Gelfand pairs considered in the
above corollary.

Theorem 5.1 Let G be a locally compact second countable group admitting a compact
open normal subgroup and (G, K) is a Gelfand pair. Suppose Gelfand pair (G, K)
satisfies the condition (*). Let S be the semigroup of all K-biinvariant probability
measures on (G. Then we have the following:

1. the semigroup S is a division compact strongly stable uniformly Hungarian semi-
group.

2. 5 is first countable and hence Khinchin’s factorization theorem holds for S.

3. T =P(P(---(P(S))---)) satisfies (1), (2) and (3) of Corollary 4.1

Proof By Corollary 5.1 and by Lemma 4.2, ¢(T¢) is compact for any compact
subset C' of S. This proves that S satisfies (H-3). The verification (H-1) is trivial and
(H-2) follows because (G, K') satisfies the condition (*). Thus, S is a first countable
Hungarian semigroup and hence the Khinchin’s factorization theorem holds for S.
By arguing as in Theorem 4.1 and Corollary 4.1, the remaining parts of the theorem
can be proved. 0

Let GG be a locally compact group and K be a compact subgroup of G. Suppose
X = G/K has a G-invariant metric. Then we say that the action of G on X is
doubly transitive or G acts doubly transitively on X, if d(x,y) = d(2',y") implies that
there exists a g € ¢ such that gz = ga’ and gy = gy’ (it is also known as two-point
homogeneous). We now introduce a class of Gelfand pairs that generalizes doubly
transitive case. A pair (G, K') consisting of a locally compact group ¢ and a compact
subgroup K of G is called symmetric pair if g7' € KgK for all g € G. It is known
that if (¢ acts doubly transitively on GG/ K, then (G, K) is a symmetric pair (see [F]).
We now prove that such pairs are Gelfand and semigroup of K-biinvariant probability
measures on such pairs form a strongly stable Hungarian semigroup. We first prove
factor compactness for such Gelfand pairs.

24



Proposition 5.2 Let (G, K) be a symmetric pair. Then (G, K) is Gelfand. Let S
be the semigroup of all K-bitnvariant probability measures on G. Suppose GG is 2-root
compact (see [He]). Then for any compact subset C of S, the set of factors is a
compact set in S.

Proof Since all measures in S are symmetric and S is abelian, it is easy to see that
(G, K) is a Gelfand pair.

Let (un) be a relatively compact sequence in S and (A,) be a seqeunce in S
such that for each n > 1, A, is a factor of yx, in S. Then by Theorem 1.2.21 of
[He|, there exists a seqeunce (x,,) in @ such that (x,A,) is relatively compact. Since
A, is symmetric, we have (A, 2 ') is relatively compact and hence (A2?) is relatively
compact. Since (i is 2-root compact, (A,) is relatively compact (see [He]). Let C' be
a compact set in S and (A,) be a sequence in T¢ such that A, — A € S. Then there
exists a sequence (p,,) in C' and sequence (v,) in S such that p, = A\, = v, A, for
all n > 1. Since C is compact, by Theorem 1.2.21 of [He], (1) is relatively compact.
By passing to a subsequence, we may assume that u, — ¢ € C and v, € S. Then
since A, — A € 5, we have p = Av = vA. Thus, A € T. This proves that T¢ is
closed. Thus, the set of factors of a compact set is compact. 0

We now prove the Khinchin’s theorem for symmetric (Gelfand) pairs .

Theorem 5.2 Let (G, K) be a symmetric pair. Let S be the semigroup of all K-
bitnvariant probability measures on GG. Suppose G is 2-root compact and the pair

(G, K) satisfies the condition (*). Then the conclusions of Theorem 5.1 hold for S.

Proof Since (H-1) is verified easily and (H-2) follows from the fact that (G, K)
satisfies the condition (*). Since (i is 2-root compact, by Proposition 5.2, for each
compact set C' of S, the set of factors T. is also a compact set. Thus, (H-3) and
strong stability are easily verified. The rest may be proved as in Thoerem 5.1. 0

Remark M. Voit has proved Khinchin’s Theorems for measures for symmetric hyper
groups (which includes all symmetric pairs) satisfying a condition D (see Theorem
5.4.14 and Theorem 5.4.12 of [BH] and 5.4.2 of [BH] for definition of D). Here we
prove all three Khinchin’s Theoremd for all symmetric Gelfand pairs when (' is 2-root
compact and our approach is different and quite simple.

We would also like to mention [Hel] where H. Heyer proves the Khinchin’s Theo-
rems for certain Gelfand pairs.

6 Khinchin’s Theorems for p-adic Gelfand pairs

We now prove the analogue of Theorem 4.1 for Zariski-connected p-adic algebraic
groups.
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We first establish the following result that is useful in proving the factor compact-
ness for Gelfand pairs considered in this section.

Proposition 6.1 Let G be a Zariski-connected p-adic algebraic group. subgroup of
G Let (u,) be a relatively compact sequence of K-biinvariant probability measures
on G and (A,) be a sequence of K-biinvariant probability measures on G such that X,
is a factor of p, for all n > 1. Suppose (G, K) is a Gelfand pair. Then there exists
a sequence (x,) in Z(G) such that (x,\,) is relatively compact.

Proof Since (¢ is totally disconnected and K is a compact group, there exists a
compact open subgroup M of (¢ containg K. Since for a sequence (x,) in Z(G),
(xnwnr * Ay ) is relatively compact implies (x,A,,) is relatively compact and wyy * A, is
a factor of wys * u,, for all n > 1, we may assume that K is a compact open subgroup
of GG. Since A, is a two sided factor of p,,, there exists a sequence (x,) in G such that
(xnA,) and (A, x,,) are relatively compact.

We now claim that (x,) is relatively compact in G'/Z(G). Since (A,) is K-
biinvariant, we get that (z,wrx; 'z, A,) and (A, zwra; z,) are relatively compact.
By Theorem 1.2.21 of [He], (v wra,!) and (2, 'wkx,) are relatively compact. By
Lemma 3.4, for each k € K, the sequence, (z,kx;') and (z,'kx,) are relatively
compact. Thus, the group

H=1{he H| (v hx") is bounded }

is an open subgroup of . Since (G is a Zariski-connected algebraic group, it has a
finite-dimensional faithful rational representation. Let p: G — GL(V') be a rational
faithful representation of GG. Let W be the subalgebra generated by ' in End (V).
Now for n > 1, define 7,: W — W by 7,(w) = z,wa;' for all w € W. Then
7, € GL(W) and (7,(k)) is relatively compact for all & € K. Then by Lemma 3.5,
there exists a subalgebra of Wy of W containing H and (7, (w)) is relatively compact
in W for all w € Wy. Since G N Wy is an algebraic subgroup, we get that W, = W.
Thus, (7,,) is relatively compact in End (V). Similarly we may prove that (7,') is also
relatively compact in End (V). This proves that (7, ) is relatively compact in GL(W).
Since (G is an algebraic group, we get that (z,) is relatively compact in G/Z(G).

We now prove the Khinchin’s Theorem.

Theorem 6.1 Let G be a Zariski-connected p-adic algebraic group. Suppose (G, K)
is a Gelfand pair satisfiying condition (*). Let S be the semigroup of K -biinvariant
probability measures on G. Suppose the pair (G, K) satisfies condition (*). Then (1),
(2) and (3) of Theorem 5.1 hold for S.

Proof The verification of (H-1) is quite easy. The verification of (H-2) follows from
the assumption that (G, K') satisfies the condition (*). The rest of the proof is quite
similar to the proof of Theorem 4.1 and the proof of Corollary 4.1, so we omit the
details. 0
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We now consider compact extension of unipotent algebraic groups. We first, as
usual establish the factor compactness.

Proposition 6.2 Let G be a compact extension of a normal unipotent algebraic
group. Let K be a compact subgroup of GG. Let (p,) be a relatively compact se-
quence of K-biinvariant probability measures and (A,) be a sequence of K -biinvariant
probability measures such that for each n > 1, A, is a factor of p,,. Then there exists
a sequence (x,) in Z(K) such that (x,A,) is relatively compact.

Proof Since ), is a factor of y, for all n > 1 and (A,) is relatively compact, there
exists a sequence (g,) in G such that (g,A,) is relatively compact (see [P]). Let U
be a unipotent normal subgroup of G, such that G/U is compact. This implies that
Gn = UnC, and u, € U for all n > 1 and (¢,) is relatively compact. Since (g,A,) is
relatively compact, (u,A,) is relatively compact. Since A, is K-biinvariant,

-1
UpWKU, un)\n - un)\n

for all n > 1. Thus, (u.wru;') is relatively compact (see Theorem of [He]). Now
from Lemma 3.4, for each k € K | (u,ku;') is relatively compact. This implies that
for each k € K, (u,ku,'k™") is relatively compact. Now applying Lemma 3.2, there
exists a bounded sequence (b,,) in U such that

Up, = byx, and x, € Z(K)

for all n > 1. This proves the proposition. O

We now prove the Khinchin’s factorization theorem when ' is a compact extension
of a unipotent group.

Theorem 6.2 Let G be a compact extension of an unipotent algebraic group and
(G,K) be a Gelfand pair. Let S be the semigroup of all K-biinvariant probability
measures on (. Suppose (G, K) satisfies the condition (*). Then conclusions (1),
(2) and (3) of Theorem 5.1 hold for S.

Proof Using Proposition 6.2, one may prove the result by arguing as in Theorem
6.1. O

Remark In Theorem 6.2 if G is replaced by a compact extension of a connected
nilpotent (real) Lie group, the conclusions are still valid.
7 Limit theorems and embedding

Let AV be any set in a topological semigroup S. Then R(N) = {v* | v" € N,k <
n}. In proving limit theorems and embedding of probability measures we need the
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compactness of the root set R(N): see [S1] and [Te] for results on limit theorems for
probability measures on general locally compact groups. An element s of a Hungarian
semigroup S is said to be weakly infinitely divisible if for each n > 1, there exists an
s 1n S such that s is an associate of s and s is said to be infinitely divisible if for
each n > 1, there exists an s, in .5 such that s = s. An element s of a Hungarian
semigroup S is said to be embeddable in a continuous convolution semigroup in S if
there exists a continuous homomorphism ¢ +— s; from [0, 00) into S such that s; = s.

Lemma 7.1 Let GG be a locally compact second countable group and K be a compact
subgroup of G such that (G, K) is a Gelfand pair. Let S be the semigroup of K-
bitnvariant probability measures on G. Suppose N(K) is a strongly root compact
group where N(K') is the normalizer of K in G and R(N') is strongly shift compact.
Then R(N) is relatively compact in S

Proof Since R(N) is strongly shift compact, we get that for each v € R(N), there
exists a unit and hence by Proposition 2.3, an element x(r) € N(K) such that
{z(v)v | v € R(N)} is relatively compact. Let ¢ € (0,%). Let v € R(N) be such

’ 3
that v € M. Then for each 1 < k < n there exists a x € N(K) and a compact set
C(e) such that v*(Cx)) > 1 — . Replacing C' by KC K which is again a compact set
containing C, if necessary we may assume that 2C' = C'z, for all + € N(K). Now for

any 1 <k, Lk+1<n,
VI CapCay) > M Cap) (Cay) > (1 — €)?
and hence
VY (CapCar 0 Cagyy) > VY (CapCay) — MG\ Cappr) > (1— )2 — e > 1 — 3¢

Since 0 < € < 2,
C:z;kC:z:l N Cl’k_H 7£ @

This implies that
chkwl N Cl’k_H 7£ @

Thus, we may choose {xy, 9, -+, 2,} a set of n points in N(K) such that for any
1<kl k+1<n,
zrrayy, € CCC™N

Let D =CCC™ N N(K). Then since D C DDD™!,
wptizyy; € DDD™H £ ()

and hence since 2D = Dz for all + € N(K'), we have

DaypDxy N Dagyy # 0

forall 1 < k,[,k+1<n. Since N(K) is strongly root compact, there exists a compact
set B such that x; € B, for all 1 <7 <n. This implies that v(CB) > v(Cxy) > 1 —e.
By Prohorov’s Theorem we deduce that R(A) is relatively compact. 0

28



Remark Suppose (¢ is a Lie group. Then N(K) is a strongly root compact group
which may be seen as follows: Since (G, K) is a Gelfand pair, N(K)/K is a com-
mutative Lie group and hence by Theorem 3.12 and Remark 2 of [He], N(K) is a
strongly root compact group.

We now prove the functional limit theorem.

Theorem 7.1 Let (G, K) be a Gelfand pair and G is a locally compact o-compact
second countable group. Suppose the semigroup S of all K-buinvariant probability
measures on G is strongly stable and the normalizer N(K') of K in G is strongly root
compact. Let (v,) be a sequence in S such that v* — yu as k, — co. Then

(a) 1 has an associate A that is infinitely divisible in S and

(b) there exists a one-parameter continuous convolution semigroup (A) in S and a
compact connected subgroup C of N(K)/M such that \y = c¢A and ¢cM € C for
some compact subgroup M containing K .

Proof Let I(u) = {g € G | gu = pg = p}. Then by replacing v, by v,wi,), we
may assume that

VnWi(u) = Vn

forall n > 1. Let A = {v* | k < k,,n > 1}. Then since S is strongly stable, A is

weakly shift compact and hence by Lemma 7.1, A is relatively compact. Since v, € A

for all n > 1, by passing to a subsequence we may assume that (1,,) converges. Let

v be the limit point of (v,). Then 1# € A and hence (1) is relatively compact. We

now claim that v/ is a factor of y for all j > 1. For any j > 1, we have for large n,
ko _ kn=i i

J
v, =v, V.

By letting n — oo, over a subsequence of (n), we get that
= A

for all § > 1. Thus, ©/ is a factor of u for all j > 1. Then by 22.12 of [RS], vy is an
associate of p and hence by 22.13 of [RS], v is an associate of wy(,y. Let u be a unit
in S such that v = uwy(,). Then it is easy to see that n, = uly, — Wiy Since
v? € Afor all j, we get that (u’) is relatively compact, in particular (u*) is relatively
compact. Then again by passing to a subsequence (k,), if necessary, we may assume
that u* — «/, a unit in S. This implies that n» — «/~'u = A, say.

Let p = wy(,). Then pA = X It is clear that n, is I(p)-invariant. Now using
diagonal process and by passing to a subsequence we may assume that

L
m
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as n — oo for all m € N. Also since each n, is [(p)-invariant, A1 is also [(u)-
invariant.
We now claim that A7 = A for all m > 1. Now for m > 1,

[2]

=k

for some 0 < r, < m. Then by taking limit when n — oo over a subsequence of
(n), we get that Af p = A and hence A7 = A. This proves that an associate of yu is

infinitely divisible.”

We now claim that A1 = )\(m—fl) for all m > 1. For large n,
m! (m+1)!
[%] [mkn !](m-l—l) -
™ = " i,

for some 0 <r, <m + 1 and for all m > 1. It follows from 7, — p that
)\(m‘H)

1 1
N

A1 =
for all m > 1.

Now By Lemma 3.1.30 of [He] there exists a semigroup homomorphism f: Qt — S

such that
1 1

f() = s

for all m € N. Since f((0, 1]NQ7}) C A is relatively compact by Theorem 3.5.1 of
[He], there exists a compact connected group C' in S and a continuous convolution
semigroup (A;) such that A\; = ¢ for some ¢ € C. It is easy to see that, for r < 1,
F((0,7) N Q) is contained in the set of factors of A. Since C' = N, 1 f((0,7) N QT),
we get that (' is contained in the set of factors of A\. This implies that identity of C' is
an idempotent factor of A\. Thus, there exists a compact subgroup L of (¢ such that
(' is a compact connected subgroup of N(L)/L and A % wy, = A. Since [(p) = 1()),
we get that L C I(u). Since N(L) = N(K)L, we get that A\; = uA and u is contained
in a compact connected subgroup of N(K)/M where M = N(K) N I(u). .

As a consequence of the above theorem and the results in the previous sections,
we have the following functional limit theorem for Gelfand pairs.

Theorem 7.2 Let GG be a locally compact second countable group and (G, K) be a
Gelfand pair satisfying the condition (*). Suppose G is either (a) connected or (b)
almost connected and G has a compact normal subgroup M such that G/M is a Lie
group and Ad (G/M) is an almost algebraic group or (¢) G has a compact open
normal subgroup or (d) p-adic algebraic group or a compact extension of a unipotent
algebraic group (connected nilpotent Lie group). Let S be the semigroup of all K-
binvariant probability measures on G. Suppose N(K') is strongly root compact. Then
the conclusions of Theorem 7.1 hold for S.
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Remark [t should be remarked that by verifying conditions in Theorem 2.3 of [Te]
one may try to prove the functional limit Theorem but our proof is simpler (may be
because it is a particular case) and arguments are independent of proof of Theorem

2.3 of [Te].

Theorem 7.3 Let (G, K) be a symmetric pair. Suppose G is 2-root compact and
N(K) is strongly root compact and (G, K') satisfies condition (*). Let S be the semi-
group of all K-biinvariant probability measures on G and (v,) be a sequence in G
such that v)! — p € S. Then p is embeddable in a continuous convolulion semigroup

n S.

Proof We first claim that N(K') is compact. For any x € N(K), since (G, K)
is a symmetric pair, 27! € KaxK = xK which implies 2? € K. Since (G is 2-root
compact, N(K') is compact. By Theorem 7.1, 1 has an associate A that is infinitely
divisible and uA is embeddable in a continuous convolution semigroup in S for some
u contained in a compact connected subgroup N(K)/M where M = N(K) N I(u).
Since all K-biinvariant measures are symmetric, N(K')/M is a abelian group and all
its elements are of order 2. This implies that N(K')/M has no connected subgroups
and hence A is embeddable. It is clear from the proof of Theorem 7.1 that A = uu
and u is a limit of (u*). Choosing k, = 2n, we may prove that A\ = p. Thus, u itself
is embeddable in a continuous convolution semigroup. 0

Remark In [He2], it is proved that infinitely divisible measures are embeddable for
discrete Gelfand pairs.

8 Normability and inifinitesimal limits

In this section we study the second and third theorems of Khinchin. Let S be a
any Hausdorff topological semigroup and I be a directed set. An [-arrayis a system
((tij)?g)iel, t;; € 5. In particular, if [ is the set of positive integers, we say that (¢;;)
is a triangular system. An [-array (t,;) is infinitesimal if for every neighbourhood U
of identity in 5, there is an ig € I such that ¢;; € U for all i > ig and all 1 < 5 < n(s).
We say that s € S is an infinitesimal limit if there exists an infinitesimal [-array ()
such that s = lim(Hj t;;). Khinchin’s third theorem says that any infinitesimal limit
is infinitely divisible in .S = P(R). Khinchin’s third theorem was extended to general
abelian groups by Ruzsa and Szekely (see [RS]). We prove an analogue of this for
Gelfand pairs. We first establish the normability of the semigroup 5 of A'-biinvariant

probability measures on G for Gelfand pairs (G, K'). For any A € S define A by
ME) = ME™")
Where £~ = {27! | 2 € E} for all Borel subsets of (. It is easy to
Ak d=Ax
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for all A € 5, that is measures in S are all normal.
We denote by S* the semigroup of symmetrization of measuresin S. Let ®: 5 — 5°
be the map defined by
D(A) = Ax A
for all A € 5. Since S is a commutative semigroup, we get that ® is a homomorphism
of S into S?. For any A € S, by T\ we denote the set of all factors of A in S and

for any @ € 5%, by T} we denote the set of all factors of p in S*. We now prove the
following:

Lemma 8.1 For any A € S, ®(N) is a shift of an idempotent if and only if X is an
idempotent. For A € S, let = ®(X). If there is a continuous partial homomorphism
Iy from T into [0,00) such that f,(u) > 0, then there exists a continuous partial
homomorphism f\ from T\ into [0,00).

Proof Suppose A # A is a shift of an idempotent, say wy;. Then S(A)S(A)~! C uM
for some w € N(K). This implies that uM contains the identity of G and hence
w € M. Thus, A\ is an idempotent. Since A is normal, by Proposition of [E], we
get that A is a shift of an idempotent. The converse part and the second part of the
lemma are obvious. 0

We now prove the existence of a partial homomorphism for any commutative
hypergroup (see [BH] for details on hyper groups): the proof is quite similar to the
case of locally compact abelian groups (see [RS]).

Proposition 8.1 Let K be a commutative second countable hypergroup. Let A €
P(K) be a measure such that \xA is not an idempotent. Then there exists a continuous
partial homomorphism fi: T\ — [0,00) such that f\(A\) > 0.

Proof Since A * A is not an idempotent, by Theorem 2.2.4 of [BH], there exists a
continuous bounded multiplicative function y on K such that

0 <MY < 1.
Let fi: Ty — [0,00) be the map defined by
) = —log(lv(x)I*)

for all v € T\. Then by Theorem 2.2.4 of [BH], f\ is a continuous partial homomor-
phism with the required condition.

We now deduce the normability for Gelfand pairs.

Corollary 8.1 Let G be locally compact second countable group and (G, K) be a
Gelfand pair. Suppose the semigroup S of all K-buinvariant probability measures on
G is @ Hungarian semigroup. Then S is a normable Hungarian semigroup.
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Proof By Theorem 1.1.9 of [BH], the double coset space G//K is a hyper group.
By Theorem 1.5.20 of [BH], S is isomorphic to probability measures on G//K. Since
(G, K) is a Gelfand pair, //K is a commutative semigroup and hence the corollary
follows from Proposition 8.1. O

We now prove the Khinchin’s Theorems for certain Gelfand pairs.

Theorem 8.1 Let GG be a locally compact second countable group and (G, K) is a
Gelfand pair. Suppose G is as in Theorem 4.1 or Theorem 4.2 or Theorem 5.1
or Theorem 5.2 or Theorem 6.1 or Theorem 6.2. Suppose N(K) is strongly root
compact. Then the semigroup S of all K-biinvariant probability measures on G is
a stable normed Hungarian semigroup. Consequently, Khinchin’s first, second and
third Theorems hold for S. Moreover, if N(K') is compact or N(K')/K is divisible and
strongly root compact, then any anti-indecomposable element in S or any infinitesimal
limit in S has an associate that is embeddable in S.

Proof It is already proved that the semigroup S of all K-biinvariant probability
measures on (4 is a stable Hungarian semigroup. Now by Corollary 8.1, S is a stable
normable Hungarian semigroup. By Theorem 24.17 and Theorem 26.9 of [RS], anti-
indecomposable elements of S and inifinitesimal limits in S are weakly infinitely
divisible.

Let @ in S be either anti-indecomposable in .S or g is a limit of an infinitesimal
[-array. Then for each n > 1, there exists a p,, and a unit w,, such that g = w,pu. If
N(K) is compact, then

e —Xe s

for some subsequence (k,) of (n) and A is an associate of g. Now from Theorem 7.2,
we deduce that A has an associate that is embeddable. Thus, an associate of p is
embeddable.

Suppose N(K)/K is divisible and strongly root compact. Since u,, € N(K), there
exists a x,, € N(K) such that 2lwx = u,wg for all n > 1. This implies that

o= (wnrm)"

for all n > 1. By Theorem 7.2, an associate uu of u is embeddable for some unit u
contained in a compact subgroup of N(K). 0

Remark Let (G, K) be a Gelfand pair such that (a)G is connected or (b) G is a
almost connected group considered in the article or (c¢) G is discrete or (d) G is a
Zariski-connected p-adic algebraic group or (e) (i is a compact extension of an unipo-
tent algebraic group or a connected nilpotent Lie group (not necessarily satisfying
the condition (*)) and S be the semigroup of all K-biinvariant probability measures
on (. Suppose A € S is a bald element, that is a measure having no idempotent
factors. Then using the factor compactness results (modulo the group of units, which
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follows for connected or almost connected case from the fact that for an almost con-
nected Lie group G and a compact subgroup M containing K, N(M)/MN(K) is
finite (see [HHSWZ])) and applying the arguments of K. R. Parthasarathy (Chapter
IV, Theorem 11.3 of [P]) as in Theorem 5.4.14 of [BH], one may prove the Khinchin’s

factorization theorem for any bald A. Thus, it shows that

a) any measure in S is a product of a idempotent in S and a measure in S that has
Yy p p
a Khinchin type decomposition in S and

(b) any measure o € S has Khinchin’s decomposition in a subsemigroup of 5.

As a consequence of Theorem 8.1 we obtain Khinchin’s Theorems for compact
symmetric spaces.

Corollary 8.2 Let GG be a compact connected semisimple Lie group and K be a com-
pact connected subgroup of G such that G/K is a compact Riemannian symmet-
ric space. Then the semigroup S of K-buinvariant probability measures on G is a
normable strongly stable Hungarian semigroup and Khinchin first, second and third
Theorems hold for S. Moreover, any antiindecomposable or infinitesimal limit has an
associate that is embeddable.

Proof Let S be the semigroup of K-biinvariant probability measures on (. Since
G/K is a Riemannian symmetric space, S is a commutative semigroup. By lemma
2.3, S satisfies condition (*). Thus, since (¢ is second countable, the corollary follows
from Theorem 8.1 O

Remark We note that I. R. Truhina [Tr] and J. Lamperti [L] have earlier inversti-
gated and proved the Khinchin’s factorization theorem for probability measures on
irreducible compact symmetric spaces of Rank 1. In [L], this was achieved by covering
by delphic semigroups. Thus, our treatment is completely different and we consider
the general cases.

9 Gaussian measures on compact Gelfand pairs

(Gaussian measures on R have two well-known properties:

1. Gaussian measures on R have only Gaussian factors which is known as Cramer’s
theorem:;

2. Gaussian measures have no indecomposable factors.

Since Gaussian measures on R are infinitely divisible, second property follows from
the first property (see [Fe]).
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On the other hand Marcinkiewicz [Ma] showed that these properties are not ver-
ified by Gaussian measures on the circle. Trukhina [Tr] proved that SO(n)- in-
variant Gaussian measures on the spheres S™ ~ SO(n + 1)/50(n) are not anti-
indecomposable. In this section we extend these results to compact Gelfand pairs.
As in the previous sections for any compact subgroup L, we denote the normalized
Haar measure on L by wy,.

Theorem 9.1 Let (G be a compact connected Lie group and K be a compact subgroup
of G. Suppose (G, K) is a Gelfand pair. Let 1 be a K-biinvariant probability measure
on GG such that the inequality

w(E) > awg(E), 0<a<l1 (1)
holds for all Borel subsets F of G. Then p has an indecomposable factor.

In [Fe], G. M. Feldman proved a similar theorem for measures on compact abelian
groups. We apply some of the techniques of Theorem 4.17 of [Fe]. We first prove the
following lemma.

Lemma 9.1 Let G, K and mg be as in Theorem 9.1. Suppose p s a K-bitnvariant
probability measure on G verifying the inequality (i). Then p decomposes in the
following way

[ — awg

T * [(1 — a)wk + awg] (17)

ILL =
where 0 < a < 1 is as in the inequality (i).

Proof We now verify the result using the obvious properties:

LFWE = [, Wg*wg =wg, and [ * wg = wg.

a

e (I —a)wk +awe] = (p — awg)wr + 1—a(/“‘2_ awg )wa
p— awe + 7w — 7wa
a —aj—a (12
- wg%

L

|

We now define A'-biinvariant compound Poisson measures on Gelfand pairs. Let
(G be a locally compact group and K be a compact subgroup of . Let v be a K-
biinvariant signed bounded measure on a locally compact group . We define the
compound Poisson measure e(v) by

e(y) =D L
.
n=0

where, by definition, v° = wg. It is easy to see that if 4 is a positive measure, e(7)
is a A-biinvariant probability measure on G. We now prove Theorem 9.1
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Proof (of Theorem 9.1) Observe that if k& > 0, then
e(kweg) = ek + (1 — e_k)wg. (1i1)

Choosing k > 0 such that @ = 1—¢~*, we see by Lemma 9.1 that e(kws) is a factor
of p1. Tt is will be sufficient to show that e(kwg) € Iy, the set of all anti-indecomposable
measures. By hypothesis, there exist two points z,y € G but z,y € K such that
y € KaK. Set z = ya=' € (G, so that y = zz. By Urysohn’s Theorem, there exist
two open sets U; and U; such that

U, = KUK
forall 2 =1,2 and
U1 N U2 — @,
T e U17 Y € U27
e,z & U,.
Define Us = K(zU;)NUy and V = G\ Us. Then Us and V are K-biinvariant open
sets such that U; € V and z € V. It follows that
Us C KzU CVV
and hence
VV =G

Let ~ be the restriction of wg to the open set V. Then since wg 1s K-biinvariant
and V' is K-biinvariant, it is easy to see that the measure v is K-biinvariant. Also, it
can be seen that since wg — 7 is a positive measure, e(kv) is a factor of e(kwg). We
now claim that + % v has a strictly positive density yy * yy. It is well-known that
since V' is an open set, yy * yy 1s a continuous function. Let # € VV. Then there
exist vy,vy € V such that 2 = v;vy. Since V is a open set and the map g — xg™' is

continuous, there exists a neighbourhood W of vy in G such that
dWTt V.

This implies that
zw eV
for all w € W. Thus,
= Jy xvlzg™)dwa(g)
Z wg(v N W)
since v € VAW, VN W is a non-empty open set in (¢ and hence

Xv * XV(SL‘)

xv * yv(z) >0
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for all x € VV. Since G = V'V, vy * yy is strictly positive. It is easy to see that
xv * xv 1s the density of v % ~. Since yy * yy is continuous and & is compact, there
exists a constant ¢ > 0, such that

xv * yv(z) >e¢
for all x € GG. It follows that for any Borel subset £ of G,
Y(E) 2 cwa(E)
and hence for some constant 0 < b < 1,
(k) (E) = bwa(E)
for all Borel subsets E of (G. Using again Lemma 9.1, and (iii) we get that
e(ky) = p1* e(khwa) (ev)

for a measure p1; € Pr(G). We may suppose that 0 < k; < k. Note that the constants
a,b, k, ki can be made arbitrarily small. Since e(kv) is a factor of e(kw¢), in order to
prove that e(kwg) has an indecomposable factor, it is sufficient to show that e(k~v)
has an indecomposable factor.

In the last part of the proof we will show that for 0 < & < k; small enough, the
measure f; € lp. Suppose on the contrary that for any 0 < ky < k, 11 € [. By
Theorem 6.2, the measure p is infinitely divisible and a power of it is embeddable.
Now it is easy to see that any power of y; also satisfies the equation (iv). Thus, by
replacing iy by a suitable power of py, we may assume that p; is embeddable in a
wr-continuous convolution semigroup (i+)iso, where L is a compact subgroup of ¢
containing K. So (G, L) is also a compact Gelfand pair. Compact Gelfand pairs are
strong hypergroups (see 4.3.23 of [BH]) and by 5.2.15 and 5.2.29 of [BH], we have the

following Lévy Khinchine formula for the semigroup (f:):>o0:

i(x) = exp{—t(a+ q(x) + / (1 = Re(x(x))dn(x))}

where ¢ € R, and ¢ is a non-negative K-biinvariant quadratic form on G, n is the
Lévy measure (a positive K-biinvariant measure on (¢) and x varies over all of the

dual of (G, L).
On the other hand (iv) implies that

w1 = e(ky — kwe).

In a similar way as Feldman (see 4.13 of [Fe]) one shows that ¢« = 0 and ¢ = 0 and
that if & and ky are sufficiently small, then the Lévy measure 5 is finite and n(G) is
arbitrarily small. This yield that y; = e(n) and it follows from (iv) that

ky — kywg =1
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which is impossible because
n=0

and

(kv — kiwe)(Us) < 0.

Thus, puy & Iy, that is py is not anti-indecomposable and hence p is not anti-
indecomposable. 0

Remark In the proof of Theorem 9.1, we use the hypothesis that G is a connected
Lie group to get the following: (a) the double coset space K'\(G/K has more than two
points and (b) a finite power of a unit in Pr(() is embeddable in Px(G). The first
statement (a) is always true for a connected group as the double coset space K\G/K
is a connected space and the second statement (b) is true if (G, K') is a symmetric
pair. Thus, Theorem 9.1 may also be proved for more general compact Gelfand pairs

which satisfy (a) and (b).

Corollary 9.1 Let (G, K) be as in Theorem 9.1 and p be a K-biinvariant probabil-
ity measure on GG. Suppose p is an absolutely continuous measure with everywhere
positive continuous density. Then p is not anti-indecomposable.

Proof Suppose p has a everywhere positive density, say f, then it is easy to see
that for some a > 0,

[(@)>a
for all x € G. This implies that

W) > awa(F)
for all Borel subsets I of G. Now the corrollary is immediate from Theorem 9.1.

Corollary 9.2 Let (G, K) be a Gelfand pair with G a compact connected Lie group
and K a compact subgroup of G. Let (v¢)i>o be the heat semigroup generated by the
Laplace-Beltrami operator A for the Riemannian homogeneous manifold G/ K. Then
ve & Iy for all t > 0. In particular the measures (v:)iso have non-Gaussian factors,
that is, Cramer theorem does not hold for (vi)i>o.

Proof We use the fact that the measures (v;); > 0 are K-invariant and that they
have everywhere positive smooth densities (see Theorem 5.2.1 of [Dal]). 0

The following is easily deduced from Corollary 9.2.

Corollary 9.3 Let G/K be a Riemannian symmetric space of compact type. Then
the Gaussian measures on G/K (defined as belonging to the heat semigroup) have
indecomposable factors and do not satisfy the Cramer Theorem.
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10 Central limit theorems of Lindeberg-Feller type

Central limit theorems for a triangular arrays of measures converging to a Gaussian
measure are known on Euclidean spaces, locally compact abelian groups and sym-
metric spaces. Gaussian meaures on a Gelfand pair were introduced by Heyer (see
[Hel]) by using the generalized Laplacians, introduced by Duflo [Du].

In order to discuss the central limit problem on Gelfand pairs, we must introduce
a notion of dispersion D of a mesure 1 € Px (), having the properties:

D:Pr(G) — [0, 0]
D(py # pa) = Dpy + Dy (2)

and

Dp = /Qdu

for a continuous K -biinvariant function ).

A natural candidate for the function @ is a positive-quadratic form on (G, K)
defined acccording to Faraut-Harzallah [FH] as a real continuous symmetric K-
biinvariant function verifying

[ Qe+ [ Qaty™)ik =200 + Q) (i)
3¢ 3¢
for all x,y € G.

The property (ii) is equivalent to (i) when at least one of the measures 1, w2
is symmetric. It is then natural to seek for a Gaussian central limit theorem for a
triangular array of symmetric measures.

In [G1] such a theorem was proved on non-compact Riemannian symmetric spaces
with dispersion defined using functions () verifying the condition

| Qaky)dk = Q(x) + Qly)

for all x,y € G.
It is easy to see that

Q' =0Q+0C

defines a quadratic form and that a similar central limit theorem with dispersion
D*(p) = / Q*dp
holds for symmetric K-invariant measures on non-compact symmetric spaces G/ K.

Moreover, we can show that the sufficient technical condition in [G1] is also nec-
essary.
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