Codes from Veronese and Segre Embeddings and Hamada's Formula

S. P. Inamdar and N. S. Narasimha Sastry

Stat-Math Unit, Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore 560059, India E-mail: inamdar@isibang.ac.in, nsastry@isibang.ac.in

Communicated by the Managing Editors

Received February 10, 2000; published online August 21, 2001

In this article we study the codes given by l hypersurfaces in \mathbb{P}_q^n to obtain a new formula for the dimension of codes given by (n-l) flats. We also obtain a new formula for the dimension of the vth order generalized Reed-Muller code and describe the code given by the hyperplane intersections of the Segre embedding of $\mathbb{P}_q^n \times \mathbb{P}_q^m$. © 2001 Academic Press

1. INTRODUCTION

This article grew out of our attempt to understand the methods of [6] in the context of Veronese and Segre embeddings of projective spaces over finite fields.

Let $q=p^e$, p a prime, and P denote the n dimensional projective space over the finite field \mathbb{F}_q . The zero set in P of a homogeneous polynomial of degree l over \mathbb{F}_q is called a l hypersurface in P. Let k be a field of characteristic p. Let $C_k^n(l,q)$ denote the subspace of k^P spanned by the characteristic functions of l hypersurfaces in P. Our main results give a basis for $C_{\mathbb{F}_q}^n(l,q)$ consisting of monomial functions (Theorem 2.5), its cardinality (Theorem 2.13) and therefore the dimension of $C_k^n(l,q)$.

Let $\tilde{C}_k^n(l,q)$ denote the subspace of k^P spanned by the characteristic functions of l flats in P. Clearly, $C_k^n(l,q) = \tilde{C}_k^n(n-l,q)$ for l=0,1. We prove this equality for all $l \le n$ (Theorem 3.3). Therefore, Theorem 2.13 provides an alternative to the well-known Hamada's formula [4, Theorem 1]. This identification also follows from recent results of M. Bardoe and P. Sin and we thank P. Sin for pointing this and sending us a copy of [2]. Apart from a conceptually different approach, our formula is also simpler. See Remarks 3.5 and 3.6. In Appendix, we use our formula to write certain explicit formulae. See [1, Corollary 5.7.5, pp. 186] for the words of minimum weights of these codes and [2] for their PSL(n+1,q) module structure.

[3] discusses words of minimum weight of their duals and a reformulation of Hamada's formula.

In Section 4, we give a new formula for the dimension of the ν th order generalized Reed–Muller code (Theorem 4.1). In Section 5, we describe the code over k generated by the characteristic functions of intersections of the Segre embedding of $\mathbb{P}_q^n \times \mathbb{P}_q^m$ in $\mathbb{P}_q^{(n+1)(m+1)-1}$ with hyperplanes (Theorem 5.1).

2. THE *l* HYPERSURFACE CODE

Let $R = \mathbb{F}_q[X_0, ..., X_n]$. For any graded ring S, we denote by S_t its t^{th} graded piece. The zero set of an element in R_1 in P is also the zero set of its l^{th} power. Therefore $C_k^n(l,q)$ contains the code generated by the hyperplanes of P and thus the all one vector 1. Hence $C_k^n(l,q) = k \mathbf{1} \oplus D_k^n(l,q)$ where $D_k^n(l,q)$ is the k span of the characteristic functions of complements of l hypersurfaces in P. If $f \in R_l$, then f^{q-1} defines the characteristic function of the complement of the l hypersurface defined by f.

Let $T = \mathbb{F}_q[Z_m | m \in R_l$, m a monomial]. We denote by φ_l the l^{th} Veronese homomorphism from T to R defined by $\varphi_l(Z_m) = m$ and $\varphi_l(\lambda) = \lambda$ for $\lambda \in \mathbb{F}_q$ (See [5, pp. 23]). Linear forms in T correspond to l forms in R under φ_l . Thus the characteristic function of the complement of a l hypersurface in P is given by $\varphi_l(h^{q-1})$ for some $h \in T_1$. Thus $D_k^n(l,q)$ is spanned by functions on P defined by elements of the form $\varphi_l(h^{q-1})$, $h \in T_1$. Further, the \mathbb{F}_q span T_{q-1}^{\dagger} of $\{h^{q-1}: h \in T_1\}$ has a basis consisting of monomials $Z_{m_0}^{a_0} \cdots Z_{m_r}^{a_r}$ of degree (q-1) such that the multinomial coefficient $\binom{q-1}{a_0, a_1, \dots, a_r}$ is not divisible by p. Thus,

PROPOSITION 2.1. $D_{\mathbb{F}_q}^n(l,q)$ consists of functions on P defined by elements of $\varphi_l(T_{q-1}^{\dagger})$. Therefore, $D_{\mathbb{F}_q}^n(l,q)$ has a monomial basis.

A monomial in $R_{l(p-1)}$ can be written as a product of (p-1) monomials in R_l . Therefore we have

Lemma 2.2. The map φ_l induces a surjection from the vector space T_{p-1} onto $R_{l(p-1)}$.

For an integer a_i , let $a_i = \sum a_{i,j} p^j$ denote its *p*-adic expression.

DEFINITION 2.3. We denote by $S_{n,e}^{l,r}$ the set of monomials $X^a = X_0^{a_0} \cdots X_n^{a_n}$ of degree (l-r)(q-1) such that there exist integers $1 \le r_1, ..., r_{e-1} \le l$ such that (i) $\sum_{i=0}^n \sum_{j \ge e-1} a_{i,j} p^{j-e+1} = p(l-r) - r_{e-1}$ and (ii) $\sum_{i=0}^n a_{i,j} = pr_{j+1} - r_j$ for all $0 \le j \le e-2$ with $r_0 = l-r$. In this case, we say that $(r_0, r_1, ..., r_{e-1})$ is the associated tuple of X^a .

Lemma 2.4. $X^a \in S_{n,e}^{l,0}$ if and only if there exist monomials $X^b \in R_{l(p-1)}$ and $X^c \in S_{n,e-1}^{l,0}$ such that $X^a = (X^b)^{p^{e-1}} X^c$.

Proof. Let $X^a = X_0^{a_0} \cdots X_n^{a_n} \in S_{n,e}^{l,0}$ with associated tuple $(l, r_1, ..., r_{e-1})$. Choose integers b_i such that $lp - l = \sum_{i=0}^n b_i$ with $0 \le b_i \le \sum_{j \ge e-1} a_{i,j} p^{j-e+1}$. Let $X^c = X^a / (\prod (X_i^{b_i})^{p^{e-1}}) = X_0^{c_0} \cdots X_n^{c_n}$.

Then, $\sum_{i=0}^{n} \sum_{j \ge e-1} c_{i,j} p^{j-e+1} = l - r_{e-1}$ and $\sum_{i=0}^{n} \sum_{j \ge e-2} c_{i,j} p^{j-e+2} = lp - r_{e-2}$. Since $c_{i,j} = a_{i,j}$ for $0 \le j \le e-2$, we have $\sum_{i=0}^{n} c_{i,j} = r_{j+1} p - r_{j}$ for every $0 \le j \le e-3$. Hence $X^{e} \in S_{n,e-1}^{n}$ with associated tuple $(l, r_{1}, ..., r_{e-2})$.

every $0 \le j \le e - 3$. Hence $X^c \in S_{n,e-1}^{l,0}$ with associated tuple $(l, r_1, ..., r_{e-2})$. Conversely, let $X^b = X_0^{b_0} \cdots X_n^{b_n} \in R_{l(p-1)}$, $X^c = X_0^{c_0} \cdots X_n^{c_n} \in S_{n,e-1}^{l,0}$ with associated tuple $(r_0, ..., r_{e-2})$ and $X^a = X^c(X^b)^{p^{(e-1)}} = X_0^{a_0} \cdots X_n^{a_n}$. Since $\sum_{i=0}^n \sum_{j \ge e-2} c_{i,j} p^{j-e+2} = lp - r_{e-2}$, $\sum_{i=0}^n \sum_{j \ge e-1} c_{i,j} p^{j-e+2} = rp$ and $\sum_{i=0}^n c_{i,e-2} = (l-r) \ p - r_{e-2}$ for some $0 \le r \le l-1$. Also, $\sum_{i=0}^n \sum_{j \ge e-1} a_{i,j} p^{j-e+1} = \sum_{i=0}^n \sum_{j \ge e-1} c_{i,j} p^{j-e+1} + \sum_{i=0}^n b_i = lp - (l-r)$. Moreover, $a_{i,j} = c_{i,j}$ for $j \le e-2$. Hence $\sum_{i=0}^n a_{i,j} = r_{j+1} p - r_j$ for $0 \le j \le e-3$ and $\sum_{i=0}^n a_{i,e-2} = (l-r) \ p - r_{e-2}$. Thus $X^a \in S_{n,e}^{l,0}$ with associated tuple $(r_0, ..., r_{e-2}, l-r)$.

THEOREM 2.5. $C^n_{\mathbb{F}_q}(l,q)$ is the \mathbb{F}_q span of 1 and the functions on P defined by elements of $S^{l,0}_{n,e}$.

Proof. Let $M \in T_{q-1}^{\dagger}$ be a monomial. Then there exist monomials $M_0, ..., M_{e-1}$ in T_{p-1} such that $M = \prod_{j=0}^{e-1} (M_j)^{p^j}$ (See [6, p. 357].) Therefore, $\varphi_I(M) = \prod_{j=0}^{e-1} (\varphi_I(M_j))^{p^j}$. Now Lemmas 2.2 and 2.4 imply

$$S_{n,e}^{l,0} = \{ \varphi_l(M) \mid M \in T_{q-1}^{\dagger}, M \text{ a monomial} \}.$$

Proposition 2.1 now proves the theorem.

We now determine distinct functions on P given by elements of $S_{n,e}^{l,0}$. Let I be the ideal in R generated by $X_i^q - X_i$ for $0 \le i \le n$ and $\prod_{i=0}^n (1 - X_i^{q-1})$. Then R/I is the ring of functions on P.

Lemma 2.6 [6, Lemma 4]. Let $f \in \mathbb{F}_q[Y_0, ..., Y_N]$ be a polynomial having degree at most q-1 in each of the variables. If f vanishes on \mathbb{F}_q^{N+1} then f is the zero polynomial.

DEFINITION 2.7. Let $S_{n,e}^{l,r}(q-1)$ denote the subset of $S_{n,e}^{l,r}$ consisting of elements all of whose exponents are at most q-1.

PROPOSITION 2.8. For $1 \le l \le n$, $S_{n,e}^{l,r}$ and $S_{n,e}^{l,r+1} \cup S_{n,e}^{l,r}(q-1)$ define the same set of functions on P.

Proof. Since $S_{n,e}^{l,l-1} = S_{n,e}^{l,l-1}(q-1)$, we assume that $r \le l-2$. Let $X^a = X_0^{a_0} \cdots X_n^{a_n}$ be an element of $S_{n,e}^{l,r} \setminus S_{n,e}^{l,r}(q-1)$ with associated tuple $(r_0, ..., r_{e-1})$.

Without loss of generality, we may assume that $a_0 \ge q$. Then the monomials $X^b = X^a/X_0^{q-1}$ and X^a define the same function on P. We prove that $X^b \in S_{n,e}^{l,r+1}$.

Case 1. $a_{0,j} = p-1$ for $0 \le j \le e-1$. In this case, $r_1 \ge 2$ as $\sum_{i=0}^n a_{i,0} = pr_1 - (l-r) \ge p-1$ and $(l-r) \ge 2$. Similarly, $r_j \ge 2$ for all $1 \le j \le e-1$. Thus $X^b \in S_{n,e}^{l,r+1}$ with associated tuple $(r_0-1,...,r_{e-1}-1)$.

Case 2. $a_{0,j} < p-1$ for some $j \le e-1$. Let $0 \le t \le e-1$ be the smallest integer such that $a_{0,t} < p-1$. As before, $r_j \ge 2$ for all $j \le t$ and $b_{0,j} = 0$ for all $j \le t-1$, $b_{0,t} = a_{0,t} + 1$, $b_{0,j} = a_{0,j}$ for all $t < j \le e-1$. Also, $\sum_{j \ge e} b_{0,j} p^{j-e+1} = (\sum_{j \ge e} a_{0,j} p^{j-e+1}) - p$. Thus $X^b \in S_{n,e}^{l,r+1}$ with associated tuple $(r_0 - 1, ..., r_t - 1, r_{t+1}, ..., r_{e-1})$.

We now produce for every X^b in $S_{n,e}^{l,r+1}$ an element of $S_{n,e}^{l,r}$ which defines the same function as X^b on P. Let $(s_0, ..., s_{e-1})$ be the associated tuple of X^b and t be the smallest integer such that $p^t \not\mid b_i$ for some i. We assume without loss of generality that b_0 is not divisible by p^t . We prove that $X^b X_0^{q-1} \in S_{n,e}^{l,r}$. Let $X^a = X^b X_0^{q-1}$. For $1 \le j \le \min\{t, e-1\}$, we have $s_i < (l-1)$ since $ps_{i+1} - s_i = 0$ and $s_0 \le l$.

Case 1. $t \ge e-1$. In this case $\sum_{i=0}^{n} a_{i,j} = a_{0,j} = p-1$ for all j < e-1. Thus $X^a \in S_{n,e}^{l,r}$ with associated tuple $(s_0 + 1, ..., s_{e-1} + 1)$.

Case 2. $t \le e-2$. We have $a_{0, j} = p-1$ for all $j \le t-1$, $a_{0, t} = b_{0, t}-1$ and $a_{0, j} = b_{0, j}$ for t < j < e. Thus $X^a \in S_{n, e}^{l, r}$ with associated tuple $(s_0 + 1, ..., s_t + 1, s_{t+1}, ..., s_{e-1})$.

Lemma 2.6 and Proposition 2.8 imply

Corollary 2.9. $\bigcup_{r=0}^{l-1} S_{n,e}^{l,r}(q-1)$ is a basis for $D_{\mathbb{F}_q}^n(l,q)$.

DEFINITION 2.10. Let α and j be positive integers and let $N_{i\alpha-j,n}$ denote the number of monomials of degree $i\alpha-j$ in (n+1) variables with all exponents less than α .

PROPOSITION 2.11. For positive integers α and j,

$$N_{i\alpha-j,\,n} = \sum_{r\,=\,0}^{i\,-\,1}\,(\,-\,1\,)^r \binom{n+1}{r} \binom{n+i\alpha-j-r\alpha}{n}\,.$$

Proof. If $a_i = k_i \alpha + r_i$ with $k_i \geqslant 0$, $0 \leqslant r_i \leqslant \alpha - 1$, then $X_0^{a_0} \cdots X_n^{a_n} = (X_0^{k_0} \cdots X_n^{k_n})^{\alpha} X_0^{r_0} \cdots X_n^{r_n}$. Thus, a degree $(s\alpha - j)$ monomial is uniquely a product of the α^{th} power of a monomial of degree (s-r) and a monomial of degree $(r\alpha - j)$ whose exponents are less than α . Further $\binom{n+r}{r}$ is the

number of monomials of degree r in (n+1) variables. Hence for $1 \le s \le i$, we have

$$\binom{n+s\alpha-j}{n} = \sum_{r=1}^{s} \binom{n+s-r}{n} N_{r\alpha-j,n}.$$

Solution to this set of equations in variables $N_{r\alpha-j,n}$ is unique due to the invertibility of the matrix A whose (s, r)th entry is $\binom{n+s-r}{n}$ for $s \ge r$ and 0 otherwise. Thus to check the formula, we need to prove that

$$\sum_{r=0}^{i-1} (-1)^r \binom{n+1}{r} \binom{n+i\alpha-j-r\alpha}{n}$$

$$= \binom{n+i\alpha-j}{n} - \sum_{r=1}^{i-1} \binom{n+i-r}{n} \sum_{t=0}^{r-1} (-1)^t \binom{n+1}{t} \binom{n+r\alpha-j-t\alpha}{n}.$$

We compare the coefficients of $\binom{n-j+m\alpha}{n}$ for every $1 \le m \le i$. For m=i, the coefficient on both sides is 1. For $1 \le m \le i-1$, the coefficient of $\binom{n-j+m\alpha}{n}$ on the left side is $(-1)^{i-m}\binom{n+1}{i-m}$. The coefficient on the right side of the equation is $-\sum_{t=0}^{i-1-m}(-1)^t\binom{n+1}{t}\binom{n+i-t-m}{n}$. So we need to prove that $\sum_{t=0}^{i-m}(-1)^t\binom{n+1}{t}\binom{n+i-t-m}{n} = \frac{1}{n!}\sum_{t=0}^{i-m}(-1)^t\binom{n+1}{t}\prod_{r=1}^n(r+i-t-m) = 0$. That is, u=i-m is a root of

$$\sum_{t=0}^{u} (-1)^{t} {n+1 \choose t} \prod_{r=1}^{n} (X+r-t).$$

We can assume that $u \le n+1$, since $\binom{n+1}{t} = 0$ for all t > n+1. Also, for $u+1 \le t \le n+1$, u+r=t for $1 \le r \le n$. Thus, u is a root of $\sum_{t=u+1}^{n+1} (-1)^t \binom{n+1}{t} \prod_{r=1}^n (X+r-t)$. Therefore, it is enough to show that u is a root of

$$P_n(X) = \sum_{t=0}^{n+1} (-1)^t \binom{n+1}{t} \prod_{r=1}^n (X+r-t).$$

However, $P_n(X)$ is the zero polynomial since the coefficient of X^{n-h} in $P_n(X)$ is a linear combination of sums $\sum_{t=0}^{n+1} t^g (-1)^t \binom{n+1}{t}$ for $0 \le g \le h$ and each of these sums is zero (by induction on g).

COROLLARY 2.12. The cardinality of $S_{n,e}^{l,r}(q-1)$ is

$$\sum_{\substack{1 \leq r_1, \dots, r_{e-1} \leq l \\ r_0 = r_n = l - r}} \prod_{j=0}^{e-1} \sum_{t=0}^{r_{j+1}-1} (-1)^t \binom{n+1}{t} \binom{n+pr_{j+1} - r_j - tp}{n}.$$

Proof. For X^a in $S_{n,e}^{l,r}(q-1)$ with associated tuple $(r_0, ..., r_{e-1})$, we have $\sum_{i=0}^n a_{i,j} = pr_{j+1} - r_j$ for $0 \le j \le e-1$ with $1 \le r_1, ..., r_{e-1} \le l$ and $r_0 = r_e = l - r$. The corollary now follows from the uniqueness of the *p*-adic expression of a_i and Proposition 2.11 with $\alpha = p$.

Corollaries 2.9 and 2.12 imply:

THEOREM 2.13. The dimension of $C_k^n(l,q)$ is

$$1 + \sum_{i=1}^{l} \sum_{\substack{1 \leq r_1, \dots, r_{e-1} \leq l \\ r_0 = r_e = i}} \prod_{j=0}^{e-1} \sum_{t=0}^{r_{j+1}-1} (-1)^t \binom{n+1}{t} \binom{n+pr_{j+1}-r_j-pt}{n}.$$

Remark 2.14. If l=1, the dimension is $1+({p-1+n\choose n})^e$. Since $C_k^n(1,q)$ is the hyperplane code, above formula thus agrees with the known formula.

3. THE IDENTIFICATION

In this section, we identify the code given by l hypersurfaces with the one given by (n-l) flats in P. This identification generalizes Remark 2.14 and provides an alternative to Hamada's formula.

For an integer $a=\sum_{i=0}^{e-1}a_ip^i$, with $0\leqslant a_i\leqslant p-1$ we define [a]=a, $[pa]=pa-a_{e-1}(q-1)=a_{e-1}+a_0p+\cdots+a_{e-2}p^{e-1}$, and $[p^ja]=[p[p^{j-1}a]]$ for $2\leqslant j\leqslant e-1$. Note that the coefficient of p^i in the p-adic expression of $[p^ja]$ is a_l where l+j=i mod(e). For $X^a=X_0^{a_0}\cdots X_n^{a_n}$, we write $X^{[p^ja]}$ for $X_0^{[p^ja_0]}\cdots X_n^{[p^ja_n]}$. If $X^a\in S^{l,r}_{n,e}(q-1)$ with associated tuple $(r_0=l-r,\ r_1,\ ...,\ r_{e-1})$ then, $X^{[pa]}\in S^{l,l-r_{e-1}}_{n,e}$ with associated tuple $(r_{e-1},\ r_0,\ ...,\ r_{e-2})$. For $\alpha\in \mathbb{F}_q$, we have $\alpha^{[p^ja]}=\alpha^{p^ja}$, thus $X^{[p^ja]}$ and X^{p^ja} define the same function on \mathbb{F}_q^{n+1} .

By Proposition 2.8, $S = \bigcup_{r=0}^{l-1} S_{n,e}^{l,r}(q-1)$ is a basis for $D_{\mathbb{F}_q}^n(l,q)$. Let B denote the subset of $D_{\mathbb{F}_q}^n(l,q)$ consisting of polynomials $\sum_{j=0}^{e-1} \alpha^{p^j} X^{[p^j a]}$, $\alpha \in \mathbb{F}_q$ and $X^a \in S$. Note that every element of B takes values in \mathbb{F}_p .

Proposition 3.1. *B* spans $D_{\mathbb{F}_p}^n(l,q)$.

Proof. Let V denote the \mathbf{F}_p span of B. We check that for $X^a \in S$, the dimension of the \mathbf{F}_p -span of $\left\{\sum_{j=0}^{e-1} \alpha^{p^j} X^{{\mathbb{F}}^{p^j}a}\right\} \mid \alpha \in {\mathbb{F}}_q$ is the cardinality t of $\left\{X^{{\mathbb{F}}^{p^j}a}\right\} \mid 0 \leqslant j \leqslant e-1$. Therefore, $\dim_{\mathbf{F}_p}(V) = \dim_{\mathbf{F}_q}(D^n_{{\mathbb{F}}_q}(l,q))$ and $D^n_{{\mathbb{F}}_p}(l,q) = V$.

Since the function X^a on \mathbf{F}_q^{n+1} is same as $X^{\lceil p'a \rceil} = X^{p'a}$, it takes values in $\mathbf{F}_{p'}$. Let $\alpha_1, ..., \alpha_t$ be a basis of $\mathbf{F}_{p'}$ over \mathbf{F}_p and $\beta_i \in \mathbb{F}_q$ be a preimage of α_i under the trace map from \mathbb{F}_q to $\mathbb{F}_{p'}$. Since the \mathbf{F}_p linear map $\alpha \mapsto (\alpha, \alpha^p, ..., \alpha^{p'-1})$ from $\mathbb{F}_{p'} \to (\mathbb{F}_{p'})^t$ is injective, it takes a \mathbb{F}_p basis of

 \mathbb{F}_{p^t} to a linearly independent set. Therefore the set $\{\sum_{j=0}^{e-1} \beta_i^{p^j} X^{[p^ja]} = \sum_{j=0}^{t-1} \alpha_i^{p^j} X^{[p^ja]} \mid 1 \leq i \leq t\}$ is linearly independent.

For convenience, we state a theorem of Delsarte; see for example [1, Theorem 5.7.3, Example 5.7.2, pp. 187–188].

PROPOSITION 3.2. The \mathbb{F}_p -span of the incidence matrix of the design of points versus (n-l) flats of P consists of functions on P defined by the polynomials $p(X_0,...,X_n) = \sum_{l_0,\,l_1,...,\,l_n} d(l_0,...,l_n) \, X_0^{l_0} \cdots X_n^{l_n}$ in $\bigoplus_{l=1}^\infty R_{l(q-1)}$ such that $0 \leq l_i \leq q-1$, and for every $0 \leq j \leq e-1$

- 1. $\sum_{i=0}^{n} [p^{j}l_{i}] \leq l(q-1)$.
- 2. $d([p^{j}l_{0}], ..., [p^{j}l_{n}]) = (d(l_{0}, ..., l_{n}))^{p^{j}}$.

Theorem 3.3. $C_k^n(l, q) = \tilde{C}_k^n(n - l, q)$.

Proof. (A) We prove that $C_k^n(l,q) \subseteq \tilde{C}_k^n(n-l,q)$. See also [1, Theorem 5.7.7, Exercise 5.7.2, pp. 190–192] for l=2. It is enough to prove that $D_{\mathbb{F}_p}^n(l,q) \subseteq \tilde{C}_{\mathbb{F}_p}^n(n-l,q)$. The set B spans $D_{\mathbb{F}_p}^n(l,q)$ by Proposition 3.1. Since each element of B satisfies conditions of Proposition 3.2, inclusion follows.

(B) We show $C_{\mathbb{F}_p}^n(l,q) \supseteq \widetilde{C}_{\mathbb{F}_p}^n(n-l,q)$ by induction on l. An l hypersurface which is a union of hyperplanes is called a *monomial l hypersurface*. For $1 \le r \le l-1$, the zero set of a monomial of degree r is also the zero set of a monomial of degree l. Thus a monomial l hypersurface under a change of variables is the zero set of a monomial of degree at most l.

We claim that the characteristic function χ_L of any (n-l) flat L in P can be written as a \mathbb{F}_p linear combination of characteristic functions of monomial l hypersurfaces all of whose irreducible components contain L.

For l=1, the statement is obvious. We now assume by way of induction that the statement is true for (n-r) flats with $r \le l-1$. Thus the characteristic function of any (n-r) flat is a \mathbb{F}_p linear combination of characteristic functions of monomial l hypersurfaces all of whose irreducible components contain L.

Any (n-l) flat L can be written as an intersection of a hyperplane H and a (n-l+1) flat L' such that $L' \not\subseteq H$. Thus, $\chi_L = \chi_{L'} + \chi_H - \chi_{L' \cup H}$. If $\chi_{L'} = \sum a_i \chi_{P_i}$, with each P_i a monomial (l-1) hypersurface and $a_i \in \mathbb{F}_p$ then $P_i \cup H$ is a monomial l hypersurface and $\chi_{L' \cup H} = \sum a_i \chi_{P_i \cup H}$. Thus the claim.

Now Theorems 2.5 and 3.3 yield

COROLLARY 3.4. If $k \supseteq \mathbb{F}_q$, $\tilde{C}_k^n(n-l,q)$ is generated by monomial functions.

Remark 3.5. Theorem 3.3 and Corollary 3.4 are some of the consequences of much stronger results of Bardoe and Sin which describe all GL(n+1)

submodules of k^P using representation theory (see [2, Lemma 5.2 and Sect. 8]). However, our methods are different and elementary.

Remark 3.6. We note that unlike Hamada's formula, for fixed l and e, the number of terms in the formula of Theorem 2.13 is independent of n. Thus, asymptotically for fixed values of l and e, our formula is a simpler alternative to Hamada's formula.

When q = p, Theorems 2.13 and 3.3 imply

THEOREM 3.7. The dimension of $\tilde{C}_k^n(n-l, p)$ is

$$1 + \sum_{i=1}^{l} \sum_{t=0}^{i-1} (-1)^{t} \binom{n+1}{t} \binom{n+ip-i-tp}{n}.$$

Remark 3.8. When q=p, the only GL(n+1,p) submodules of k^P are $\tilde{C}_k^n(l,p)$ for $0 \le l \le n$ together with the complement of k.1 in them; see for example [2, Theorem A]. Thus taking orthogonal complements with respect to Hamming metric on k^P induces an isomorphism between $\tilde{C}_k^n(l,p)/\tilde{C}_k^n(l+1,p)$ and $\tilde{C}_k^n(n-l,p)/\tilde{C}_k^n(n-l+1,p)$. Therefore,

$$\tilde{C}_{k}^{n}(n-l, p) \simeq k\mathbf{1} \oplus \sum_{i=1}^{l} \tilde{C}_{k}^{n}(l-i, p)/\tilde{C}_{k}^{n}(l-i+1, p).$$

Thus Theorem 3.7 can also be obtained using above isomorphism and Hamada's formula for $\tilde{C}_k^n(l-i,p)/\tilde{C}_k^n(l-i+1,p)$.

4. GENERALIZED REED-MULLER CODES

In this section we use Proposition 2.11 to obtain a formula for the dimension of the v^{th} order generalized Reed-Muller code $R_{\mathbb{F}_q}(v, n+1)$. Recall that $R_{\mathbb{F}_q}(v, n+1)$ is the subspace of the space of functions from \mathbb{F}_q^{n+1} to \mathbb{F}_q defined by elements of $\bigoplus_{m=0}^v R_m$.

Theorem 4.1. Let $v = i_0 q - j_0$ with $0 \le j_0 \le q - 1$, then

$$\dim(R_{\mathbb{F}_q}(v, n+1)) = 1 + \sum_{r=1}^{i_0} \sum_{j=j_r}^{q-1} \sum_{t=0}^{r-1} (-1)^t \binom{n+1}{t} \binom{n+rq-j-tq}{n},$$

where $j_r = 0$ if $r < i_0$ and $j_{i_0} = j_0$.

Proof. The factor 1 corresponds to degree zero functions. For $1 \le m \le v$, we write m = rq - j with $1 \le r \le i_0, j_r \le j \le q - 1$ and use Proposition 2.11 with $\alpha = q$ to compute the number of monomials of degree m all of whose exponents are at most q-1.

Remark 4.2. Note that for fixed q and v, number of terms in the above formula is independent of n unlike in [1, Theorem 5.4.1, p. 154].

5. SEGRE EMBEDDINGS

Let $R = \mathbb{F}_q[X_0, ..., X_n]$, $T = \mathbb{F}_q[Y_0, ..., Y_m]$ and $S = \mathbb{F}_q[Z_{ij} | 0 \le i \le n, 0 \le j \le m]$. The Segre embedding of $\mathbb{P}^n \times \mathbb{P}^m$ in $\mathbb{P}^{(n+1)(m+1)-1}$ is defined by the map

$$(a_0, ..., a_n, b_0, ..., b_m) \mapsto (a_i b_j),$$

where $a_i b_j$ occur in the lexicographic order on (i, j) (See [5, pp. 25]). Let $S_k^{n,m}(q)$ (resp. $\tilde{S}_k^{n,m}(q)$) denote the k span of characteristic functions of the intersections of Segre embedding of $\mathbb{P}_q^n \times \mathbb{P}_q^m$ in $\mathbb{P}_q^{(n+1)(m+1)-1}$ with the hyperplanes (resp. complements of hyperplanes). The all one vector 1 on the Segre embedding is in $S_k^{n,m}(q)$. Therefore, $S_k^{n,m}(q) = k\mathbf{1} \oplus \tilde{S}_k^{n,m}(q)$. Let $\tilde{D}_{k}^{n}(n-1,q)$ denote the k span of the characteristic functions of the complement of hyperplanes in \mathbb{P}_{a}^{n} .

Proposition 5.1. $\tilde{S}_k^{n,m}(q) = \tilde{D}_k^n(n-1,q) \otimes \tilde{D}_k^m(m-1,q)$ and so has dimension $(\binom{n+p-1}{p-1})\binom{m+p-1}{p-1})^e$.

Proof. We note that restriction of functions on $\mathbb{P}_q^{(n+1)(m+1)-1}$ to the Segre embedding is given by the graded ring homomorphism $s: S \to R \otimes T$ defined by $Z_{ij} \mapsto X_i Y_j$. Thus, $S_{\mathbb{F}_q}^{n,m}(q)$ consists of functions in $\mathbb{F}_q[X_0,...,X_n,Y_0,...,Y_m]$ which arise as restrictions of elements of S_{q-1}^{\dagger} . For a monomial M in S, we write $s(M) = s(M)_X s(M)_Y$ where $s(M)_X \in R$ and $s(M)_Y \in T$. Then, $M \in S_{q-1}^{\dagger}$ if and only if $s(M)_X \in R_{q-1}^{\dagger}$ and $s(M)_Y \in T_{q-1}^{\dagger}$. This proves that $\tilde{S}_k^{n,m}(q) = \tilde{D}_k^n(n-1,q) \otimes \tilde{D}_k^m(m-1,q)$. The dimension follows from Remark 2.14.

Remark 5.2. When n=m=1, the embedding of $\mathbb{P}_q^1 \times \mathbb{P}_q^1$ in \mathbb{P}_q^3 is the non-degenerate quadric given by $Z_{00}Z_{11} - Z_{01}Z_{10}$. In this case our formula (which gives the dimension to be $p^{2e} + 1$) agrees with the known formula. See [6, Example 1.2, p. 355].

APPENDIX

In this section we use Theorem 2.13 and Maple to compute the dimension $c_k^n(l,q)$ of $C_k^n(l,q)$, the code given by (n-l) flats in \mathbb{P}_q^n .

$$c_k^n(1, p^e) = 1 + \binom{n+p-1}{n}^e$$

$$c_k^4(2, p^2) = 1 + \frac{1}{36} p^2(p+1)^2 (9p^4 - 4p^3 + 8p^2 - 4p + 9)$$

$$c_k^n(2,4) = 1 + \frac{1}{12}(n+2)(n+1)(3n^2 + n + 6)$$

$$c_k^n(3,4) = \frac{(n+2)}{36}(n^5 + n^4 + 2n^3 + 17n^2 + 15n + 36)$$

$$c_k^n(4,4) = 1 + \frac{(n+1)(n+2)}{2880} (5n^6 - 11n^5 + 25n^4 + 155n^3 + 210n^2 + 576n + 1440)$$

$$c_k^n(5,4) = 1 + \frac{(n+1)}{302,400} (21n^9 - 91n^8 + 211n^7 + 1169n^6 + 4144n^5 + 4466n^4 + 65,464n^3 + 120,456n^2 + 257,760n + 302,400)$$

$$c_k^n(6,4) = 1 + \frac{(n+2)(n+1)}{7,257,600} (15n^{10} - 181n^9 + 1406n^8 - 4986n^7 + 15,911n^6 - 183,549n^5 - 270,916n^4 - 2,409,044n^3 - 3,260,016n^2 - 1,146,240n + 3,628,800)$$

$$c_k^n(2,9) = 1 + \frac{(n+1)^2}{2880} (5n^6 + 90n^5 + 473n^4 + 852n^3 + 1268n^2 + 1632n + 2880)$$

$$c_k^n(3,9) = 1 + \frac{(n+3)(n+2)(n+1)}{3,628,800} (7n^9 + 252n^8 + 2508n^7 + 4998n^6 + 5313n^5 + 45,318n^4 + 157,052n^3 + 327,432n^2 + 364,320n + 604,800)$$

$$c_k^n(4,9) = 1 + \frac{(n+2)(n+1)}{4,877,107,200} (3n^{14} + 207n^{13} + 4745n^{12} + 39,111n^{11} + 67,147n^{10} + 35,841n^9 + 3,019,995n^8 + 7,031,853n^7 + 57,976,822n^6 + 128,101,692n^5 + 282,873,560n^4 + 1,024,071,936n^3 + 1,891,398,528n^2 + 2,295,336,960n + 2,438,553,600).$$

REFERENCES

- E. F. Assmus, Jr. and J. D. Key, "Designs and Their Codes," Cambridge Tracts in Mathematics, Vol. 103, Cambridge Univ. Press, Cambridge, UK, 1992.
- 2. M. Bardoe and P. Sin, The permutation modules for $GL(n+1, \mathbb{F}_q)$ acting on $\mathbb{P}^n(\mathbb{F}_q)$ and \mathbb{F}_q^{n+1} , *J. London Math. Soc.*, to appear.
- N. Calkin, J. D. Key, and M. J. De Resmini, Minimal weight and dimension formulas for some geometric codes, *Des. Codes Cryptogr.* 17 (1999), 105–120.
- N. Hamada, The rank of the incidence matrix of points and d-flats in finite geometries, J. Sci. Hiroshima Univ. Ser. A-I 32 (1968), 381–396.
- J. Harris, "Algebraic Geometry, A First Course," Graduate Texts in Mathematics, Vol. 133, Springer-Verlag, Berlin/New York, 1992.
- 6. E. Moorhouse, Some *p*-ranks related to geometric structures, *in* "Proceedings of Conference in Honour of T. G. Ostro on Coding Theory," pp. 353–364, 1996.