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In this article we study the codes given by / hypersurfaces in P} to obtain a new
formula for the dimension of codes given by (n—/) flats. We also obtain a new
formula for the dimension of the vth order generalized Reed—Muller code and
describe the code given by the hyperplane intersections of the Segre embedding of
PZ X [F":I". © 2001 Academic Press

1. INTRODUCTION

This article grew out of our attempt to understand the methods of [6]
in the context of Veronese and Segre embeddings of projective spaces over
finite fields.

Let ¢ = p¢, p a prime, and P denote the n dimensional projective space
over the finite field [F,. The zero set in P of a homogeneous polynomial of
degree [ over [, is called a / hypersurface in P. Let k be a field of characteristic
p. Let Ci(l, q) denote the subspace of k¥ spanned by the characteristic
functions of / hypersurfaces in P. Our main results give a basis for Cf;q(l, q)
consisting of monomial functions (Theorem 2.5), its cardinality (Theorem
2.13) and therefore the dimension of C%(/, q).

Let C’Z(I, g) denote the subspace of k¥ spanned by the characteristic
functions of / flats in P. Clearly, C%(/, q)zéz(n—l, q) for [=0,1. We
prove this equality for all /<n (Theorem 3.3). Therefore, Theorem 2.13
provides an alternative to the well-known Hamada’s formula [4, Theorem
1]. This identification also follows from recent results of M. Bardoe and
P. Sin and we thank P. Sin for pointing this and sending us a copy of [2].
Apart from a conceptually different approach, our formula is also simpler.
See Remarks 3.5 and 3.6. In Appendix, we use our formula to write certain
explicit formulae. See [ 1, Corollary 5.7.5, pp. 186] for the words of minimum
weights of these codes and [2] for their PSL(n+ 1, ¢) module structure.
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VERONESE AND SEGRE CODES 21

[ 3] discusses words of minimum weight of their duals and a reformulation of
Hamada’s formula.

In Secton 4, we give a new formula for the dimension of the vth order
generalized Reed—Muller code (Theorem 4.1). In Section 5, we describe the
code over k generated by the characteristic functions of intersections of the
Segre embedding of P x P7 in P+ D+ D=1 with hyperplanes (Theorem 5.1).

2. THE / HYPERSURFACE CODE

Let R=F,[X,, .., X,]. For any graded ring S, we denote by S, its ™
graded piece. The zero set of an element in R, in P is also the zero set of
its /™ power. Therefore C%(/, ¢) contains the code generated by the hyper-
planes of P and thus the all one vector 1. Hence C%(/,q)=k1® D}(l, q)
where D%(/, q) is the k span of the characteristic functions of complements
of / hypersurfaces in P. If f € R,, then f7~! defines the characteristic func-
tion of the complement of the / hypersurface defined by f.

Let T=F,[Z,|meR,, m a monomial]. We denote by ¢, the /™
Veronese homomorphism from 7' to R defined by ¢,(Z,,) =m and ¢,(1) =
/4 for A€, (See [S, pp.23]). Linear forms in 7' correspond to / forms in
R under ¢,. Thus the characteristic function of the complement of a /
hypersurface in P is given by ¢,(h?~"') for some he T,. Thus D}(l, q) is
spanned by functions on P defined by elements of the form ¢,(h7~1),
heT,. Further, the [, span T'r _, of {hq_l:he T,} has a basis consisting
of monomials Z % “0 . Z a of degree (¢ —1) such that the multinomial coef-

q—1
a, a]

ficient ( ) 1s not d1v151ble by p. Thus,

PrROPOSITION 2.1. ng( 1, q) consists of functions on P defined by elements
of (p,(T};_l). Therefore, D;q(l, q) has a monomial basis.

A monomial in Ry, _;, can be written as a product of (p — 1) monomials
in R,. Therefore we have

LemMA 2.2, The map ¢, induces a surjection from the vector space T, _,
onto Ry, _y.

For an integer a,, let ;=3 a, ;p’ denote its p-adic expression.

DEerINITION 2.3. We denote by S’ ", the set of monomials X“= X0 X
of degree (/—r)(¢—1) such that there exist integers 1 <rq, .., Fo_; <Z such
that (i) X7 oX;sc—14; ijieﬁLl =p(l—=r)—r,_; and (i) X7 _,a
priw1—1; for all 0<j<e—2 with ro=1/—r. In this case, we say that
(Fo, 715 . Fo—q) 1s the associated tuple of X*.
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LEMMA 24. X“eS:° if and only if there exist monomials X’ e Ry,
and X€ St° | such that X*=(X®)?""" X°.

Proof. Let X“=X%...X%eS:% with associated tuple (I, 7y, ...r,_,).
Choose 1ntegersb such thatlp—l 37 obiwith0<b, <Y o, 1a;,,;p/ 7%
Let X°=X/([T(X?)7 )= X%... X,

Then, 3°7_, Zj>e~1 ¢ ip’” 1 =l—r,_yand }7_, ijeaz ¢ p =
Ip—r,_,.Since ¢, ;=a; ; for 0<j<e—2 we have >°7_,¢; ;=711 p—r,;for
every 0 < j<e—3. Hence X°e S%° e with associated tuple (Lryy s ¥e_s).

Conversely, let X°=Xk...X™eR,, ,, X=X -X%eS: |
with associated tuple (rq, ... 7, ,) and X°= X¢(X?)?“" = X X
Since )3 ()Z]>e 2 € jpj er2 =lp—r._,, 2o 2/>e—l i ]pj e+2_rp
and Y7 (¢, o=(—-r)p—r,_, for some 0<r<i—1. Also,

im0 2jze—1 ai,jpj_e+1 =27 02jze—16€y;P’ ety S _obi=1Ip—
(I —r). Moreover, a; ;=c, ; for j<e—2. Hence }.7_ya, ;=r;,p—r; for
0<j<e—3 and Y7 oa,, ,=(—r)p—r, ,. Thus X“eS:% with
associated tuple (rg, o, 7o_n, [—7). |

THEOREM 2.5. Cg (l q) is the [, span of 1 and the functions on P defined
by elements of S%°,.

Proof. Let Me TT _, be a monomial. Then there exist monomials
My, ..M, ,inT,_, *such thdt M =TT5Zo(M,)?”’ (See [6, p. 357].) There-
fore, ¢,(M)= ]_0((/),(M ))?’. Now Lemmds 22 and 2.4 imply

St ={e/M)|MeT}_,, M a monomial}.
Proposition 2.1 now proves the theorem. ||

We now determine distinct functions on P given by elements of S:°. Let
I be the ideal in R generated by X¢— X, for 0<i<n and []7_,(1 —X771").
Then R/I is the ring of functions on P.

LemMA 2.6 [6, Lemma 4]. Let feF,[Y,, .., Yy] be a polynomial

having degree at most q—1 in each of the variables. If f vanishes on FYY il
then f is the zero polynomial.
DEFINITION 2.7. Let S%7,(¢—1) denote the subset of S.”, consisting of

elements all of whose exponents are at most ¢ — 1.
PROPOSITION 2.8. For 1<I<n, S}, and S57 ' U S%" (q—1) define the
same set of functions on P.

Proof. Since SL'7'=S%""1(q—1), we assume that r</—2. Let X*=
Xg... X% be an element of S7,\S"%",(¢ — 1) with associated tuple (rg, ... 7, ).
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Without loss of generality, we may assume that a,>¢. Then the monomials
X?=X“/X§~ " and X define the same function on P. We prove that X” e S%,"*'.

Case 1. a, ;=p—1for 0<j<e—1.In this case, r;=>2as }7_;a, o=
pri—(—=r)=p—1 and (/—r)>2. Similarly, r;>2 for all 1<j<e—1.
Thus X? e S%7*" with associated tuple (ro—1, ..., 7,_; —1).

Case 2. a, ;<p—1for some j<e—1. Let 0<t<e—1 be the smallest
integer such that a, ,<p—1. As before, r;>2 for all j<¢ and b, ;=0 for
all j<t—1, by ,=ag ,+1, by ;=a, ; for all 1<j<e—1. Also, 3 ;..b, ;
el = (Zj>ea0 ;p’ ¢t —p. Thus X?eSh"*! with associated tuple
(ro— 15 555 13— 15 Ty 95 w55 Fo_q)s

We now produce for every X? in S-"*! an element of S“”, which defines
the same function as X? on P. Let (so, .y S,_1) be the assocmted tuple of
X? and t be the smallest integer such that p’fb, for some i. We assume
without loss of generality that b, is not divisible by p‘. We prove that
X°xi~'eSl’,. Let X*=X"X{"'. For 1<j<min{tr,e—1}, we have
s;<(I—1) since ps;,; —s;=0 and s, </

Case 1. t=e—1. In this case > 7_ Oa,j—aoj—p—l for all j<e—1.
Thus X“e S%’, with associated tuple (so+ 1, .., 5, +1).

Case 2. t<e—2. We have a, ;=p—1 for all j<t—1, ao,=b,,—1

and a, ;=b, , for 1 < j<e. Thus X“e S%", with associated tuple (so+ 1, ...,
St+1ast+19~~~’ Se—l)' I

Lemma 2.6 and Proposition 2.8 imply
CorOLLARY 2.9. U!Z{ SL7.(q—1) is a basis for Dﬁ;q(l, q).

DerFINITION 2.10.  Let o and j be positive integers and let N, denote

ion—j, n
the number of monomials of degree ix—j in (n+ 1) variables with all
exponents less than a.

ProrosiTION 2.11.  For positive integers o and J,

Niaij’n:iil 1y <n+1><n+ia—j—ro¢>.

r=0 r n

Proof. If a;=k;a+r; with k,20, 0<r,<a—1, then X7...Xn=
(XEo... X*n)* X7... X" Thus, a degree (s« — ;) monomial is uniquely a
product of the «'® power of a monomial of degree (s —r) and a monomial
of degree (ra—j) whose exponents are less than «. Further ("}”) is the



24 INAMDAR AND NARASIMHA SASTRY

number of monomials of degree r in (n+ 1) variables. Hence for 1 <s <,

we have
n4se—j S /n+s—r
= N,_i,.
(P (e

r=1

Solution to this set of equations in variables N,, ; , is unique due to the
invertibility of the matrix 4 whose (s, r)th entry is ("*~") for s>r and 0
otherwise. Thus to check the formula, we need to prove that

izl n+1\/n+ic—j—ro
1)
e ()
:<n+ia—j>_‘il <n+i—r>’_1(_1)t<n+1><n+roc—j—toc>.
n o n o t n
We compare the coefficients of (”~/+") for every 1 <m <i. For m=i,
the coefficient on both sides is 1. For 1 <m<i—1, the coefficient of
("~/+m) on the left side is (—1)"~™ (7*1}). The coefﬁment on the right side
of the equation is —X ! Z1="(—1)"("+!)("*,*=™). So we need to prove
thdt l m(_l) (n+1)(n+i—nt—m):$ zt;r(;l(_l)t(n+l) n_ (r+i—t—m)

t t r=1
=0. That 1S, u=1i—m is a root of

y (-1)’(”“) 1 (X+r—1).
t=0 t r=1
We can assume that u<n-+1, since (”T1)=0 for all t>n+1. Also,
for u+1<t<n+1, u+r=t for 1<r<n. Thus, u is a root of
r (=D ("I TT7_ (X +r—1). Therefore, it is enough to show that
u is a root of

P(X)= g <"t1>ﬁ(x+r—z).

r=1

However, P,(X) is the zero polynomial since the coefficient of X”~* in
P,(X) is a linear combination of sums 37X} t8(—1)" ("*!) for 0<g<h
and each of these sums is zero (by induction on g). |

COROLLARY 2.12.  The cardinality of S, Lrig—1)is

e

—1 rj4—1 n+l><n+P +1 r—l‘p>
—1) d ’
Z -1;[0 IZ:O ( ) < !

1<r|,.,r,_ 1<l j n
ro—r =l—r
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Proof. For X¢ in Sﬁ;”e(q— 1) with associated tuple (rg,..,7,_;), we
have >7__ a, ;=pr;.,—r; for 0<j<e—1 with 1<ry,..,r,_;</ and
ro=r,=1—r. The corollary now follows from the uniqueness of the p-adic
expression of @; and Proposition 2.11 with a=p. |

Corollaries 2.9 and 2.12 imply:

THEOREM 2.13.  The dimension of C%(l, q) is

1+é 5 eﬁl 'MZ* (—1) <n+1><n+p]+1 —pt>'

i=1 1<rp,nr, | <I j=0 =0 n
ro—r =i
Remark 2.14. 1If [=1, the dimension is 1+ (?~1*")% Since C}(1, q) is
the hyperplane code, above formula thus agrees with the known formula.

3. THE IDENTIFICATION

In this section, we identify the code given by / hypersurfaces with the one
given by (n—1) flats in P. This identification generalizes Remark 2.14 and
provides an alternative to Hamada’s formula.

For an integer a=Y°¢"}a;p’, with 0<a;<p—1 we define [a]=a,
[pal=pa—a,_ (g —1)=a,_y+app+ - +a,_,p*" ' and [pla] =
[p[p/~'a]] for 2< j<e—1. Note that the coefficient of p’ in the p-adic
expression of [ p/a] is a; where /4 j=i mod(e). For X“=Xg%... X% we
write X174 for XEP/al... xTr/a] 1f Xee S’ (g —1) with associated tuple
(ro=1—r, ry, .., r,_) then, X[I"’]eS” Te-1 with associated tuple (r,_;,
Fos s To_). For aeF,, we have al?’ T g p) @ thus XT7’“1 and X?'* define
the same function on [FZ‘“1

By Proposition 2.8, S= Uﬁ:LS”’( —1) is a basis for D} (l q). Let B

denote the subset of D (1, q) consisting of polynomials Ze_l a?’ xtr'al,

aelF,and X“eS. Note that every element of B takes values in [,.

ProrosITION 3.1. B spans D; (2, q).

Proof. Let V denote the F, span of B. We check that for X“e S, the
dimension of the F,-span of {Ze’l oa?’ Xt |q e F ) is the cardinality ¢ of
{xtr/al |0<]<e—1} Therefore, dlme( V)= dlqu(D”q(l, q)) and D;p(l, q)=V.

Since the function X on F2*! is same as X Lr'al = yr'a it takes values
in F,.. Let a,,..,«, be a basis of F,. over F, and f, e[, be a preimage
of a; under the trace map from IF to F,. Since the F, linear map
ar> (o, oaf, .y a? ") from F ,—>([Fp,)’ is injective, it takes a [, basis of
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F,. to a linearly independent set. Therefore the set {35, B xtrel =

; Va?/ XUl |1 <i<1t) is linearly independent.

For convenience, we state a theorem of Delsarte; see for example
[1, Theorem 5.7.3, Example 5.7.2, pp. 187-188].

PrOPOSITION 3.2.  The [,-span of the incidence matrix of the design of
points versus (n—1) flats of P consists of functions on P defined by the poly-
nomials p(Xo, .., Xp) =24 1, .., Alos s 1) Xgl e Xf;' in @72, Ry,—_1) such
that 0< 1, <q—1, and for every 0 < j<e—1

L Xiolp/L1<lg—1) |
2 d(LploYs s [P 1,1) = (dlloy s )7

TurorREM 3.3. C2(l,q)=Cl(n—1, q).

Proof. (A) We prove that C{(, q) = C‘”(n—l q)- See also [ 1, Theorem
5.7.7, Exercise 5.7.2, pp. 190-192] for / =2. It is enough to prove that D} (l q)
= C" (n—l q). The set B spans Djf (l q) by Proposition 3.1. Since each
element of B satisfies conditions of Proposmon 3.2, inclusion follows.

(B) We show Cﬁ,’ép(l, q)=2 C‘;p(n — 1, ¢) by induction on /. An / hyper-
surface which is a union of hyperplanes is called a monomial [ hypersurface.
For 1 <r<I[—1, the zero set of a monomial of degree r is also the zero set
of a monomial of degree /. Thus a monomial / hypersurface under a change
of variables is the zero set of a monomial of degree at most /.

We claim that the characteristic function y, of any (n—/) flat L in P
can be written as a [, linear combination of characteristic functions of
monomial / hypersurfaces all of whose irreducible components contain L.

For /=1, the statement is obvious. We now assume by way of induction
that the statement is true for (n — r) flats with r </— 1. Thus the characteristic
function of any (n —r) flat is a [, linear combination of characteristic functions
of monomial / hypersurfaces all of whose irreducible components contain L.

Any (n—1) flat L can be written as an intersection of a hyperplane H
and a (n—171+1) flat L' such that L' € H. Thus, y,=yp+ta—xroa If
=2 4a;xp, with each P, a monomial (/—1) hypersurface and a, €[,
then P; U H is a monomial / hypersurface and . p=2 a;xpn- Thus
the claim.

Now Theorems 2.5 and 3.3 yield

CoroLrary 34. Ifk=2TF,, C w(n—1, q) is generated by monomial functions.

Remark 3.5. Theorem 3.3 and Corollary 3.4 are some of the consequences
of much stronger results of Bardoe and Sin which describe all GL(n+ 1)
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submodules of k¥ using representation theory (see [2, Lemma 5.2 and
Sect. 8]). However, our methods are different and elementary.

Remark 3.6. We note that unlike Hamada’s formula, for fixed / and e,
the number of terms in the formula of Theorem 2.13 is independent of n.
Thus, asymptotically for fixed values of / and e, our formula is a simpler
alternative to Hamada’s formula.

When ¢ = p, Theorems 2.13 and 3.3 imply

THEOREM 3.7. The dimension of C'Z(n—l, p) is

1+Z ’i‘ <n+1><n+ip—i—tp>.

i=1 =0 t n

Remark 38. When ¢=p, the only GL(n+1, p) submodules of k”
are C’Z(l, p) for 0 </<n together with the complement of k.1 in them;
see for example [2, Theorem A]. Thus taking orthogonal complements
with respect to Hamming metric on k% induces an isomorphism between
Cr(L, p)/Cr(1+1, p) and C?(n—1, p)/Ct(n—1+ 1, p). Therefore,

~

Ci(n—1, p) Z n(1—i, p)/Ci(l—i+1, p).

Thus Theorem 3.7 can_also be otltained using above isomorphism and
Hamada’s formula for C}(/—1i, p)/Cr(I—i+1, p).

4. GENERALIZED REED-MULLER CODES

In this section we use Proposition 2.11 to obtain a formula for the
dimension of the v" order generalized Reed-Muller code R[Fq(v,n+l).

Recall that R[Fq( v, n+ 1) is the subspace of the space of functions from [F;“
to [, defined by elements of @, _, R

THEOREM 4.1. Let v=iyq— j, with 0< j,<q—1, then

i g—1 r—1 1 o
dim(Rg (v, n+1)) “1+Y Y Y (=1) <n+ ><n+rq J lq>’

r=1 j=j t=0 n

where j, =0 if r <iq and j; = jo.
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Proof. The factor 1 corresponds to degree zero functions. For 1 <m <,
we write m =rq — jwith 1 <r <, j, < j<¢q—1 and use Proposition 2.11 with
o = ¢ to compute the number of monomials of degree m all of whose exponents
are at most g— 1. ||

Remark 4.2. Note that for fixed ¢ and v, number of terms in the above
formula is independent of » unlike in [ 1, Theorem 5.4.1, p. 154].

5. SEGRE EMBEDDINGS

Let R=F,[Xg .. X,]. T=F,[Y, ..Y,] and S=F,[Z,|0<i<n,
0 < j<m]. The Segre embedding of P" x P™ in P+ D(m+ D=1 g defined by
the map

(a07 s Ay bO’ Lo bm) — (aibj)7

where a;b; occur in the lexicographic order on (i, j) (See [5, pp. 25]).

Let S7™(q) (resp. S ™(g)) denote the k span of characteristic functions
of the intersections of Segre embedding of P} x P7 in Py + D+ D=1 with
the hyperplanes (resp. complements of hyperplanes). The all one vector 1
on the Segre embedding is in S% ™ (q). Therefore, S%™(q) =k1@§ﬁ’m(q).
Let 5;(11— 1, g) denote the k span of the characteristic functions of the
complement of hyperplanes in P} .

PROPOSITION 5.1. §77(q) = D?(n—1,q) ® D"(m—1,q) and so has
dimension (("52 (" EPTY)e.

P

Proof. We note that restriction of functions on P{**D"+D=1 to the
Segre embedding is given by the graded ring homomorphism s: S—> RQ T
defined by Z;— X;Y;. Thus, S¢ ’”( ) consists of functions in F [ X, .., X,,,
Yo, s Yol wh1ch arise as restrictions of elements of S *_1 For a monomial
M in S we write s(M)=s(M)ys(M)y where s(M)ye R and s(M)yeT.

Then, MeS!_, if and only if s(M)yeR}_, and s(M)yeT}_,. This

proves that §7"(q)=D?(n—1, q)® D(m—1, q). The dimension follows
from Remark 2.14. |

Remark 5.2. 'When n=m=1, the embedding of P} x P, in P} is the
non-degenerate quadric given by Zy,Z,; — Zo, Z,,- In this case our formula
(which gives the dimension to be p**+ 1) agrees with the known formula.
See [6, Example 1.2, p. 355].
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APPENDIX

In this section we use Theorem 2.13 and Maple to compute the dimen-
sion ¢z (Z, g) of C%(/, q), the code given by (n—1) flats in P7.

n+p—1Y
. =1+(" 07T
1
A2 )= 1422 PP+ 1) (9 —4p* +8p —dp +9)

1
CZ(2,4)=1+E(n+2)(n+1)(3n2+n+6)

P
c;(3,4)=(”; ) (4% 1% 4+ 2% + 1T + 15n + 36)
1)(n+2
en, 4y =1+ 0FVOFD) G611 1 o5t 1 1550 + 21002
2880
+576n + 1440)
c(54)=1+ {per 1) (211° —91n8 4+ 21117 + 1169n° + 4144n°
S 302,400
+4466n* + 65,4641° + 120,456n2 + 257,760n + 302,400)
N _ (n+2)(n+1) 10 9 8 7 6
6.4 =1+ o (1510 181n° + 14061° — 4986n" + 15,91 1
— 183,549n° — 270,916n* — 2,409,041 — 3,260,0161>
—1,146,240n + 3,628,800)
(n+1)? 6 5 4 3 2
€R(2.9) =1+ (50 +900° + 4730+ 8520° + 12680
+1632n + 2880)
(n+3)n+2)n+1) _ 4 s 5 6 5
" — 25208 42 4 1
c2(3,9) + 3.628.800 (7Tn” 4+ 252n° 4 2508n" +4998n° + 5313n

+45,318n* + 157,052n + 327,432n* + 364,320n + 604,800)
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(n+2)(n+1)
4,877,107,200
+35,841n° + 3,019,9951® + 7,031,853n” + 57,976,822n°
+128,101,6921° + 282,873,560n* + 1,024,071,936n°
+1,891,398,528n* + 2,295,336,960n + 2,438,553,600).

i(4,9)=1+ (3n™ +207n" + 47451™ + 39,1110 + 67,147n'°
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