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Abstract: Data clustering is an unsupervised task that can generate different shapes of clusters for a particular
type of dataset. Hence choosing an algorithm for a particular type of dataset 1s a difficult problem. This study
presents the choice of an appropriate clustering algorithm by a comparative study of three representative
techniques like K-means, Kohonen’s Self Organizing Map (SOM) and Density Based Spatial Clustering of
Applications with Noise (DBSCAN) based on the extensive simulation studies. Comparison is performed on
the basis of cluster quality index ‘P, percentage of samples correctly classified and CPU time. The experimental
results show that if the clusters are of arbitrary shape, a density based clustering algorithm like DBSCAN is
preferable, where as if the clusters are of hyper spherical or convex shape and well-separated then the SOM or

K-means is preferable.
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INTRODUCTION

Recently there has been an enormous growth in the
amount of commercial and scientific data, such as
protein sequence, retail transaction and web logs
(Fayyad et al., 1996). The questions arise, why so much
of data? People store data because they think some
valuable assets are implicitly coded within it. But raw data
1s rarely of direct benefit. Discovering groups of similar
data items in the data set, known as cluster analysis, is an
interesting and challenging issue. There are many
different data clustering algorithms emerged from several
disciplines such as statistics, pattern recognition and
machine learning (Jain et al., 1999). They give different
types of clusters for a particular type of dataset. Some of
them require some additional prior knowledge about the
nature of the data. Each clustering algorithm works well
only for certain types of data and with certain
applications. The choice of an appropriate clustering
algorithm can be made from a comparative study of the
clustering algorithms.

Furthermore, the comparison is necessary as it is
widely used in many areas like mformation retrieval
and text mining (Cutting et al., 1992; Steinbach et al.,
2000; Dhillon et al., 2001), spatial database applications,

e.g., Geographical Information System (GIS) or
astronomical data (Xu et al., 1998, Sandar et al., 1998,
Ester et al., 2000), sequence and heterogeneous data
analysis (Cadez et al., 2001), web applications (Heer et al.,
2001; Foss et al., 2001), DNA analysis in computational
biology (Ben-Dor et al., 1999) and many others.

The clustering problem is the problem of dividing a
given set {x,., Xy} of N data points into several
non-overlapping homogenous groups. Each such group
or cluster should contain similar data items and data items
from different groups should not be similar. An k
clustering of a data set X is the partition of X into k
clusters, C,,...,C, such that the following three conditions
are met:

9 # g, =1,k
ii) U%_, (except outliers)
) G nC=d,1#j,1,j=1,..k. (sometimes violated)

The various data clustering algorithms can be
classified  into partitional, density based and
clustering using artificial neural networks. In this work,
the three representative algorithms like K-means
(Hartigan et al., 1979, Hartigan, 1975), DBSCAN
(Ester et al, 1996) and Kohonen Self-organizing Map
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(SOM) (Kohonen, 1990) corresponds to partitional,
density based and artificial neural networks are taken for
comparative study.

The comparison is performed on the basis of cluster
quality index °P’, percentage of samples correctly
clustered and CPU time. Mathematically, it is defined as

where, n;, is the number of points in the ith (i = 1,...k)
cluster, X, is the feature vector of the jth pattern (j =
1,..n)mcluster I, X, is the mean of n, patterns of the ith
cluster, n is the total number of patterns and 3 is the
mean value of the entire set of patterns. ‘P’ is the ratio of
the total variation and within-cluster variation. For a given
data and number of clusters k, the higher the homogeneity
within the clustered regions, the higher would be the

value.
CLUSTERING ALGORITHMS

This technique produces clusters by optimising a
criterion function defined either locally or globally. The
user should have prior knowledge of the number of
clusters. The algorithm runs multiple munber of times with
different starting points and the best configuration
obtained from all of the muns is wsed as the output
clustering. Let us discuss each of the clustering

algorithms.

K-means: The k-means algorithm (Hartigan et al., 1979,
Hartigan, 1975) 1s the most popular clustering tool used in
saientific and ndustrial applications. The name comes
from representing each of k clusters ¢ by the mean (or
weighted average) x of its points, the so-called centroid.
While this obviously does not work well with categorical
attributes, 1t has the good geometric and statistical sense
for numerical afttributes. The sum of discrepancies
between a point and its centroid expressed through
appropriate distance measure 1s used as the criterion
function. For example, the L,norm based objective
function, the sum of the squares of errors between the
points and the corresponding centroids, is equal to the
total mntra-cluster variance

2
, where k is the number of points

k
E(CJ): Z i T My
1=1

1n cluster j.
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The sum of the squares of errors can be rationalized
as (a negative of) log-likelihood for normally distributed
mixture model and 15 widely used m statistics (SSE).
Therefore k-means algorithm can be derived from general
probabilistic framework. The inter-cluster variance is
measured as

2
i _“JH

k
Ble)=2 2

1=1 = &c;

where, k is the number of clusters. Two version of
k-means iterative optimisation are known. The first
version 1s known as Forgy’s algorithm (Forgey, 1965) and

consists of the following steps:

1. Choose the number of clusters, k.

2. Set imtial centres of clusters, c¢,c.... ¢ to the
arbitrarily selected k vectors from the dataset.

3. Classify each vector x =[x,,X,...x,](d is the
dimension of the mput vectors) mto the closest
centre ¢, by Euclidean distance measure:

Hxl -¢|= mion1 - CJH.
4. Recompute the estimates for the cluster centres c,
Let ¢ =[c;,¢;55- €| » C 18 cOmputed by
c = th- ecluster; lem
1m nl :
where 1, is the number of vectors in the ith cluster.
5. Tfnone of the cluster centres (¢, 1= 1,2, ... k) changes

m step 4, stop; otherwise go to step 3.

The second version (classic in iterative optimisation)
of lk-means iterative optimisation reassigns points based
on more detailed analysis of effects on the objective
function caused by moving a point from its current cluster
to a potentially new one. If a move has a positive effect,
the point is relocated and the two centroids are
recomputed. It 1s not clear that this wversion 1s
computationally feasible, because the outlined analysis
requires an inner loop over all member points of invelved
clusters affected by centroids shifts. However, in L, case
1t 18 known (Duda et al., 1973) that all computations can
be algebraically reduced to simply computing a single
distance! Therefore, in this case both versions have the
same computational complexity.

The wide populanity of k-means algorithm 13 well
deserved. It 1s simple, straightforward and 1s based on the
firm foundation of analysis of variances. The K-means
algorithm also suffers from all the usual suspects: i) the
result strongly depends on the mitial guess of centroids
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(or assignments), ii) it is not obvious what is a good k to
use, iii) the process is sensitive with respect to outliers,
1v) the algorithm lacks scalability, 1v) only numerical
attributes are covered and v) resulting clusters can be
unbalanced.

Kohonen’s Self-Organizing Map (SOM): Kohonen self-
organizing map (Kohonen, 1990) 1s an unsupervised,
competitive learning, clustering network, in which only
one neuron (or only one newron in a group) is “on” at a
time. Self-orgamzing maps (SOMSs) can be used as a data
visualization technique as they can reduce the dimensions
of data through the use of self-organizing neural networls
while preserving their topological structure. The problem
that data visualization attempts to solve 1s that humans
simply canmot visualize high dimensional data as 15 so
technicques are created to help us understand this high
dimensional data. The way SOMs go about reducing
dimensions 1s by producing a map of usually one or two
dimensions, which plot the similarities of the data by
grouping similar data items together. The plot is drawn by
giving each output neuron a gray scale colowr that is
proportionate to its weight vectors average distance from
it immediate neighbours weight vectors. Thus SOMs
accomplish two things, they reduce dimensions and
display similarities.

Basic architecture: Figure 1 shows the architecture of
Kohonen SOM. Tt contains a single layer of neurons in
addition to an input layer of branching nodes. There are
‘K’ neurons 1n the neural layer and each has a parametric
weight vector wy, of dimension ‘n’, which is same as the
dimension of the input feature vectors X = (x,,X,,....,X_).
The weight vectors W, W,,.... W, are randomly initialised
1n the feature space at the begirming. One exemplar input
vector X 1s selected from the sample and put mto the
network and squared distances between X and each w,
are computed by Euclidean distance. The minimum
distance 1s then determimed to obtam the neuron that 1s
the wimmer over the other neurons. In this network the
weight vectors are multiplied by three different strategies.

In the first strategy called winner-take-all strategy,
the winning neuron updates its parametric weight
vector. All other neurons keep their old values.

In second strategy, update positively (reinforce, or
reward) all neurons that are close to the winning
neurcn and to update negatively all of those neurons
that are farther way from the winner.

In the third strategy, when a vector X is presented to
a Kohonen network, the dot product y, =x-w, 1s
computed as output from each ‘k” neurons.
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Fig. 1: Kohonen self-organizing map
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Fig. 2: Linear topology
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Fig. 3: 2-D rectangular grid topology

Neighbourhoods of a unit designated by # of radii
R =2,1 and 01 a one-dimensional topology with 5 cluster
units is shown in Fig. 2.

A neighbowhood for a 2D planar rectangular grid
topology 1s shown n Fig. 3.

Algorithm SOM

1. Fix the number of output neurons k, each of which
represents a cluster.

2. Initialise the weight vector for each output neuron
with 1) random values, or 11) the first k mput vectors.

3. Set topological neighbourhood parameters and
learning rate parameter c.

4. While stopping condition 1s false

5. For each input x

6. Update weight vector w; of the closest output neuron
and 1ts neighbors as follows:
wi(new) = wy(old) +o.[x, — wi(old)], i=1,.., n.

7. Endfor

8. Reduce learning rate

9. Reduce radius of neighbourhood at specified
intervals.

10. End while
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The learning process has two separate but related
phases, that is, the ordering phase and the convergence
phase. Dunng the ordering phase, the learning rate should
be set close to unity and then gradually decreased, but
not allowed to go below a certain threshold value
(usually 0.1). Tt is during this part of the learning process
that the topological ordering of the weight vectors 1s
carried out. The convergence phase 1s the second phase
of the learning that is generally the longest part of the
network learning (typically 80% of the epochs). The
remaming iterations are necessary during this phase for
carrying out fine adjustments of the map 1.e., the weight
vectors. In this phase the learning parameter should have
very small values for a long time. Typically, it is slowly
reduced from 0.1 to zero. The neighbourhood radius 1s
kept relatively large at the beginming of the traimng
and then shrunk monotonically with the epochs to zero.
The learning rule drags the weight vector associated with
the winnming unit towards the mput vector and it also
drags the weights of the closest umt (1.e., those within it
neighbowhood radius) along with it. We can imagine the
working of the SOM as an elastic net in the input space
that wants to come as close as possible to the inputs of
the network. The elastic net has the topology of the
output array and the points of the net can be thought of
as having the weights as coordinates.

DBSCAN: In the Euclidean space a set can be divided
into a subset of connected components. The
implementation for partitioning a set of points requires
concepts of density, comectivity and boundary. A
cluster, defined as a connected dense component, grows
in any direction that density leads. Therefore density-
based algorithms are capable of discovering clusters of
arbitrary shapes. Also this provides a natural protection
against outliers. Figure 4 shows some cluster shapes that
present a problem for partitioning relocation clustering
(e.g., k-means), but are handled properly by density-based
algorithms. They also have good scalability.

(a) (b)

Fig. 4: Irregular shapes of clusters
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The algorithm DBSCAN (Density Based Spatial
Clustering of Applications with Noise) (Ester et al., 1996)
targeting low dimensional spatial data 1s the major
representative 1 density-based connectivity. The
other algorithm of this category includes GDBSCAN
(Sandar et al., 1998) and DBCTLASD (Ester et ai., 2000).
The basic ideas of density-based clustering mvolve a
number of new definitions. We intuitively present these
definitions and then follow up with a high-level algorithm.

The e-neighbourhood of a pomt p, denoted by p and
N, (P) 13 defmed as N, (P) = {q=D | d(p,q) < £ }.
There are two kinds of points in a cluster, points
inside of the cluster (core peoints) and points on the
border of the cluster (border pomts). In general,
g-neighbourhcod of a border pomt contains
significantly less points than e-neighbourhoods of a
core point.

A pomt p 18 directly density-reachable from a point q
with respect to g, MinPts 1f

peN.(q) and

N, ()| = MinPts (core point condition).

A point p 1s density reachable from a pomt q with
respect to & and MinPts if there 15 a chain of pomts
PP Pt = @ Pa = p such that p,, is directly
density-reachable from p;.

A point p 1s density connected to a pomt q with
respect to £ and MinPts if there 1s a point O such that
both, p and q are density-reachable from O with
respect to € and MinPts.

1.

To find a cluster, DBSCAN starts with an arbitrary
point p and retrieves all points density-reachable from p
with respect to € and MinPts. If p is a core point, this
procedure yields a cluster. If p 1s a border point, no ponts
are density-reachable from p and DBSCAN visits the next
point of the dataset.

Algorithm DBSCAN

Input: 1) A dataset denoted as SetOfPomts of pomnts that
are UNCLASSIFIED.

i1) The global density parameters € and MinPts.

Output: Dense clusters and noise points.

Clusterld = 1;

Fori1=1 to SetOfPoints.size do

Point = SetOfPoints.get(1);

If Point.Clid = UNCLASSIFIED then

If ExpandCluster(SetOfPoints, Point, ClusterTd, Eps,
MinPts) then

ClusterId = ClusterId + 1;

ARSI
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7. EndIf
8 EndIf
9. EndFor

ExpandCluster(SetOfPoints, Point, Clid, €, MinPts)
seeds = SetOfPoints.regionQuery(Point, €);
If seeds.size < MinPts then
SetOfPoimnts.changeClid(Point, NOISE),
Return FALSE;
Else
SetOfPoints.changeClid(seeds, Clid),
seeds.delete(Point),
While seeds # Empty do
currentP = seeds. first();
. result = SetOfPoints. regionQuery(currentP, );
. Ifresult.size = MinPts then
. Fori=1 to result.size do
. resultP = result.get(i);
. IfresultP.Clid in (UNCLASSIFIED, NOISE) then
If resultP.Clid = UNCLASSIFIED then
seeds.append(resultP);
End If
SetOfPoints. changeClid(resultP, Clid),
. EndIf
. EndFor
. EndTf
. seeds.delete(currentP);
. End While
. Return TRUE;
. EndTf

e I o

[ o T N T 0 T S T S T e e R I a
U E W S D0 s = O

EXPERIMENTAL STUDIES

Description of the dataset: Experimental studies are
performed on two artificially created data sets named as
Art data 1 and Art data 2 and one real life dataset
named as TRTS (Blake et al., 1998).

Art data 1: This data set contains two non-convex
clusters in 2D. Cluster 1 contains 7534 samples and cluster
2 contains 7346 samples. Each sample has two features.
The underlying dataset contains two non-overlapping
clusters. Figure 5 shows the distribution of dataset.

Art_data_2: This dataset contains two linearly separable
clusters of 500 samples each. The samples are a vector of
three numeric feature values 1.e. all the samples are in 3D.
The classes are cubic shaped, with one having its center
at (4,4,4) and sides of length 1 and the other having its
centre at (6.5,6.5,6.5) and sides of length 1.5. The two
clusters are fairly close to each other but not overlap.
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They are also of much different densities. The Art data 2
is shown in Fig. 6.

Iris data set: The Iris data set contains 3 classes of
50 instances each, where each class refers to a type of iris
plant. There are 4 attributes-sepal length, sepal width,
petal length and petal width. One class is linearly
separable from the other 2; the latter are not linearly
separable from each other. To visualize the TRTS data set,
the 4 attributes have been plotted in 2 triplets, as shown
inFig. 7.

RESULTS

The percentage of samples correctly clustered is
calculated by using the true class labels of the samples as
given in the data set. Each cluster discovered is assigned
with the class label of the class to which the majority of
the samples in it belong. Then the percentage of samples
in clusters with the same class label as the actual class of
the sample is calculated. The CPU time is obtained on a
Pentium TIT 500MHz workstation with 256MB RAM.

K-means: Table 1 gives the results of the K-means
algorithm obtained from all three data sets by taking 1000
iterations.

Table 1: Results of K-Means algorithm

Self organizing feature map: Figure 8-10 shows the
topographical map of 30 by 30-rectangular grid of output
neurons obtained from three datasets. In this method,
initially all the weight vectors are initialised to the first
sample of the dataset and in the successive iterations the
weights are adjusted. Table 2 gives the results of the
SOM algorithm using all three data sets by taking
1000 iterations.

DBSCAN: The sorted k-dist graphs for the three data sets
are shown in Fig. 11-13.

Based on the estimate made wsing the sorted k-dist
graphs and some trail and error search around that value,
fairly good density parameter values were chosen for each
data set. The results of clustering by DBSCAN using
those parameter values are shown in Table 3.

Comparative analysis: Table 4 shows the comparative
performance of the three clustering algorithms, K-Means,
SOM and DBSCAN, for each of the three data sets.
DBSCAN could discover the clusters in the Art data 1
data set with good accuracy while K-means and SOM
were unable to cluster it properly. This shows that
DBSCAN can detect non-convex clusters while K-means
and SOM cannot. However, the DBSCAN algorithm takes
considerably more time than K-means and SOM. The

Initialisation
Data set No. of clusters (k) Initial weight vectors Cluster quality (3) Percent correct CPU time (sec)
Art data 1 2 1st two sarmples: 1.5714675087911916 63.66 50
{302,100),
{301,100).
Art data 2 2 1st two sarmples: 3.8910738021701077 99.9 6
Tris 3 1st three sarmples: 8.624027263474284 88.67 3
(6.7.3.0,5.2,2.3),
{6.0,2.2,5.0,1.5),
(6.2,2.8.4.8,1.8).
Table 2: Results of SOM algorithin
Initialisation
Data set No. of clusters ¢k) Initial cluster centers Cluster quality (3) Percent correct CPU time (sec)
Art data 1 2 1st two sarmples: 1.7481265202402723 57.25 21
{302,100),
{301,100).
Art data 2 2 1st two sarmples: 3.8910738021701077 99.9 4
(3.4279,3.5521,3.6859),
(4.287,3.7369,4.9356).
Tris 3 1st three sarmples: 8.62448876526:041 6 99.9 4
(6.7.3.0,5.2,2.3),
{6.0,2.2,5.0,1.5),
(6.22.848.1.8)
Table 3: Results of DBSCAN algorithm
Tnitialisation No. of samples No. of
classified as clusters Cluster Percent
Data set 2 MinPts noise found quality (3) correct CPU time (sec)
Art_data_1 12 4 0 2 1.1746 99.99 168
Art_data_2 0.57 4 0 2 3.8886 100.0 8
Iris 0.42 5 29 3 12095994 78.0 4
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Table 4: Comparative performance of clustering algorithims

Algorithm No. of clusters found Cluster quality ((3) Percent correct CPU time (sec)
Art_data_1 artificial data set

K-Means 2 1.7481265202402723 57.25 21
SOM 2 1.5714675087911916 63.66 50
DBSCAN 2 1.1745995850120072 99.99 168
Art_data_2 artificial data set

K-Means 2 3.8910738021701077 99.9 4
SOM 2 3.8910738021701077 99.9 6
DBSCAN 2 3.8885998203751793 100.0 8
IRIS data set

K-Means 3 8.624488765260416 99.9 4
SOM 3 8.624027263474284 88.67 3
DBSCAN 3 12.09599361 2888822 78.0 4

cluster quality index P for DBSCAN is lower because the
actual clusters were not very homogeneous. The well
separated convex clusters in Art data 2 data set were
discovered by all three algorithms equally well with
DBSCAN taking the most CPU time followed by SOM and
then K-means. Again DBSCAN has a slightly lower
value but that resulted in a higher percentage of samples
getting correctly clustered.

For the Iris data set, where two of the clusters are not
linearly separable, DBSCAN has the least percentage of
samples correctly classified as 1t misclassified some of the
sample as noise when there is no noise in the data set.
However, its B value is much higher than the others
because it removed some of the mput data that were
increasing the non-homogeneity as noise. So, DBSCAN
is able to cluster non-linearly separable clusters better
than or as well as K-means and SOM, particularly when
the clusters are not convex or linearly separable.

It 1s difficult to determme the actual number of
clusters for K-means and SOM particularly when the
clusters are non-convex or non-linearly separable. The
topological maps produced by the SOM can be used to
determme the number of clusters when the clusters are
well separated and linearly separable, but they are unable
to show clusters that are not linearly separable. The
number of clusters in Art_data 1 1s not apparent from 1its
topological map, which shows 3 separate regions of high
similarity. Similarly, for Tris data set, only one region of
high similarity is visible in its topological map,
corresponding to the single linearly separable cluster in
the data set. The other region does not show a high
similarity within it. The topological similarity map for
Art data 2 data set correctly shows the two clusters in
the data set.

CONCLUSIONS AND FUTURE WORK

This study presents a comparative study of the
clustering techmque like K-means, SOM and DBSCAN
based on the extensive simulation using the data set
Art data 1, Art data 2 and IRIS. Our study indicate that

558

DBSCAN is better than K-means and SOM in discovering
non-convex clusters and it 1s as good or better than
K-means and SOM in extracting convex clusters. It can
also detect noise. However, DBSCAN algorithm also takes
much more CPU time for large data sets. When the
clusters are of arbitrary shape (e.g., Art data 1 data set),
a density based clustering algorithm like DBSCAN 15
preferable. On the other hand, when the clusters are of
hyperspherical or convex shape and well separated and
the data set 13 large, then SOM or K-means may be
preferable as they are faster.

Future work includes comparing the performance of
K-means, SOM, DBSCAN and hierarchical clustering
algorithms using incomplete data sets.
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