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We present the enumeration of regular homotopy classes of immersions of the real
Grassmann manifold Gk (R 7 +%) into R21k,

1. INTRODUCTION

In this paper we present the enumeration of regular homotopy classes of
immersions of the nk-dimensional real Grassmann manifold Gy (IR*+¥) into IR¥*. The
dimension 2nk is critical because above this dimension any two immersions become
regularly homotopic.

If X is a smooth m-manifold, let [X CIR¥"] denote the set of regular homotopy
classes of immersions of X into IR?". Then we prove the following

Theorem 1.1 — If nk is even then [G,(IR**¥)CIR?] = Z and if nk is odd
then [Gk (IR"*")QIRZ""] = Zz.

In particular, when k = 1, the theorem implies that [P"CR¥]=Z if n is even,
and [P"CIR¥] =2, if n is odd and n= 1. This result for the real projective space
P gives a mild improvement of a result of Larmore and Rigdon3. It may be noted
that the case n = 1 is the famous Whitney-Graustein Theorem’ which says that
[SICIR?] =Z.

The proof of Theorem 1.1 is obtained by revitalizing an old technique, the
primary classification theorem for sections of a fibrationS, in the equivariant setting.
M¢ller* has introduced for G-complexes, where G is a finite group, Bredon
cohomology groups with local coefficients, and shown that obstructions to equivariant
sections of § G-fibrations lie in these groups. Using, these groups Mgller has built
up an equivaridnt obstruction theory for equivariant sections of a G-fibration. If the
local coefficients system is simple, then the Méller groups reduce to Bredon
cohomology with a generic coefficients system!. The principal feature of our proof
is to reduce the problem to this special case, and then identify using the equivariant
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classification theorem the set of regular homotopy classes of immersions with a
suitable Bredon cohomology group. The method of proof also applied to the Lens

space Lf;"_l, and we have
Theorem 1.2 — [L,z,"_1 CIR%"~2] = Z,.

It is interesting to note that unlike the non-equivariant theory our computations
avoid twisted coefficients.

&
2. EQUIVARIANT OBSTRUCTION THEORY

Let us look at the obstruction theory of M¢ller®, and obtain the primary
classification theorem in the equivariant context. Throughout this section, a space will
always be compactly generated, and G will be a finite group. The abbreviation LCS
will stand for local coefficients system or systems.

Let Og be the orbit category, whose objects are G-maps Q:G/H‘e G/K arising
from subconjugacy relations g HgCK,gE€ G. On the other hand, let v be the
category of pairs (X, L) where X.is a space and L is an ordinary LCS on it; a
morphism (¢, §,) : (X, L) — (Y, M) consists of a map ¢, : X — Y and a homomorphism
¢2: L —> ¢;M between LCS on X. Then an equivariant LCS on a G-space X is a
contravariant functor £ : Og — t such that (i) L(G/H) = (X¥,Ly), where Ly is an
ordinary LCS on the fixed point set X¥, and (ii) if g: G/H — G/K is a morphism
in Og then L (g) = (g, L(g)), where g:XX— X¥ is the left translation by g. and
L(g) : Lx— g'Ly is a morphism of LCS on XX,

It is easy to conceive of examples of equivariant LCS in a manner parallel to
the non-equivariant case. Suppose that p:E — B is a G-fibration so that, for each
HCG, pt:EH — B has n-simple fibre. Then, if ,(#) is the ordinary LCS on
BH induced by the fibration p", we have a LCS m,(¥ ) on B defined as follows.
Set n,(F) (G/H) = (BY, n,(F")), and, for §:G/H—>G/K, g1'HgCK, set

w, (F) (§) - (§, w, (g)) where g: (pX)1 (x) = () (gx), x € BX, is the left translation
by g, and m,(g) is the induced homomorphism between the n-th homotopy groups.

Now suppose that X is a G-CW complex with an equivariant LCS £ on it. Then,
as G is finite, each X¥ is an ordinary CW-complex. Let C" (X" ;Ly) be the nth
cellular cochain group of XH with values in the ordinary LCS Ly, and 8:1 be the
coboundary. The elements of this cochain group are functions cy defined on n-cells
o:D"— XH such that cy(0) EL (0 (ep)), where ¢, is the base point of D”. Then
the groups

C"XL)=®@ycgCh(XH; Ly)

with coboundaries 8" =@®, __0y form a cochain complex C(X; L).

HCG
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Let ™ (X ; L) be the subgroup of C" (X ;L) consisting of all ¢ = { ¢y },; such
that for any n-cell o:D" — X the equation cy(go) -L(g) (o(ep)) (cx{0)) is satisfied
whenever K C G fixes o and g Hg C K. As shown in Mé¢ller, T' (X; L) is a cochain
subcomplex of C(X; L). Then the Bredon cohomology of X with equivariant LCS L
is defined by H* (X ; L) = H"(T(X ; L)).

If A is a sub-G-CW-complex of X with inclusion ¢ : A CX, then the restriction
maps (Fy# : Cr(XH;Ly) — C" (AH; (i) Ly) induce a cochain map # : C(X; L)
— C(A; i" L) so that i* maps I'(X; L) into T'(A ;i * L). Then the groups I (X,A ;L)
= Ker (i* | I"(X; L), form a cochain subcomplex I'(X, A; L), and it’s cohomology
is defined to be the Bredon cohomology of (X, A) with values in L, denoted by
HYX, A; L).

Let p : E — B be a G-fibration so that, for each subgroup H of G, the fibration
p:EH — BH has path connected base and fibre, and (X, A) be a G-CW-complex
pair so that (X¥, AH) is connected for each subgroup H of G. Let ¢ : X— B and
f:A—E be G-maps so that pe°f = ¢/A, that is f is an equivariant partial lifting of
¢. Then the lifting problem is to find a G-map y:X—E so that poy=¢ and
Y/A=f.

Let X, be the n-skeleton of (X, A), and suppose now that ¢ :X, —E js an

equivariant partial lifting of vy for n = 1. Then define the obstruction to extending ¢
as

1
1) = {cy" WNuce €O X A; ¢ m, (F)

where c:,”(tp”) is the non-equivariant obstruction to extending ¥ :Xf — FE4, and

n, (F) is the equivariant LCS on B as defined earlier. It can be verified that

e () ET (XA ¢, (F)).

Next, let o, W, :X,—FE be equivariant partial liftings of ¢, and
A:IxX,_{—E be a vertical G-homotopy rel A between yo/X,_;and y,/X,_,.
These maps fit together to give an equivariant partial lifting
w:l xX,\UIxX,_{—E of ¢ on where n:1xX — X is the projection. Then define
the equivariant difference cochain of vy, and y; with respect to A as

d" (o, Y1, M) = {diy (Wl , Wi, M)} yco EC"(X,A ;¢ m, (F))

where dy (Vg , ¢Y, M) is the non-equivariant difference cochain of W and y; with
respect to AY. Again it can be verified that d"(y,, W, A)ET" (X, A; ¢* m, (F)).
Similarly, the primary difference & * (y,, ¢,) € H* (X, A; ¢* n, ( F )) can be defined for
the liftings W, P, : X — E of .

The motivation of the above definition is the observation that there is a 1-1
correspondence between equivariant (n + 1)-cells G/H xD"*1—X and non-
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equivariant (n + 1)-cells D"+1 — X,

All the properties of the non-equivariant obstruction and difference cochains
transform to the equivariant case in a natural way leading us to the following
classification theorem.

Theorem 2.1 — With the same notations as above, suppose that

1. the fibre of each pf: E" — BH is g-simple for n + 1 =g <dim (X, A),
2.HI(X,A;¢"n, (F))=0 for n + 1 sq<1dim (X, A),

3. HI* (X, A 0" m, (F))=0 for n + 1 sq<dim(X,A),

and that y,: X —FE is an equivariant lifting of ¢:X — B. Then the correspon-
dence Y — 8" (y,, ) is a bijection between the set of vertical G-homotopy classes
(rel A) of equivariant liftings of ¢ which agree with ¢y, on A and the group

H (X, A; ¢ m, ().

3. PROOF OF THEOREM 1.1

If X is a smooth m-manifold, let E(X) — X denote the bundle associated to the
tangent bundle of X with fibre V,, (IR¥") which is the Steifel manifold of m-frames

in IR¥", Then according to Hirsch?, the set of regular homotopy classes of immersions
[X ©R?"] corresponds bijectively with the set of vertical homotopy classes of
sections of E(X) — X.

Let 5;, (IR***) be the Grassmann manifold of oriented k-planes through the origin
of R"+k. Since Z, acts freely on 5,( (R"*+¥) by orientation reversing diffeomorphism
x — —x, the bundle E('ék (Rr+k)) — 5k (IR"+¥) becomes a Z,-fibration, where the
action of Z, on E(‘(}Ik (R"+%)) is given by

D) v, e v =(=2— V1, iy — Vi)

where (x;v,, ..., v,,) is an orthonormal nk-frame in IR>* associated to x. This bundle
produces the bundle E(G,(R***) — G, (IR"*%) by passing to the quotient. Moreover
note that 5,, (IR"*%) is the simply connected covering of G, (IR**¥). Therefore the
vertical homotopy classes of sections of E(G,(IR"*%))— G,(IR"**) are in 1 — 1
cogespondence with the vertical Z,-homotopy classes of Z,-equivariant sections of
E@G, (R*+9) — G, (R™+¥).

Since the Z, action is free on 6,‘ (IR"+%), we have only one fixed point set,
namely G (R7+4) tself, corresponding to the trivial subgroup H = {e} of Z,. Let
ni(F) be the equivariant LCS on G(R"*% induced by
E(G, (R**¥)) — G, (IR***). Since G (IR"*¥) is simply connected and V,, (IR**) is (nk
— 1)-connected, the induced LCS on 5/: (R"+%) is simple and assigns to each point
the group m,y (V,, (IR¥*)). Thus, in view of the homotopy group m, (V,, (R?%)), we
have on ka (R"+k) the constant coefficient Z,-module Z when nk is even, and the
constant coefficient the trivial Z,-module Z, when nk is odd.
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Let us now compute the equivariant cohomology H""(?fk (R**+%); 1 ( F)). First
note that the Pontryagin’s construction of a CW-complex structure on 6,( (IR"+¥), as
given in Pontryagin®, provides a Z,-CW-complex structure on Gy (R*+¥). Recall that
each Schubert symbol o of order k

o=0s0,s0ys...s0,sn)

(and one has to take o, = 0 and Oy, =n) determines two cells e(0), and e(o). of
imk
G, (R"+%), each of dimension £ o, which satisfy the following conditions :

1. e(0), N e(o)-=¢
2. e(0), | e(0)_ consists of k-planes P such that dim (P A Ro+) =i i=12 ..,k

3. A(e(o),) =e(0)_, A(e(0).) = e(0),, where A is the orientation reversing
diffeomorphism P —» — P.
The boundary e(0),—e(0), =e{0)_—e(0). is the union of cells e(t), | e(t)_

where T runs over the symbols obtained from o by replacing one o;byo; - 1,
1 <is<k, provided the function T is non-negative and non-decreasing.

Pontryagin determined explicit formulas of the boundary operator for the Schubert
chains e(0), and e(0)_ (with suitable orientations). Dualizing these formulas we get
the following coboundary relations for the Schubert cochains e{c}, and e{o}_, which
are dual to e(0), and e(c).. For a Schubert symbol o = (o, ..., 0;) define

k
s(o,i)=0;+i+k+1 and #0,i)= E'wj
i=1

where w; =

J

{of forj<1 <<k,

O;,1 forjzi
Then

k
de{o}, = E (=19 e{0y, 02, ..., Gi_1, O; + 1, O; , 1, -0, Ok}
in1
+ (— 1)5(0’ ] 6{01, 02, ..., 0;_1, 0; + 1, T 15 oenes Ok}— ]
k
de{o}_ = 2 (- 1)@ D[ {0}, 02 sy O;_1, C; + 1, Oy 1, vvvy Opc}—
i=1

+ (=17©D {0}, 0, . O;_1, i+ 1, Oi 4 15 eery O} ]

where only the meaningful symbols appear on the right hand side.

Let us denote the generators e{n — 1, n, .., n}, of C%*~1(G, (IR***); T (F)
by e:k_l, and the generators e{n, n, ..., n}, of C* (Ek (R*+%); 7y (F)) by ™. Now



612 GOUTAM MUKHERIJEE

if a is the nontrivial element of Z,, then, for the relation a1 Ha = H,

Tt (@) (%) g (FH ) (x) = (FH ) (ax)

is multiplication by -1, and for e'He=H, xm, (2) (x) is the identity, where
xE€ G (R*+¥) and H = {e}. Then we find that -1 (’5k (IR*+¥); m, (F)) is generated

by ' — ™ and T (5,‘ (R™*%); n (F)) is generated by e — ™. 1t follows from

the coboundary relations that

8™ 1™ a1k {1 + (~1y*h) (¥ —e™).

Therefore if nk is even then

-1 Gy (R4 1 (F)) = T* G (R4 () = Z
and the map

8 : k=1 (G (R**4); 7 (F)) — T (G (R *4); 7, ()
is the zero homomorphism. If, on the other hand, nk is odd then

%1 Gy (R*#4); g () = T* (G (R4 i () = 2,

and the map & is again zero. It follows then

~/ Z . .
e Gutme ) = {2, ki

Thus all the conditions of Theorem 2.1 are satisfied, and we obtain Theorem
1.1.

4. PROOF OF THEOREM 1.2

This proof may also be treated similarly. Recall that the Lens space L‘,Z,"_1 is
the space of orbits §2-1/Z, of the cyclic group Z,=Z/pZ (p an odd prime) acting
freely on $#-1C C" by the action k. (2, ..., Z,_;) = (Wrzg, ..., wrz,_;) with @
= exp (2mi/p). The CW decomposition of $2*-1 compatible with this action is given
by the cells

efka{zES”“I:zle for j >k, arg (z;) = 2nr/p}

e%k”- {z€87-1:2=0 for j>k,2nr/p <arg (z) <2n (r + 1)/p}

where z=(2y, ...,2,_;), 0sr<p, O0sk<n, and with suitable orientations of cells the
boundaries are given by

p-1
a(efj‘)- 2 ejZk_l . a(ef*”)-efk—efk;l ( r mod p), where ef,*-egk.
=0
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This provides a Z,- CW structure on $>*~! with one equivariant cell in each

dimension ¢ = 0, 1, ..., 2n — 1, the action being w- el =€, ;.

The situation here is similar to that of the Grassmannian. Here also we have
one fixed point set, and the equivariant LCS m,,_; (¥ ) induced on $%*~! by the
Z,fibration E(§>*~') — $2-! is simple and assigns to each point the group Z,.
Therefore the cochain complex T* (§%"~1; m,, ; (F)) becomes

O‘_’Zz—’ZZ—’...._’ZZ—'O
where the coboundary & = 0 if g is even, and 67 = id if ¢ is odd. Consequently,

Z, ifqgisodd
0  otherwise .

H(S 1y (F) = {
Now proceeding as before, we may complete the proof.
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