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Abstract. For 1 < p < oo we show that there are no denting points in the unit ball of
L(¢). This extends a result recently proved by Grzaslewicz and Scherwentke when
p = 2 [GS1]. We also show that for any Banach space X and for any measure space
(Q, A, 1), the unit ball of £(L!(u),X) has denting points iff L' (u) is finite dimen-
* sional and the unit ball of X has a denting point. We also exhibit other classes of
¢ Banach spaces X and Y for which the unit ball of £(X, ¥') has no denting points. When
' X* has the extreme point intersection property, we show that all ‘nice’ operators in the
unit ball of £(X,Y) are strongly extreme points.
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1. Introduction

Let X be a Banach space and let X; denote its closed unit ball. In this paper we consider

several aspects of the extremal structure of the unit ball of the space of operators £(X, Y).

A point xg €X; is said to be a denting point if for all >0, xo & CO(X;\B(xo, €)) (B(xo, €)

denotes the open ball and CO, the closed convex hull) (see [DU]). Any denting point is an

extreme point. For an infinite dimensional Hilbert space H, Grzaslewicz and Scherwentke

. have showed recently that there are no denting points in the ynit ball of L(H), the space
! of bounded linear operators (see [GS1]). Their proof makes use of the description of the
extreme points of L(H), as isometries and co-isometries and shows that they are not
P denting points. However for the case of 1< p < 0o, p # 2, there is no complete descrip-
tion of extreme points of £(#”), known (see [G] for more information). In this paper we
take the equivalent definition of a denting point given by the result of [LLT] as an extreme
point and a point of weak-norm continuity for the identity mapping on the unit ball. Most
of our arguments involve ideas from M-structure theory for which we refer to [HWW].
In the first section we show that there are no denting points in the unit ball of L(#,Y)
whenever there is a non-compact operator and the space of compact operators K(#,Y) is
a M-ideal in L£(#,Y). Since this is the case when ¥ = # (see [HWW]) we have an
extension of the result from [GS1]. For measure spaces (4, .4;, p1) and (s, Az, po) (141
and p, are positive measures) the same authors have proved in [GS2] that there are no
denting points in £(L'(11),L!(u2)), when L' (p;) is infinite dimensional. We generalize
this by showing that £(L! (i), X), has a point of weak-norm continuity iff L!(x) is finite
dimensional and X; has a point of weak-norm continuity. Our ideas also work for other
operator ideals in L£(L!(u),X). By taking advantage of the description of operators
defined on C(K) spaces (see [DU] Chap. VI), in some special cases we could describe
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points of weak-norm continuity in AS(C(K), X), (the ideal of absolutely summing
operators with the absolutely summing norm).

For continuous function spaces, we show that for any infinite, totally disconnected,
compact Hausdorff space K and for any Banach space X there are no points of weak-norm
continuity in £(X, C(K)),. Since £~ can be identified as C(3(N)), this covers the case
p=o00. We also show that if ¥ is a Banach space with infinite dimensional centralizer then
no ‘nice’ operator (defined in § 1) can be a point of weak-norm continuity for the identity
map on L(X,Y),. ‘

We next consider a weaker extremal form, namely, strongly extreme point. A point
Xo € X is said to be a strongly extreme point, if for every pair of sequences {x, }, {y,} C X
such that (x, -+ y»)/2 — xo, implies ||x, — y,|| = 0. Any denting point is clearly a strongly
extreme point. It is well known that for any compact set K, and for any measure space
(2, A, u), every extreme point in C(K), and L! (1), is a strongly extreme point. Extending
this aspect to operator spaces the authors of [GS2] show that all the extreme points i‘n
L(L' (), L' (p2)), are strongly extreme. Isolating a property called the E. P. I .P that is
common to both C(K) and L'(y) we show that if X* has the E. P. L. P then any ‘nice’
operator in L(X, Y), is a strongly extreme point, thus extending Theorem 1 and Corollary
4 of [GS2]. ,

In the concluding part of the paper we briefly consider the stability aspect of another
geometric property shared by the C(K) and L!(u) spaces, namely every extreme point of
the unit ball is also an extreme point of the unit ball of the bidual. These were called
weak™ extreme points in [KR] and it is known that any denting or strongly extreme point
of the unit ball is a weak* extreme point. Having noted the non-existence of denting
points and the availability of strongly extreme points, the permanence of extreme points
is a natural question to consider. Our result considered in the more general setting
of vector-valued continuous functions, states that, if K is a dispersed space then
9.C(K,X), CO.C(K,X);* whenever X has the same property.

All the Banach spaces considered here are infinite dimensional.

2. Denting points

In this section, using ideas from M-structure theory and the structure of basic sequences
in £ spaces, we first show that there are no denting points in L(¢,Y), for 1 < p< oo in
the non-trivial situation. For p = 1 we get a better result by showing that there are no
points of weak-norm continuity in the unit ball of L(£1,Y) for any Y .

We refer the reader to [Ans] Proposition 2.5 for a characterization of Banach spaces ¥
for which KC(¢,Y) =L(¢, Y) (see Proposition 2.c.3 in [LT] when ¥ = ¢7). In what follows
we assume that Y is such that there is a non-compact operator from # and K(#,Y) C
L(£,Y) is a M-ideal. Examples of such Y include, £ for p < ¢, L7([0,1]), and the
Schatten class ¢, for 2 < p. We refer the reader to [KW] for more examples and charac-

terizations of such Y. In particular we recall from Corollary 6.4 of [KW] that this property
is hereditary for Y.

Theorem 2.1. Let 1 < p < co. Suppose Y is such that K(#,Y) is a proper M-ideal in
L(€,Y). There are no denting points in the unit ball of L(#,Y)

Proof. LetT € L(#,Y),||IT|l=1bea non-compact operator. We shall show that 7T is not
a point of weak-norm continuity for the identity mapping on the unit ball. Once this is
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established it would follow that any denting point must be a compact operator. However
since KC(#°,Y) is a proper M-ideal in £(#,Y), applying Proposition 4.2 and Theorem 4.4
of Chapter 2 in [HWW] we see that there are no denting points in K(#,Y),. This
completes the proof. :

Now let T € L(#,Y), be a non-compact operator.

Case i. Let {e,} be the canonical basis of #°. Suppose T (e,)+ 0 in the norm. It is easy to
see that T o (I — (e, ® €,)) — T weakly. Also

Il — (e. ®en)|| <1 and
IT o (e, @ en)|| = sup |len(x)T(en)]]

flxll<1
= [|T(en)ll-

We thus get the required contradiction.

Case ii. The general case follows from a similar argument. Since T is non-compact on a
reflexive domain, assume without loss of generality that there exists a sequence {x,} such
that |jx,|| = 1,x, - 0 but T(x,)-b 0 in the norm topology. Applying Proposition 1.a.12
in [LT] we may assume that {x,} is equivalent to a block basis of the canonical basis
{e,}. Also by Proposition 2.a.1 in [LT], for any normalized block basis, its closed span is
isometric to #7. Hence the conclusion follows from arguments similar to the ones given
during the proof in Case 1).

Remark 2.1. We note that in the situationp =2, Y = £? where it is well-known that there
are no extreme points in the unit ball of C(#*), the second half of the proof gives the
result, and the M-ideal argument is not needed. In the general case, even when Y = /7,
this does not immediately lead to a contradiction since there are plenty of compact
extremal operators(see [H]).

Remark 2.2. 1t is apparent from the arguments given above that an isometry or co-
isometry is not a point of weak-norm continuity in the unit ball. In the case of a complex
Hilbert space H, since any operator is an average of an isometry and co-isometry, it is
easy to see that there are no points of weak-norm continuity in £(H),. Thus there are no
points of weak*-norm continuity either. Since L(H) is the bidual of K(H), one can
conclude that there are no points of weak-norm continuity in K (H), (see [HL}). For other
finite p, we do not know if there can be points of weak-norm continuity in the unit ball of
the space of operators.

Remark 2.3. If Y has the R. N. P and K(#,Y) = L(#,7), it follows from a Corollary in
[DM] that £(#,Y) has the R. N. P and hence has plenty of denting points in the unit ball
(see [DUY). We do not know an example of a space Y for which KC(¢7,Y) = L(#,Y) fails
to have denting points in the unit ball.

In the following proposition we exhibit another class of Banach spaces where there are
denting points in the unit ball of"£(¢#,X). If X has the Schur property (i.e., weak and
norm sequential convergences coincide) then clearly, £L(#,X)= K(#,X). If further X
is infinite dimensional, then it contains an isomorphic copy of £!. In the following
proposition we assume that X contains ‘better’ copies of 2.
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PROPOSITION 2.1

Let X be a Banach space having the Schur property and an isometric copy of £'. Suppose
there exists a projection P : X* — X* of norm one such that Ker(P) = & and P(X*), is
weak® dense in X}. Then there are denting points in L(f,X),.
Proof. Consider L(#,4')C L(¢?,X). Since the latter space being a separable dual space
has the R. N. P, it has denting points in the unit ball. We shall show that any denting point
of this space is also a denting point of L(#,X),. This is achieved by exhibij:_ing a
projection, Q: L(#,X)"— L(¢,X)* of norm one such that Ker(Q)=L(#,¢')” and
O(L(#,X)"), is weak* dense in L(&,X)]. We then appeal to Proposition 2 and its proof
in [R3] to conclude that denting points get preserved. ‘

Since L(#,X) = K(¢,X), we identify £(£,X)" with the space of integral operators
from £7 to X* (see [DU] p. 232). Now Q is defined by composing such an operator with P.
Using the properties of P it is fairly routine to verify that Q has the desired properties.
Hence there are denting points in L(P.X),.

Using arguments similar to the ones given above and results from [DM] , the following
corollary is easy to prove.

COROLLARY 2.1

Let X be a Banach space having the R. N. P Suppose L(P,X**) = K(¢2,X**). Then there
are denting points in the unit ball of L(£,X*).

Our next result deals with the question of points of weak-norm continuity in the unit
ball of £*-sums of Banach spaces.

PROPOSITION 2.2

If {Xi}iq is any infinite family of non-trivial Banach spaces then there is no point of
weak-norm continuity in the unit ball of the space X = X
Proof. Write X = Y © Z where Y and Z consist of £*°-sum of infinitely many X;’s.
Suppose x € X; is a point of weak-norm continuity. Let x = y + 7, yetY, zeZ

If ||y|| < 1 then since Y is infinite dimensional, we can get a net {¥o} with ||y,|| = 1 and
Ya— y in the weak topology. Now ||y, + z||=max{||ya|, |z]|} = 1 and y, + z— x weakly
but not in the norm. Therefore I¥ll = 1. Similarly ||z|| = 1. It is also easy to see that each
of y and z are points of weak norm continuity in ¥; and Z; respectively.

Thus there is no loss of generality in assuming that I is countable. The same argument
also shows that x can have at most finitely many components zero and for any infinite set
A CN, sup,, [|x(a)]| = 1. Thus [Jx(n)|4 0.

We may assume without loss of generality that there exists 0< 6§ < 1 such that
llx(m)|| > & Vn. Now for e, € £2, let e,x € @, X, (the co-direct sum) denote the vector
with x in the n-th place and zeros elsewhere. Clearly e,x — 0 weakly. Note that

[lx — enx|| =1 and x — e,x — x weakly but not in the norm. Therefore there are no points
of weak-norm continuity in the unit ball.

Remark 2.4. The corresponding question for
answer (see [HL]).

We recall that for any discrete set I, th
where X; = X for all i € J.

-direct sums for 1< p < 0o has positive

e space L(£'(I), X) can be identified with BocX;

e

e

&
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Theorem 2.2. Let X be a Banach space and (Q, A, 1) (u-positive) be a measure space.
L(L'(w),X), has a point of weak-norm continuity if and only if L'(u) is finite
dimensional and X, has a point of weak-norm continuity.

Proof. Suppose £(L'(),X); has a point of weak-norm continuity.

For any A € A with 0 < u(A) < oo, the projection P:L!(u)— L'(u) defined by
FPf = fXa has the property that || f|| = ||P(f)||+ || f — P(f)| for all f& L' (). For such a
projection P (a so called L-projection) A. Lima observed in [L1] that O L(LY (), X)—
L(L'(),X) defined by Q(T)=T o P is a projection and satisfies Tl = max{||Q(T)||,
17— O(T) |} for all T € (L' (), X).

Thus if L'(x) is infinite dimensional we can choose a sequence {A,} of pairwise
disjoint sets with 0 < 1(A,) < oo such that

L(L (1), X) =9 L(L (1), X) oM

where p1, = p1|A, and M is a closed (possibly trivial) subspace of L(L' (1), X). In view of
the above proposition we obtain a contradiction.
Clearly if L' () is of dimension n, then £(L' (1), X) = @" X (n-many copies of X) and
the conclusion follows from the arguments given during the proof of the proposition.
From the definition of a denting point we chose, and from arguments similar to the
ones indicated above the following corollary is immediate.

COROLLARY 2.2

L(L' (1), X), has a denting point if and only if L! (i) is finite dimensional and X, has a
denting point.

Remark 2.5. Note that the same argument shows that for any closed subspace
HCL(L' (), X) that is closed under composition by operators from £(L! (u)), there is
no point of weak-norm continuity in the unit ball of . Examples of such H include the
spaces of compact operators, weakly compact operators.

Similar idea is again used in the following proposition which generalizes also
Theorem 3 of [GS2]. Recall that a compact set is totally disconnected, if it has a base
consisting of clopen sets. :

PROPOSITION 2.3

Let K be any infinite, compact, totally disconnected space. For any Banach space X, there
are no points of weak-norm continuity in L(X,C(K));.

Proof. For any clopensetA C K, the projection R : C(K) — C(K) defined by R(f) = fxa
has the property

1Fl= max{|IR(A), Ilf — R(AII}- |
For such projections R it again follows from [L1], that S: £(X, C(K))— L(X, C(K))

~ defined by S(T)= R o T is a projection and satisfies

171} = max{iS(D)Il, IT — S(T)]1}-
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Thus since K is infinite we can find an infinite maximal family {Ai}ies of pairwise
disjoint clopen sets. Hence £(X, C(K)) is a £°-sum of infinitely many non-trivial spaces.
Thus there is no point of weak-norm continuity in £(X, C(K i

The main difficulty in dealing with the question of points of weak-norm continuity is
that in general one does not have a description of the weak topology of £(X). We do not
know if the identity operator can be a denting point of L(X),. In the above arguments we
took advantage of weak convergence of sequences in KC(X). Thus for a general X a more
reasonable space to consider is span{X(X),I}. ]

In contrast with the situation for #*°-sums, for £'-sums of Banach spaces, we have a

positive result. It is clearly enough to consider sum of two spaces. The following Lemma
is easy to prove.

Lemma. Let X be a Banach space. Suppose M and N are two closed subspaces such that
X=M®N, isan £ direct sum. x, is a denting point of X ifand only if xo € M or N and
is a denting point of the corresponding unit ball.

Turning back to the question of denting points of span{K(X),I},, suppose ||T + I|| =
IT|| + 1 for all T € K(X). Then it follows from the above Lemma that / is a denting point
of span{K’(X),1},. That this hypothesis is satisfied when X = C[0,1] is a well known
result of Daugavet (see [A] for more information). This also shows that the preceding
technique of working with finite rank or compact operators does not work here. In spite of
this, this author has recently proved that for any infinite compact space 2 and for any
Banach space X, there are no denting points in L(X,C(£2)), (see [R2]). In the case of a
non-atomic measure it was shown in [R3] that there are no points of weak-norm
continuity in L' (g, X),.

Before exhibiting another class of Banach spaces for which there are no denting points
in £(X,Y),, we need some notation and terminology.

An operator T € L(X,Y), is said to be a ‘nice’ operator if T%(8,Y;) C 8.X}. Any such
operator is clearly an extreme point of L(X,Y), (see [S]).

For any X, its centralizer Z(X) is the set of all T € L(X) for which there is a bounded
function « and a § € £(X) such that

T*(p)=a(p)p ‘
S*(p)za?(p)p} forallpe 0.X].

In our concluding result of this section we again consider extra conditions on the range
space to conclude that certain operators cannot occur as points of weak-norm continuity.

Since Z(C(K)) is isometric to C(K) (see Ch. 3 in [B]), the next theorem generalizes
Theorem 2 of [GS2].

Theorem 2.3. Let Y be a Banach space such that Z(Y) is infinite dimensional. Then any
T € L(X,Y), such that T* maps extreme points of YT to unit vectors is not a point of
weak-norm continuity. In particular I is not q denting point of L(Y),.

Proof. 1t is easy to see that if X is any infinite compact Hausdorff space, there exists a

sequence {f,} €C(K);,0<f, <1,£, 5 0and |f,] = 1, 1 ~fll 1 for all .

Using Theorem 4.14 of [B], Wwe represent Y as a maximal function module over a
compact space Ky. By our hypothesis on Z(Y), Ky is an infinite set, Therefore using the
isometric correspondence between C(Ky) and Z(Y), we may choose a sequence T, € Z(Y)
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that corresponds to the f,’s mentioned above such that ||T,||=1 and T, = 0 and
I = T|| <1 for all n.
Now let T € L(X,Y), be such that T* maps extreme points of Y} to unit vectors.
Clearly (I —T,)oT — T weakly and ||(I — T,) o T|| < 1. Also

|Tao T|| = |T* o T, || = sup |T*(T,(p)|l
péaeYl*

= sup [lan(p)T* ()

pED, Y]

(since T, € Z(Y) we have that T(p) = ca,,(p)p)

= sup |an(p)|
pED.YY
= |lon|| = |TWl| = 1.

Therefore T is not a point of weak-norm continuity.

COROLLARY 2.3

Let X and Y be such that extreme points of L(X,Y), are ‘nice’ operators. Suppose that
Z(Y) is infinite dimensional. Then there are no denting points in L(X,Y),.

Remark2.6. Itis worth noting that in the case of &, Z(¢?) is trivial (see [B] Corollary 4.23).

Remark 2.7. We do not know an answer to the denting point (point of weak-norm
continuity) question for the space £(£*°, X), for a general X. When X is an infinite dimen-
sional space with the Schur property, then since X has no copy of £%, it follows from
Corollary 3 on p. 149 (see also Theorem 15 on p. 159) of [DU] that every operator here is
weakly compact and hence compact. When X = ¢! we first note that K(cy, X) =¢'®, £' =
L(co,X), being a separable dual space has the R. N. P. Also K(£*,X)=/2*@,.¢' =
L(£>, X). Using the canonical embedding of £! in its bidual and arguments similar to the
ones given during the proof of Proposition 1 we see that £(£>°,¢'),; has points of weak-
norm continuity. Also for any infinite compact set K and for any X with the R. N. P, it
follows from the results in Chap. VI of [DU] that AS(C(K),X) can be identified as a
subspace of rcabv(X) (space of X-valued countably additive regular Borel measures of finite
variation). A complete description of points of weak-norm continuity of AS(C(K),X), can
be deduced from Theorem 3 of [R3].

3. Strongly extreme points

In this section we consider the existence of strongly extreme points in.the unit ball of the
space of operators £(X,Y) and the permanence of extreme points.

It is known that for any compact set K, every extreme point of C(K), is a strongly
extreme point and a similar result is true of L'(),. The corresponding operator version
ie., all extreme points in L£(L'(u1),L'(12)), are strongly extreme has been recently
proved in [GS2]. The authors of [GS2] also exhibit certain class of operators as strongly
extreme points in £(C(K;), C(K;)), for compact sets K, Ks.

We first isolate a property that is common to C(K) and L'(u) spaces and use it to
obtain a general version of the results in [GS2].
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DEFINITION [L1]

A Banach space X is said to have the extreme point intersection property (E. P. I. P. for
short) if for all x € 0,X; and for all x* € 9,X?, |x* (x)| = 1. It is easy to see that both C(K)
and L' (1) have this property. Any Banach space whose dual is isometric to L! (w) also has
this property. .
Suppose xo € X is such that |x*(xp)| = 1 for all x* € 8,X* then we note that xp is a
strongly extreme point of X;. To see this, if (x, +y,)/2— xo for two sequences {x,,}*,
{yn}C X1. Then for € > 03N such that ¥a > N, Vx* € O X7, |(x*(xn) + x*(yn))/2 — x
(x0)| < €. Since |x* (x0)| =1, |x* (x,)| <1 and [x*(y,)| < 1 we get that [[%n — Yn||=sUPyea,x:
lx*(xn)— ¥*(xn)| < 2€ for all n > N. Hence the claim.

Theorem 3.1. Suppose X* has the E.P.I.P. For any Banach space Y, any ‘nice’ operator
T € L(X,Y), is a strongly extreme point.

Proof. Let T € L(X,Y), be a ‘nice’ operator. In view of our observation abqve, Wi
shall show that | A (T)|=1 for all A € 8,£(X, Y)}. Since T*(8,¥*) C8,X; and since X

has the E. P. I. P,, the conclusion now follows from the arguments given during the proof
of Theorem 1 in [R1].

Remark 3.1. Since every extreme point of £(L! (1), L' (42)), is a nice operator (see [S]
Theorem 2.2) we get that every extreme point is strongly extreme (see [GS2] Corollary 4).

Another extremal property enjoyed by both C(K) and L! (i) spaces is that any extreme
point of the unit ball is also an extreme point of the unit ball of the second dual of the
space (under the canonical embedding). We do not know if this property holds for spaces
of operators as well. We however have the following stability results.

PROPOSITION 3.1

Let {Xi},c; be a family of Banach spaces. If for all i, every-extreme point of (X;), is an

extreme point of the unit ball of the bidual then the same is true of their {'-direct sum
X= 651X,'.

Proof. Let xo € X; be an extreme
Xo(f)= 0 for all i # i,.

It is easy to see using the hy
known that X** = @,

point. Clearly there exists a ip € I such that

pothesis that xp is an extreme point of &1 X;*. It is well-
X* @1 (@, X?)". Therefore x, is an extreme point of X7*.

We next consider this property for the space of vector-valued continuous functions
C(K,X) equipped with the supremum norm. We deal with the cases K dispersed (or

scattered) and K containing a perfect set separately. The well-known identification of the

space of compact operators K(X, C(K)) with C(K,X*) thus gives corresponding result for
the space of compact operators.

The situation when X is dispersed is very similar to Proposition 1.

PROPOSITION 3.2

Let K be a dispersed compact set. Let X be such that 0.X, C 0.Xy*. Then 8,C(K,X), C
0.C(K,X)}".
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Proof. Let I denote the set of isolated points of K. It is well-known that C(K,X)" can be
identified with @;X; where X;=X* for all i. Thus the bidual has the identification
Do X

If f € ,C(K,X), then for any i € I, since i is an isolated point, f(i) € 9.X1 C 0.X7".
Therefore f € 8.C(K,X)]".

We need stronger assumptions on X and C(K, X)) to deal with the case when K contains
a perfect set. We have proved in [R1] that if X has the E. P. I. P. and for every
f € 8,C(K,X),, f(K) C 0.X, then C(K,X) has the E. P. I. P. and thus from our observa-
tion above every element of 0,C(K,X), is a weak™ extreme point.

Our concluding remark deals with the question of permanence of extreme points in the
unit ball of projective tensor products.

Remark 3.2. Let u be a finite measure and X be such that 0,X; C J.X;*. Since any
extreme point of L! (11, X), is of the form xax where x € 0.X; and A € A is a p-atom (see
[Su]), it is easy to see that L' (u, X) = X ®; M for a closed subspace M C L'(u,X) (X is
identified as functions that are constant on the atom A). Therefore
8L (p,X), C 8L (1, X)1"-

In the case of general projective tensor product X ®, Y, it is known that any denting
point of (X ®, Y), is of the form x ® y where x € X; and y € Y; are denting points (see
[RS]). Since (X ®, ¥)* = L(X,Y*) (see [DU] p. 230), it follows from Theorem 3.7 of
[L2] that if x € X; is a denting point and y € Y is a weak™ extreme point then x @ y is a
weak* extreme point of (X ®, Y),.

It is known (see [La]) that on the surface of the unit ball of K(£2)" = £ @, £ the weak
and norm topologies coincide and thus any unit vector is a point of weak-norm continuity,
whereas denting points in the unit ball are of the form x ® y for ||x|| = ||y|| = 1. In view of
these remarks it is natural to ask the following question.

Question. If x € X, is a denting point and y € Y; is a point of weak-norm continuity then
will x ® y always be a point of weak-norm continuity in (X ®. Y),?

This is indeed the case when of X or Y is a L' (u) space (see [R3]). More generally the
following proposition gives another instance when the above question has affirmative
answer. It can be proved using arguments similar to the ones given during the proof of
Corollary 3 in [R3].

PROPOSITION 3.3

Suppose X is such that the answer to the above question is affirmative for X @ X For any
compact set K, let F € M(K,X), be a denting point and x € X; be a point of weak-norm
continuity. Then F @ x is a point of weak-norm continuity of (M(K,X) ®x X),. If either K
is dispersed or X also has the R. N. P, then the same conclusion holds, when F is a point
of weak norm continuity and x is a denting point.
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Note added in proof

We now use the ideas contained in § 1 of this paper to completely answer the question on

points of weak-norm continuity in L(X,C(K));. In what follows we shall use the
identification of L£(X,C(K)) as W*C(K,X*), the space of functions on K that are
continuous when X* has the weak* topology, equipped with the supremum norm.
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Theorem. Let K be an infinite compact Hausdorff space and let X be any Banach space.
Let f € W*C(K,X*) be a unit vector. There exists a sequence {f,},>, C W*C(K,X"),
such that f, — f weakly but not in the norm. Hence there are no points of weak-norm
continuity in L(X,C(K));.

Proof. Let f € W*C(K,X*), ||f]| = 1. It follows from Theorem 3 of [DHS] (see also
[R2]) that the result is true if f is continuous w.r.t the norm topology on X*. Note that if
f(K) is a norm compact subset of X*, then since weak* and norm topologies coincide on
f(K), we get that f is continuous w.r.t the norm topology. Thus we assume w.l.o.g that
f(K) is not norm compact. Therefore there exists a sequence {f,},»; C K of distinct
terms such that { f(#,)},>; has no convergent subsequence (f(K) being weak* compact is
norm closed). -

We choose as before sequences of pairwise disjoint open sets {U,} and {g,} C C(K)
such that g,(z,)=1 and g, = 0 on K — U, for all n. Using the ‘dominated convergence’
and the ‘Riesz representation’ theorems it is easy to see that (1 — g,) — 0 in the weak
topology of C(K). Since the map g — gf is a bounded linear contraction from C(K) into
W*C(K,X*), it preserves weak convergence. Thus it follows that f, = (1 — g,) f — f in
the weak topology. Since Sup||f(2.)|| < Sup||g. f|| we get that f, 4+ f in the norm.

+
1

[DHS] Dowling P N, Hu Z and Smith M A, Extremal structure of the unit ball of C(K,X),
Contemp. Math., 144 (1993) 81-85



