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SUMMARY. We prove that the distribution of tho Jized maximum likelihood eati-

mate of the drift paramotor in tho Ornstein-Uhlenbeck process converges to the normal distribu-
tien with an error rate O(T-113),

1. IrtRODUCTION
The study of the rate of convergence of an estimator often boils down to
studying rate of convergence to normality for martingales or their perturba-
tions. This is usually carried out by appealing to Skorokhod's embedding
theorem.

This is the approach taken by Mishra and Prakasa Rao (1985) in dealing
with maximum likelihood estimate (m.l.e.) for processes of the form

dX(t) = —Oa(X@)dt+b(X()AW(E), X(0) =0, ¢ > 0,6 > 0and W()
a¥X()

d,

*(X(1)
(which, incidentally is hard to check) they obtain error bounds for the normal
approximation of the normalized m.Le. When applied to Ornstein-Uhlenbeck
(0-U) process, this yields the rate 715,

is a Brownian motion. With a condition on the growth of ]' RN

However, the O-U process being a natural continuous time analogue of
the first order discrete autoregressive process with ii.d. N(0, 1) errors, one is
led to believe that the above rate can be sharpened.

The normalized m.l.e. is a ratio of two processes. The numerator is a
martingale which converges to a normal variable and the denominator is the
corresponding associated increasing process which converges a.s. to a positive
constant.

Mishra and Prakasa Rao (1985) use simple Markov inequalities to tackle
the demominator. The numerator is embedded in & Brownian motion by
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Kunita-Watanabe theorem and then Lemma 3.2 of Hall and Heyde (1080)
is invoked. These two together limit the rate obtainable to -8, For the
0-U prooess, Burkholder’s inequality can be used for the denominator (after
applying Ito’s formuls) to yield the better rate T-4*1, ¢ > 0. However, as
long as we use embedding technique, the rate cannot be better than T-14,

Hence we take an alternative approach. By extending an argnment in
Lipteer and Shiryayev (1978) (henceforth referred as LS), we obtain the
characteristio function of the numerator for suitable values of the argument.
This allows us to use Esseen’s lemma yielding the rate O(T-1/2) for the numera-
tor. The denominator is linked with the numerator via Ito’s formule. This
helps us to get the final resnlt.

This result opens up the posaibility of obtaining faster rates of convergence

for general linear diffusions. It also shows that the embedding technique
might not lead to the strongest possible results.

2. PRELIMINARIES
Let X(t), ¢ > 0 be a diffusion process satisfying the stochastic differential
squation
dX(t) = —0X(O)dtdW(), ¢ > 0, X(0) = 0.
Here W() is & standard Brownian motion and 6 > 0 is the unknown pars-
meter. It is well known that the solution X{t) is a conti Ganssian process.

Let, C[0, T] = The space of real valued continuous function on {0, T).
MY = The measure generated by X(¢), 0 < ¢ < T on C[0, T}
MT = The measure generated by W(¢), 0 < ¢t < T on C[0, T].
It is well known that M < M7 and the Radon-Nikodym derivative (likeli-
hood function) can be explicitly computed. This in turn yields that the
m.l.e. 87 of 6 based on the “observation” X(¢), 0 € ¢ < T satisfies
T T ~1
br—0 = J X [ x0a) ",
0

The details can be seen from LS.
Ito’s formula (See Elliott, 1982) gives

2 fxu)m(.)—x'm =20 f X1,

This relation shall be used later.
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O ghall denote a generio
anything else).

t (perhaps depending on 6, but not on

3. THR MAIN RESULT
We begin with a few lemmas.

Lemma 3.1: For Z;, Z, ¢ C*,
7
Ly or(Zy, Z;) = E exp(Z, J XHQydt+ Z,X¥(T)),

Then or(Zy, Z,) exists for | Z;| < 8,4 =1,2 for some 8 > 0 and s given by

_ 728 2 12
ontte 2= 0 5 )| = Fore—ston |

. @

where A = (6°—2Z,)"* and we always choose the principal branch of the square
rool.

Proof : First assume that Zg =a;6¢#, 1 = 1,2 and o are sufficiently
small.

Define A = (6*—2a,)"* and dX} = AX) di+dW(t), X} = 0. Also recall
that dX8 = —6X08dt-+dW(t).

Then we have (see LS)

a3
T

@) = expf (—6- [ am- (750 Tapa]. . o)
Note that

100, 03 = Epoxp e, | (X0 (X8,
1f we change the measure to that generated by X%, then by (3.2),

T T T
atn, ) = E oxp| o § (X4 - (0-+2) | T}, [ (XIE]

T
= E exp| ax(X31—(6+2) JX}dX‘,]‘ . (38)

By Ito’s formula,
AXY = 20Dy db,
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Using this in (3.3),

oalay o) = E exp (Xpt{m—T52) + 5 040
Note that X ~ N (O, B%T)_l). Thus
T(6+2 21 y
Prlay, ) = ‘”‘P( (; ) )[ A+ (A +0—2a,)(exp(2AT)— 1) ]“

which on simplification yields (3.1) for Z,’s real, around a neighbourhood of
zero. Thus, there is no problem of existence of @7(Z,, 2,) around zero in (!
and since we have shown that the m.g f. exists, pr(Z;, Z;) is an snalytic func.
tion. On the other hand (3.1) defines an analytic function in the relevant
domain and agrees with pr(2,, Z,) for Z,, Z, real. This finishes the proof.

Lemma 3.2: For |¢| < ¢ TV2 where ¢ is sufficiently small,
29
|Eezp it T) J‘X(a)dW(s))—exp(—l’ﬂ)‘ & C.exp(—2/4)|¢[>T-11

Proof : By Ito's formuls,

_[X(.s)dW(s)-—ﬁ[X’(t)dt T X £m,

Hence,

E exp(il(%,o) m:j"‘ X(a)dW(a)) = or(Z,, Z,)exp(—; (gog')m)

. (34)

Note thet (Z,, Z,) setisfies the condition of Lemma 3.1 by choosing ¢
sufficiently small,

Note that  A—8 = O([¢]T-18), A48 = 20-+0(|¢| T-1%)
and A = 6fp(t)+0(}¢]|*T-1)

1.4 4
where Balt) = 1~ — 5.
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Let ap(l) denote any function which is O(|¢|7-2). Using these simple
estimates,

. or (3 +az())exp(TOBr()+O(|¢[2T-V4) 112
or(2, 2 = oxp 5 )[ay-(t)+(2+aq-(t))exp(27'0ﬂ1(t)+0(|t“|T‘”‘)]

Using this in (3.4), the required expectation equals

[ Ttar(t) } 1
aT(t)exp( —7—;—0) + (1 +ar()expyr(t)

where

Urt) = TOprO—0T +% @0Tyr0(117-12)
= 4+0([¢]°T-172).

Thus, the difference to be estimated, is, in absolute value
= |exp(—#2)(1+ar()oxp(O(|¢|*T-1/2)) —exp(—£%/2) |
& C.exp(—82) [L[2T-2exp(O( || 3T-1/2))
< C.[4|*T-"exp(~£2/4)

choosing ¢ sufficiently small.

This proves the lemma.
2

11 7
Let Y(T) = (,p) § Xiswirs)

Lemma 3.2 end the well known Esseen’s lemma immediately yields

Lemma 3.3: sup |P(Y(T) € 2)—0(x)] € CT-'72
7R

We now state the main theorem.
e
Theorem 3.4 : sup ‘P ((50) r—0) < 1;) —®(x)‘ < o
zeR
and the bound is uniform over any fixed compact subset of 0.
Proof : Note that
T
(35) (0r—0)=

YT
—_—
2671 [ X*()at

0

. _ T _ " 2\12Y(T)  XNT)
£.1) yields 2673 [ X¥()dt = 1-7-¥% (7) -
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Let B, ={|¥(T)| > &log T}
B, = (T-14X%T) > & log T} where & is large.
By lemma 3.3,
| P(B))—P(|N(0, 1)| > 8log T)| € C.T-"4.
Using simple approximation for the tails of a normal distribution,
P(IN(0,1)| > 8log T) = O(T-1A),

Thus,
P(B,) = O(T-'). .. (38)

Note that X(T) ~ N (0, The variance being bounded in

1—exp(—20T)
—w )
T, simple Markov inequality gives

P(B,) = O(T-"%).

T2
On Bf (N B;, (20) (01'—0)‘ & Clog T' for some C.
Also by a simple binomisl expansion of the denominator, on Bf N B;,
7oz 9\1/2
(gp) (6r—0) = Y(T)4 T2 (7) YHT)+o(T-'7).

= Y(I)+T-2aY¥T)+0o(T-12), say.
Now note that for any |u| < Clog T,
2+ T-Viga?  u iff

) < 2 &

a -I—4ai

iff ay(T, v) < z € (T, u) where

TV P \1a A
)

R

= u+0(u¥T)
= 40T Xlog )

wfA | P \1a I
z + m) -5 < —0.1N,

and ay(T, ) = —( %
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But as in (3.5), P(¥(T) < —C.T) = O(T-'),
and | P(Y(T) € z4O(T-(log T)%)— ()|
< C.T-124 | O(x) — Blz+-O(T-Ylog T)Y) |
€ C.T-V* uniformly over z.
This proves the theorem completely.
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