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By using the Sagdeev pseudopotential method, solitary kinetic Alfven waves (SKAW) are studied
in a low-8 plasma, taking into account the electron inertia and ion temperature. Solitary wave
solutions, and the electric and magnetic fields, are obtained using the knowledge of the
pseudopotential analysis in plasma dynamics. It is found that both hump and dip solitons exist for
SKAWSs, conforming to the results of Freja scientific satellite observations in space.

I. INTRODUCTION

The existence of finite-amplitude solitary kinetic Alfven
waves (SKAW) propagating in an oblique direction to the
ambient magnetic field in a plasma has been studied by sev-
eral authors.'™ Kinetic Alfvén waves play a significant role
in the coupling between the ionosphere and magnetosphere.
It is known that the ideal magnetohydrodynamic Alfvén
waves are not of a dispersive nature. However, if the perpen-
dicular wavelength is comparable to the ion gyroradius, the
ions will no longer follow the magnetic lines of force,
whereas the electrons, due to their small Larmor radius, will
still be attached to the field lines. This produces a charge
separation and leads to what are called kinetic Alfvén waves.
These waves have dispersion for an oblique propagation.
Solitary kinetic Alfvén waves are possible due to the inter-
play of this dispersive characteristic and nonlinear steepen-
ing. Hasegawa and Mima® studied analytically the solitary
Alfvén waves propagating in a direction oblique to the am-
bient magnetic field in a plasma with 1>8>m,/m;; where
B is the ratio of the kinetic pressure to the magnetic one. Yu
and Shukla® showed the existence of localized finite-
amplitude Alfven waves with density hump. Later Shukla
et al.® investigated the exact nonlinear slow Alfvén wave in
low-g plasma. Kalita and Kalita’ studied exact nonlinear Al-
fvén waves in a low-g plasma (S<<m,/m;<1) and found
that both super- and sub-Alfvenic rarefactive solitons exist
depending upon the angle of inclination of the propagation
vector to the magnetic field. Subsequently the large-
amplitude solitary Alfvén waves were studied by Kalita and
Bhatta.® However, they did not obtain the solutions for the
electric and magnetic fields.

Recently the large-amplitude Alfvén wave research re-
ceived an added impulse owing to the observational studies
on the data from the Freja scientific satellite observations.”!”
The data from the Freja satellite showed that the auroral
low-frequency turbulence is dominated by strong electro-
magnetic spikes, which show solitary structure and have a
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possible interpretation as SKAWSs. Also, these SKAWs are
of both hump density and dip density solitons. Recently, Wu
et al.'! attempted to relate the analytical solution of SKAWs
to some events observed from the Freja satellite data. Wu
et al.'? extended their studies to cases where they took into
accounts the pressure gradient effect as well as the electron
mass. However, in this case they did not calculate the finite-
amplitude soliton solution either analytically or numerically.

In this paper we derived the exact Sagdeev pseudopoten-
tial in order to find the region of existence of finite-amplitude
SKAWs, taking into account the pressure gradient term for
the electron, electron mass, and also the finite ion tempera-
ture. Ion temperature is of significance in the study of
Alfven waves, as unlike ion acoustic waves, Alfven waves
exist even when the nonisothermal condition, viz. 7,>T; is
violated.!® This is because in a magnetized plasma oscilla-
tions of same frequencies can propagate in which the electric
field is not irrotational and cannot be expressed in terms of a
single scalar potential. These oscillations are weakly attenu-
ated as their velocities are much greater than vr) thermal
velocity of ions.

We obtained the solitary wave solutions and the electric
and magnetic fields numerically using the knowledge of the
pseudopotential. We found that both hump and dip density
solitons may exist, though there exists a critical ion tempera-
ture beyond which compressive solitons would not exist. The
plan of the paper is as follows.

In Sec. II the basic equations governing the dynamics of
a homogeneous plasma in a uniform ambient magnetic field
are given. Thence, based on the quasipotential analysis, the
exact pseudopotential is derived analytically. In Sec. III the
solitary wave solutions are discussed. Section IV is kept for
discussions and conclusions.

Il. BASIC EQUATIONS AND PSEUDOPOTENTIAL

In the following we give the basic equations governing a
homogeneous plasma in a uniform ambient magnetic field B,
along the z direction [assuming the wave vector to be

(kx707k2)])
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with the quasineutrality condition
n,=n,=n. (8)

Equations (1)—(8) are written in normalized form. The
density is normalized to n,; the unperturbed plasma density,
the velocity to the Alfvén velocity v 5 . The electric and mag-
netic fields are normalized, respectively, to T,w_;/(ev ) and
By. Here T, and w,; are, respectively, the electron tempera-
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ture and the ion gyrofrequency. Here a= /20,0 being the
ratio of the electron mass to ion mass. To obtain the analyti-
cal pseudopotential we consider a stationary wave in the
moving frame, defined by

n=kx+k,z— wt. (9

Replacing d/dt by —w(d/dn), d/dx by k.(d/dn), and
d/dz by k.(d/dn), Egs. (1)—(7) reduce to a set of ordinary
differential equations, the independent variable being 7. The
integration of these equations is not a difficult problem.
However, before integrating the equations let us first calcu-
late the dispersion relation without neglecting the finite ion
temperature.

Using Egs. (2)—(7) the dispersion relation is obtained as
follows:

MI1+0+ QI — M (1+ 0+ Qak’—yo)

+Qa+yo=0, (10
where

o _M T

sz 7K:= ( )

g4

where M is the dimensionless phase velocity and K,
=k,/k,=cos 0,0 being the angle of propagation made with
the z direction and k the dimensionless wave number. When
o=0, the relation (10) reduces to the one obtained by Wu
et al.""'* The solution of (10) is given by

,_ 1 +0+Qaki—yo) V1 + 0+ Qaki— yo) —4(Qa+ya)(1+ 0+ QkY)

2 2(1+0+0K)

If one neglects O, Qa, and o, then (12) reduces to

M*=(1+Qak®)(1+Qk3) ™", (13a)

Writing M_.=w/k, and restoring the dimensions, one
gets the dispersion relation for kinetic Alfvén waves,

0’ =vi2(1+r2 k) (1+ 2k @), (13b)
where 7, is the ion Larmor radius. This is same as obtained
by Hasegawa and Mima.” Now integrating the above set of
equations with the boundary conditions for solitary waves,
viz.n—1,v,,—0 v,,—0 as | 7| — o, the equation of motion
can be written as (henceforth we write M for M)

d*n ap(n,M,k,)

T 4
where the pseudopotential (n,M,k,) is given by
(1+Q) -
b= oMK (n), (15)

2(1+Q0+0kK2)

; (12)
|
2\ -2
W(ﬂ)=”4(l%) ¢1+% b,
0 «a a
+@E b3t 377 4| T 05|, (16)
with
3M2—1—%)
$1=(n=1)! ——p—, (17
dr=—n(n—1)(M*n+1)+(M*—1)n* In n, (18)
(n2-1) , -
¢y=— 5 +(M+1)(n—1)n—M*n“Inn, (19)
2 (n2_1) 2 2
dy=M?n? > —(1+M*(n—1)n*+n* Inn,

(20)
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We have used the equation of state for the ion as
pi/n}=const, with pozn?ZI, n=1, u,.=u,.=dn/dyg=0
as |7|—=0. Henceforth, for all numerical calculations, we
shall take y=3. For o=0 the pseudopotential {¢) obtained
here agrees with the one obtained by Kalita and Bhatta® if
one neglects the term —v3/c?. However, our result differs
slightly from the one obtained by Wu e al.,'* who erred in
leaving out the term 1/(1+ Q) from the coefficients of ¢,
and ¢y .

Ill. SOLITARY KINETIC ALFVEN WAVES

For solitary wave solutions, the particle motion given by
Eq. (14) must be confined between two points n=1 and »
=n,, and dn/dnp=0 atn=1 and n=n,,. Also, in order that
V—i(n) is real for n lying between 1 and n,,, ¥(n)<<0 in
that region. The other two conditions are

1 : =0 at n=1 22
( ) f 2 ] t L] ( )
and
2 n 1 : <0 al n=n 23
( ) ( m ) / 2 ] t m» ( )

these conditions mean that the particle is reflected back at
n=n,,, but not at n=1.

From d*n/dn*=0 at n=1, it follows that e}(n,M,k:)
reaches a maximum at n=1. This implies that

_aq2 _ =2 - _
(24)
Also,
1 i <
(7~ )d_”zn:n 0
leads to

(1=M?n,)(1—aM ™ 2n2)

. . ’
X|1-— —o(n+n,+ >0.

Since, for the Alfvenic wave, M is of order unity, for 1
<a<a” ' and @<1 the conditions (24) and (25) lead to (for
small o)
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FIG. 1. A plot of (n) vs n for ¢=0.0, 107%, and 5 107°, indicating the
existence of hump solitons. Here M =0.35, @=0.9, k,=0.5.

n, ' <M*<1, (26)

or

TS - S 27)

and another inequality (1 —aM ?n?)#0 is satisfied au-
tomatically.
For a=1, 0<1 (24) leads to

(I—MZ)(I—aMZ)(1+j7(;)<O, (28)

while (25) leads to

(1=M?n,)(1—aM 2n2)[1+ oM 2(ni+n,+1)]>0.
(29)

It is found that for @~ 1 both hump and dip solitons
exist. To show the region of existence of the solitary wave
solution, ¢4(n) is drawn against n for different o, in Fig. 1. It
is seen that for 0>5X 107° the solitary wave solution does
not exist. This implies that the upper limit for the ratio of ion
temperature to the electron temperature, viz. o;, is of the
order of 10™2. Here we have taken M=0.35, a=0.9, k.,
=0.5. Since a~ 1, B is of order B~10">. In Fig. 2, t;(n) is
plotted against n to show the existence of the dip soliton
solution. Here M =1.5, «=0.5, k,=0.5.

The soliton solution can be obtained by integrating Eq.
(14). In Fig. 3 the solitary wave solution is shown for o
=0.0 and o=5X10"°. The electric fields and magnetic
fields could be obtained from the set of Egs. (2)—(6).

Here E, can be obtained by integrating the equation

’ K2
i 1+Q(1—1)—v;—f(n—1)},

W:a’\/—l[l(n) 0 n,

whereas £ and B, are given by




Phys. Plasmas, Vol. 5, No. 11, November 1998

0.005

FIG. 2. A plot of ¢(n) vs n for ¢=0.0, 0=0.10"*, indicating the existence
of dip solitons. The unbroken line is for o= 0.0, and the line with circles is
for ¢=10"*. As can be seen, these two lines are indistinguishable. Here

M=1.5, =05, k,=0.5.
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In Fig. 4, E,, B, (normalized) are plotted against 7 for
two values of &, viz. 0, and 5 107°.

In Fig. 5, £, is plotted against 7 for the two values of o
mentioned above. It is seen that both a hump and dip struc-
ture exists for £, while £, and B, have shock wave, like
structures. For Figs. 3, 4, 5 the parameters M, «, k, are taken
to be the same as in Fig. 1.
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FIG. 4. A plot of £, and B, vs 7 for 0=0.0, 0=5X 107 Other param-
eters are the same as in Fig. 1.

IV. DISCUSSIONS AND CONCLUSIONS

Since the Alfvén waves can exist for values of T,/T, not
satisfying 7;/T,<€1, it is worthwhile to see the effect of ion
temperature on the existence of SKAWs. We have also taken
into account the electron inertia. An exact analytical solution
for the pseudopotential is obtained from which the solitary
wave solution and the electric and magnetic fields can be
obtained. It is found that for M<<1 only hump solitons exist,
whereas for M>1 only dip solitons may exist. The effect of
the ion temperature and the electron inertia is to restrict the
region of existence of both types of solitary wave solutions.

Figure 5 shows that £, has a structure containing both
hump and dip structures and is similar to the experimental
data of the F4 experiment of the Freja satellite on 3 March

1993. A small but finite ion temperature also changes the
shape of the solitary wave solution, as will be clear from Fig.
3 and Fig. 5. It is very likely that SKAWs may play a sig-
nificant role in the study of auroral plasma. In that case study
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FIG. 5. A plot of E, vs 5 for 0=0.0 and ¢=3x 10" °. For other param-

FIG. 3. A plot of r vs 5 for 0=0.0 and =35 % 10"%, showing the soliton
eters see Fig. 1.

solutions. Other parameters are the same as in Fig. 1.
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of large-amplitude solitary Alfven waves is of considerable
importance, both from the theoretical and experimental
points of view.

ACKNOWLEDGMENTS

The authors are grateful to the referee for constructive
criticisms that helped us in writing the paper in its present
form. The authors are indebted to Dr. G. C. Das for helpful
comments. One of the authors (R.R.) is grateful to the De-
partment of Science and Technology (DST), Government of
India, for financial help.

'A. Hasegawa and C. Uberoi, The Alfvén Wave, Department of Energy
Critical Review Series—Advances in Fusion Science and Engineering
(Technical Information Centre, U.S. Department of Energy, Washington,
DC 1982).

B. C. Kalita and N. Devi, Phys. Fluids B 5, 440 (1993).

R. Roychoudhury and P. Chatterjee

M. Y. Yu and P. K. Shukla, Phys. Fluids 21, 1457 (1978); C. N.
Lashmore-Davies and R. M. May, Phys. Fluids 15, l6l6 (1972); R. L.
Lysar and C. W. Carlson, Geophys. Res. Lett. 8, 269 (1981).

4G. C. Das and S. G. Tagare, Plasma Phys. 17, 1025 (1975).

SA. Hasegawa and K. Mima, Phys. Rev. Lett. 37, 690 (1976).

°p. K. Shukla, H. D. Rahman, and R. P. Sharma, J. Plasma Phys. 28, 125
(1982).

"M. K. Kalita and B. C. Kalita, J. Plasma Phys. 35, 267 (1986).

¥B. C. Kalita and R. P. Bhatta, J. Plasma Phys. 37, 235 (1997).

P. Louarn, J. E. Wahlund, T. Chust, H. de Feraudy, A. Roux, B. Hulback,
P. O. Dovner, A. I. Eriksson, and G. Holmgren, Geophys. Res. Lett. 21,
1847 (1994).

1°p. 0. Dovner and G. Holmgren, Geophys. Res. Lett. 21, 1831 (1994).

""De-J. Wu, De-Y. Wang, and C-G. Falthammar, Phys. Plasmas 2, 4476
(1995).

2De-J. Wu, G-L. Huang, De-Y. Wang, and C-G. Falthammar, Phys. Plas-
mas 3, 2879 (1996).

13y Petviashvili and O. Pokhotelov, Solitary Waves in Plasmas and in
Atmosphere (Gordon and Breach, London, 1992).



	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf

