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Effect of ion temperature on the conditions for existence of solitary waves in a relativistic plasma
is studied using Sagdeev’s pseudopotential approach. It is shown that the ion temperature puts a
restriction on the values of V, the soliton velocity. It is also shown that for small amplitude and cold
ions, the present results agree with the existing published results. Numerical solutions of the
equation of motion derived from the pseudopotential are obtained to see the effect of ion
temperature on the width and amplitude of the ion-acoustic solitary waves.

I. INTRODUCTION

Ion-acoustic solitary waves in a collisionless plasma
have been studied extensively during the last decade or
s0.!7* Small but finite amplitude solitary waves are ad-
equately described by the Korteweg—de Vries (KdV) equa-
tion which can be obtained by reduction perturbation
technique.>~'*

Recently properties of ion-acoustic solitary waves in a
collisionless plasma consisting of nondrifting ions have been
studied by a few authors.’>~18 Most of these studies, how-
ever, were based on reductive perturbation technique and
hence are valid for small amplitude only. But large amplitude
solitary wave solution is relevant in view of recent experi-
mental observations.!®?® It was Roychoudhury et al.?! who
first used a nonperturbative approach to obtain large-
amplitude solitary wave solution in a relativistic plasma. It
was later investigated in detail by Ghosh and Roy.”? How-
ever, they, like others, neglected electron inertia. It was
recently”® shown by Kuehl and Zhang that the effects of
electron inertia are much more important than relativistic
effects. In this paper we shall study the effect of ion tempera-
ture in a relativistic plasma using Sagdeev’s pseudopotential
approach® without neglecting the effect of electron inertia. It
is shown by Kuehl and Zhang? that a significant effect of
electron inertia is to limit the regime in which solitary wave
solutions exist to that in which ion velocities are essentially
nonrelativistic. It will be shown here that one very significant
effect of ion temperature is to limit the range of values of V,
the soliton velocity, even in the nonrelativistic region.

The plan of the paper is as follows. In Sec. II we derive
the exact pseudopotential starting from the basic system of
equations and compare our results with the previously pub-
lished results. In Sec. III we discuss the conditions under
which solitary wave solutions are possible. We also compare
our results with those obtained from perturbative approach.
Finally, Sec. IV is kept for discussion and conclusion.

il. BASIC EQUATIONS AND PSEUDOPOTENTIAL
APPROACH

The basic system of equations governing the plasma dy-
namics in unidirectional propagation is given by
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where m; and m, are electron and ion masses, respectively.
Here o is the ratio of the ion temperature T; to the electron
temperature T, , n and n, are the ion and electron densities,
respectively, normalized to the unperturbed ion density; u,
u,, and c are ion and electron fluid velocities and the veloc-
ity of light, respectively, normalized to the ion-acoustic
speed C,=(KT,/m;)"’?, where K and T, are Boltzmann’s
constant and the electron temperature, respectively. The dis-
tance x and time ¢ are normalized to the Debye length and
the ion-plasma period, respectively. The ion pressure p is
normalized to (ngKT;) ™}, ny being the unperturbed ion den-
sity. The electrostatic potential ¢ is normalized to KT,/e,
where e is the electron charge.

To obtain a solitary wave solution we make the depen-
dent variables depend on a single independent variable &=x
—Vr where V is the velocity of the solitary wave. Now Egs.
(1)—(6) can be written as



dn d
Vd§ +E(nu) 0, (8)
du du, O'dp__d_f
Vag T aE Twag T Tag ©)
dp dp du
=5 +u—§+3pd—§—0, (10)
dn
d§ df (n.u,)=0, (11)
du, du, 1 (d(p 1 dune)
“Vag e Tw\agTh, ag ) 2
2
(ii—g=ne—n. (13)

We integrate Egs. (8)—(10) with the following boundary con-
ditions.

When
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Equation (8) can be integrated to give
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If we replace 1/n in (9) by [(1—u/V)/ug,], multiply it by 2
and subtract it from ¢'/V times (10) we get the following
differential equation
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Integrating (18) and using the boundary conditions (14) we
get
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Eliminating p and u from (15), (17), and (19), a sixth-order
equation in n is obtained. The explicit form of this equation
is
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Henceforth, we will write o in place of ¢’. There is no gen-
eral analytical solution of Eq. (22). However, it can be solved
for n keeping terms up to 0(1/c?). After some algebra we
obtain
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Similarly considering the boundary conditions é—c, ¢—0,
u,—0, n,—1, and integrating (11) and (12) we get
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, (24)

e=In[V/(V—u,)]+1/2u[(V-u)*-V*]. (27)

It is convenient to obtain the so-called Sagdeev potential,
such that

d’¢  dy

& " de (28)
where the pseudopotential is

P(@)=ve(@)+ bl ¢), (29)

where
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The pseudopotential i given by Eq. (29) contains the terms
¢, due to electrons and y; due to ions. In order to evaluate
the integral (30) we differentiate (27) and get
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where u, is given implicitly by Eq. (27). Assuming ¢,=0 at
=0, we get
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This agrees with the result obtained in Ref. 23. Now the
integration of the ion term can be done by the following
change of variable
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where C is an integrating constant. Using (25) we get
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We have omitted the integrating constant as it is already
included in (37). It is convenient to choose the integrating
constant in such a manner as to get yA0)=0. Thus we have
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Neglecting electron inertia and relativistic effect (m,=0,
C =) we get
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These results agree completely with those obtained by Roy-
choudhury er al.> for a nonrelativistic plasma with warm
ions. To consider the limit o—0 we first expand the right-
hand side (RHS) of (40) in powers of o. Neglecting terms of
0(0%) we get
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Now considering c—0 and neglecting electron inertia (i.e.,
assuming m,/m;=0) we get

ug 3v? v:
Ylp)= —e“’—V?'( 1 —7)[Z( 1 +Z-E;7) +m_2__CT
V273
+W +Cy, (53)
where
Z=(1-2¢'/V})'?, (54a)
C, is such that (0)=0. (54b)

This is identical with the result obtained by Roychoudhury
et al.?! Also in the limit c—0, our result agrees with those of
Kuehl and Zhang® where they obtained the pseudopotential
for a relativistic plasma with cold ions.

ill. SOLITARY WAVE SOLUTION

The form of pseudopotential would determine whether a
soliton-like solution of Eq. (28) will exist or not. The condi-
tions for existence of solition is?®

3y
3§0 ¢=0
This is the condition for the existence of a potential well.
Another condition is
We)=0, (56)

where ¢, is given by

@c=(V2+3apoug; — V120poVu3,)/2+aq . (57)

This condition is obtained in the following way: The pseudo-
potential ¢ becomes complex if the density of the ion is
complex. This occurs if

> (V24 30poug; — V120poV2us,)/2 +ay.

Hence, the particle moving in a pseudopotential well will be
reflected back at a certain point ¢=¢,,, ¢, being the value
of ¢ when (o) cuts the ¢ axis from below.

Let us first consider the simple case when ¢=0, m_,=0,
and u3=0. As c—, it can be shown that the soliton solution
exists for 1<V=1.6 (Ref. 22). If we neglect the electron

<0. (55)
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FIG. 1. Plot of V—u, against uy/10 for m;/m,=1836, uy/c=0.02. The solid
lines show the boundaries for ¢=0.001, the broken lines for o=0 and the
lines with circles for o=0.000 01. We have taken only the positive values of
V—u,.

inertia and ion temperature, the condition for existence of
solitary waves reduces to?! 1<V<1.6, where

Vv

VeiT2agv

Also, since in the limit o—0 our results completely agree
with those of Ref. 23, the conditions under which the solitary
wave solutions exist will be same as those given in Ref. 23.
However for o#0 these conditions can not be expressed in
simple analytical form and one has to have recourse to nu-
merical analysis. We have numerically analyzed the pseudo-
potential for some particular values of the relevant param-
eters. Figure 1 shows the region where solitary wave
solutions exist for m;/m,=1836 and uy;/c=0.02, and for
three values of o, viz., 0=0, 0=0.0001, and ¢=0.001. The
boundary curves labeled

azw)
=0
i

correspond to linear ion-acoustic waves. It is seen from this
figure that the effect of finite ion temperature is to shrink
further the region where solitary wave solutions exist. How-
ever, ug/c has very little effect. In fact, for 0=0, the bound-
ary Y{¢)=0 almost coincides with that obtained by Kuehl
and Zhang.

In Fig. 2, y{¢) is plotted against ¢ for different values of
V(30.75, 31, 31.25, and 31.55). Other parameters involved
are uy=30, uy/c=0.02, 0=0.0001, po=1, u=1/1836. The
amplitude of the solitary wave, if it exists, would be the
value of ¢ at which ¥{¢) crosses the ¢ axis from below. The
end point of the graph shows the value of ¢ behind which
() becomes complex. As can be seen from Fig. 2, solitary
wave solutions exist for V=30.75, 31, and 31.25, but for
V=31.55, solitary wave solutions do not exist as ¢{¢) is
negative through out the region. This clearly shows how the
finite ion temperature restricts the region where solitary wave
solutions exist. It may be noted that for 0=0, solitary wave
solutions exist even for V=31.55 (see Ref. 23). [To- obtain
the solitary wave solutions we have numerically integrated
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FIG. 2. Plot of y{¢) against ¢ for several values of V, viz.,, V=30.75, 31,
31.25, 31.55, and uy/c=0.02.

Eq. (18) for different values of o viz., 0=0.0, 0.0001, and
0.01. Other parameters are uy=30, uy/c=0.025, V=30.75,
po=1.

It is seen from Fig. 3 that both the amplitude and the
width of the soliton decrease when temperature increases.]
Now to compare our results with those obtained in Ref. 16
using reduction perturbation technique, we write [taking
=0 and neglecting terms of order O(¢°)]

d2
d—g'z'-_—ago—b(pz. (58)

From RHS of Eq. (49), we have (neglecting electron inertia)
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FIG. 3. Plot of ¢(f against £ for uy/c=0.025 and V=30.75 for several
values of o, viz., 0=0.0, 0.0001, and 0.01. .
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and the soliton solution is
3a ¢
il 2
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where 8=2/Ja is the width of the soliton and 3a/2b is its

amplitude. To compare (60) with the result of Ref. 16 we first

rewrite their result in the form
_3M w22 A
o= sech?|

Also, we take no=1. Here the soliton amplitude is 3M/a and
its width is /=(48/M)""?. Now, if we keep only first-order
terms in py and u, and ug/c?, we get

M

(61)

Again from (59a) and (59b) we get (after putting v=Ao+M
and 0=p)

30 _aml142 pgto 0 63
35 = 5Poty; 2 (63)

which is identical with (62). Similarly, the equivalence of &
and /, the respective widths, can be shown in a straightfor-
ward manner. Thus Nejoh’s'” result is but a particular case of
our exact result.

IV. CONCLUSION AND DISCUSSION

In this paper we have studied the effect of ion tempera-
ture in a relativistic plasma using Sagdeev’s pseudopotential
approach. We have taken into account the effect of electron
inertia in deriving the exact pseudopotential. It has been
shown by Kuehl and Zhang® that the effect of electron in-
ertia is to limit the regime in which solitary wave solutions
exist. In the present work we have shown that the effect of
finite ion temperature is to further restrict this region. To
check our result with the previously published one, we have
calculated the pseudopotential in the limit 0—0 and found
that our results completely agree with those of Kuehl and
Zhang. For small amplitude solitons, the pseudopotential ob-
tained by us reproduces the results obtained by Nejoh.!”

Though we have condidered here one electron plasma
the result can be easily extended to two electron plasma and
also plasma with negative ions.
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