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ESTIMATION OF DENSITY QUANTILE FUNCTION

By GUTTI JOGESH BABU
Indian Statistical Institute

SUMMARY. Lot F bo o distribution funetion with density f at p-th quantile F-{p).
Somo rosulta on estimation of density quantile aro obtained in this paper. The density quantitle
funotion is estimated uniformly in an interval and almost sure bounds for such cstimators are
obtained in the dependont case alsa.

1. INTRODUCTION

Let F be o distribution function with density f. Parzen (1979) attaches
great importance to the density quantile function f(F-(1)) in statistical data
modelling, when he proposes, ‘... greater insight will be obtained by formula-
ting conclusions in terms of qualitative and quantitative behaviour of the
quantile and the density quantile function.” Some results on estimation of
density quantile function are given in the next section. In the last section,
almost sure bounds for density quantile estimators are obtained for the
dependent case.

The following preliminary results arc needed to state the main results.

Lemma 1: For any inleger k 3 2, there exists a polynomial hy of degree

< k such that
(0 ifj=2 ..,k

@
{ yihe(y)e-vdy = { e Y
° L1 ifj=0,1
Proof . Let E bo the (k+1)X(k+1) matrix whose (i, j)-th clement is
(i+5), 4,7 =0,3, ..., k. For any real numbers ¢g e, ..., &, not all zer,

we have

x X @
I (i) teey= I e yiHevdy
i gm0 i g0 0

o K
= [(Z yle)evdy>0.
0 =D
So, K is a positive definite matrix. Let

(O s O) = (1, 1,0, ..., )L,

E
Clearly, (1) holds if we take hx(x) = £ 2'0;, This completes the proof.
i=0
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Lemma 2: For any k » 2, lel hg be as in Lemma ). Then

I T hetehtymintz, ey dz dy = of > 0, - ®

where o} = '};(gk(x»fdz and galz) = T heta)ev dy.
z

Proof : Let I(B) denote the indicator of B. Leth; (£) = h(z)es.
Since

Tz dy < o,

using the dominated convergence theorem and the Fubini’s theorem we get
that the Lh.s. of (2) equals

{ i) (71 < 2l < piduiiz dy

Il

lm § ] Rk I < 2l < ydudzdy
P 00 0

i [( {hi)dadu = o}
w0 u
Clearly ox > 0. Note that
lox(e)] € [ ytevdy < (14-24)e.

Ko g} is integrable, as a result oy is finite. This completes the proof.
For k = 2,3 we can take
hy(2) = (4z—2%)[2
and hy(2) = (— 12+ 48z —212%+ 22%)/8.
For these choices 0} = 13/16 and o} = 63/32.

2. DENSITY QUANTILE ESTIMATION

For any distribution function @, 0 < p < 1, let G-}(p) = inf{z : G(z) > p).
Let {X,, ..., X,} be a collection of random variables with common distribntion
function F. Let F_ denote the empirical distribution function of X,, ..., X,.
For any 0 < p <1 and k> 2, let 8(k) = 1/(2k—1), A(k) = (1—8(k)}/2,

Tin, k, p)=n*®11EYF ) (p+ifn)— F (p) ha{in*B-tyexp(— kit (8)
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and A(n, k, p) = 2?07 (Tin, k, p)f(F-(p))—1), o

where I° denvtes tho sum over all positive integers 1 < i € 3n'-#Plogn
and Ay and oy are as in Lemmas 1 and 2. In practice sums are easier to com-
pute than the integrals. This is the reason for defining T'(n. k, p) through
a sum. Note that Afn, k. p) is defined whenever F has o derivative f at
F-Y(p). The following definition is useful in stating the results.

Definition. Let k > 1 be an integer. The distribution function F iv
said to satisfy condition A(k) at x, if F is k-times continuously differentiable
at z and f(x) > 0, where f is the first derivative of F.

Theorem 1: Let {X,} be i.i.d. random wariables with distribution funclion
F. Lt 0<py<..<pm<]1, k>2 and let F salisfy condition A(k) in
a neighborhood of F-\py), 1 < j < m. Then {A(n, k, p,). ..., A(n, k, pw)} are
asymplotically independent and each A(n, k, p;) converges veakly to the standard
normal distribulion.

Proof © To simplify the notation, we drop the subscript & in the proof.
For example, we write 8, #, h instead of 8(k), (k) and hg. First note that
for 1 i€ 3 al-dlogn,

} 'j‘" [e-'"‘_lh(in“‘)—e"-’"’h(m‘)]d.uf

-in )
Im im 4
=| 1w (] et —igntayyis] )
u=-1/n z

tn
< ntYlog n)k § emxn’y
u-

Din
ind=1
<nYlogn)k [ e T o 3
(i—na=t
Since A is a polynomial of degres k the inequality above follows as
[+ K@) < lyi*
Let {Ug be iid. U[0, 1] random variables. Let V, denute the empirical

distribution of U,, ..., U,. Without loas of generality we can take
X¢=F(Uy). We require the following well known result;

wup | Vil —a| €d, s, - ®
<<t

where d, = ((log log n)/n)'%. Let for t&{p, ..., Pm}, 6= ay(t) denote the
jth derivative of F-! at (V7 ()
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To simplify the notation we put
S(n, b, v} = V3 t4+0)— V7 10).

By (6) and by Taylor's expansion we have for small v, that a.e.

F+0)—Fi) = £ (S(n, ¢, v)Yaz+o((S(n, ¢, V))X)
3=1
= )5 (S(n, &, v)—v vMagd-o({(S(n, ¢, v)—v4v)k)
Jo=t
& i
= ’El(V:'(t+v)— Vi —v)ay+ ,E vlay+0(vd,,)+O(d?)+o(v¥)
- -1

= ,’5, apt (VL) = V() = a, - O(d2) + O, )+ ofok)

By Buhadur-Kiefer representation of quantiles (see Kiefer 1967), we have
for small v a.e.

Fho) =) = X apl—(F,04+0)—V,(0)—vle,
J=1
+0(n~%4og n)+O(vd,) +o(v*). v (T
Now by (5) we get a.e. that
sn—dlog n
T(n byt =03 [ (F3\(p+a)—F(ph(endidz+ O(nt=1(log n)t)
0

I
— ™ T " (Fp- o) Fiip)(o)do-+ O(n-1(log n)¥).
As L]
{ ylevdy = O(n(log n)),
3logn
we have from (7) and Lemma 1, that a.e.,
T(n, k, &) = (1-+1(n, k, 1))a,+0(n*-4log n)+0(d,) +o(n~k-14),

where .
3 n
I ) = —n [ (Vptom)— V, (O —on-d)h(o)dv.
[)
Since | f(F-1(t))a,—1] & | V()= ()| € d,, we obtain ae.
A(n, k, Yo = n®1(n, k, t)+o0(1). . (8)

By Theorem 4.4.1 of ('sdrgo and Révész (1081), there exists & Brownian motion
W and a process Z, such that

WAV =110 <t 1} 2 (WH—tW(N+2,0): 0K < 1
aud sup | Zy(t)| = Opfn=31 log m)
oSGl
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where Op(g,) is & sequence of random variables H,, such that H, /g, is bounded

in probability and X 2 ¥ denotes that the random variables X and Y have
the same distribution. As W and — W have the same distribution we have

» Slogn
nfln, k, t) = n® | (W(t+on—0)— WO (v)dy
L]
+0y(log n)tn?)+ W(1no-0m, - (9)
Now (8) and (9) give the asymptotic independence of {A(n, k, p,), ..., A(n, k, pa}}
and for each j,

Al k, p) 2 01 | W(o)hi)e-sdu+op(),
1)

where 0p(1) denotes a sequence of random variables tending to zero in pro-
bability. But f W(v)k(v)e~® dv is a normal variable with mean zero and var-
[]

ance 0. This completes the proof.

Remark 1 : Suppose for some k > 2, the distribution function F satisfies
condition A(k) at F-(t), for ¢ € [a,b), 0 <a<b < 1. First note that
inf (f(F-}¢)): tefa,b)] > 0. From Theorem 1, it is clear that

An, k) = sup{| A(n, &, 8)| :a <t < b} .. (10)

tends to infinity in probability. The next theorem gives bounds for A(n, k)
in probability.

Theorem 2: Under the conditions of Remark 1, there exists o b(k) > 1
such that as n— o,

P((23(k)log n—4 log log n)* & A(n, k) < b(k)(log n)/%) - 1.

Proof : Let oy and 8(k) be as before. We shall now partition the interval
[a, ] into smaller intervals of length 6(log n)n~%t¥' and leave a gap at each
of the end points a and b. To do this let & = s, = [(b—a)n®®[6 log n)—5
and let 6 <Py <Py < ... < Pgyy <b be such that pe,,—p¢ = 8(log nyn—4td
for 1 18 Put

Slogn

K(n, k,t) = n8t0gp1 {7 (F(04un-2t0)— W(t))hp(v)eodv
o

and r, = (28(k) log n—(7/2)log log n)¥*. Clearly, {Kin, k, m): 1 <i<4)
sre independent. Since for any z > 0, the standard normal di
function O satisfies

(w1 —aexp (5 #4) < V20— 0(e)).

Pty
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we obtain
P( sup |K(n,kt)| <r)<P( sup |Knkp)| <ry)
agi<y 18is

< (P ( }!lé_ﬂ W(v)h,(v)g—vdv| < ”"") )c

< (1=2(1=B(r, +-O(n~3))))s. - (1)
Note that

1=®(r, +0(n"2%)) > (log n)=V%(14-N(log n-V2)n-4k)(log n)74.

1
Vandik)

Since 1—2 &< e% for 2 > 0, the left side of (11) is not more than

(1 =(1/y/4m8(k)(1+O((log n)~V2)}n=4tM)log n)/4)e,
& exp(--((b—a)] V4n8(k))(log n)'4) - 0,

as n— 0. Since o(l) estimate in (8) holds uniformly in any closed interval
J as long as fo F-! is bounded away from zero and F*-" F-1is continuous
in J, we get from (0) that

A(n, k) 2 sup{) K(n, k, )] 1 a <t < b}4op(1). L (12)
So from (12) we obtain that P(d(n, k) > (log n—4 log log n)V2) = 1.
To complete the proof we use (see (1.1.12) of Csorgs and Révész (1981)

limsup sup s [Witto)— V| < lae.
10 0<igl-s0<o<s  V20log (1]v)
and the integrability of Vo log(1/p)hx(v)e, to get

lim sup (log n)~'2 sup |K(n, k)|
PN a<i<d
& lim sup T (28(k)v+-2v(log(1/v))/(log n))V/% | hx(v) | e~vdv
A= 0

< £ (@8 halv) | e~ = (k) < 0 ne.
[
Thoe theorom now follows from (12).

3. DENSITY QUANTILE ESTIMATION IN THE DEPENDENT CASE
A sequence {X,} is called ¢-mixing if there exists a monotone sequence
{#(n)) such that @(n)— 0 as % — co and

sup{| P(4 | B)—P(4)] : 4 ¢ Mpm,,, Bc M, P(B) > 0, m » 1} < ¢{n),
where M, denotes tho o-field generated by {X, :m < § < #).
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The following theorem gives a.e. bounds in the dependent case.

Theorem 3: Let {X,} be a alriclly slationary ¢-mizing seq wilh
Z$'%(j) < co and X, having a continuous distribution function F. Let for
some k> 2 ond 0<a<b< 1, F salisfy condition A(k) at F-'(t) for
tela,b]. Let A(n, k) be as in (10). Then A(n, k) & logn ae.

Let U;= F(X(). Clearly {Uj} is a stationary ¢-mixing sequence of
U[0, 1] random variables with 4V%(j) < co. Let V, denote the empirical
distribution of U,, ..., U,. We recall some results from Babu and Singh
(1978).

Lemma 3: For 0 ugv |, let

xolu, v) = 2y, ) = Hu Uy £ v)—(v—u),

where I denoles the indicator function. Then there exisls q, gy, g, > 0 such thal,
whenever 0 L u < 1, 0 < e < 1=—u, |v—u| ¢ and 0 < d < cn'¥W, we have

P ( | ’_)_.E.I zi(u, v)

> Mq) & it g, exp(—-8d®nIc ).

For a proof see Lemma 2.1 of Babu and Singh (1978).
Lemma 4: We have ae.,
sup {| Va')—t| :0 <t < 1} &d,

and
sup | V3O=V,()—2| <€ b+ log n.
tci<

For a proof see Theorem 1 and Lemma 2.3 of Babu and Singh (1978).

Lemma 5: Forany 0 <8< 1/2,
D, = sup{] V, (4 0)=V,(1—0)=220[: 0 L t € A,. 0 < I < )} L5, ae.,
where ¢, = n"*Y2%og n and A, = 3n~* log n.
Proof : Let v, =[1fe,}]4+1 and w, = [A,[/c,]+2. Note that
D, < supf{| V)=V, () —t+u| 10 <t <) |a=t] <A}
& supf| Vo (t4je )=V, —je, | +e, 0 <t < 1. ]j] € w,}
< max{| V, (G +j)c,) =V, (ic,)—je, ) : 1 € i v, 5] € wo}+20,
= R,+2, (say).
It is enough to show that ae., R, <¢,. We apply Lemma 3 with ¢ =2,
and d = 3n¢, to et
P(nR,>24d) < 2nsup(P(n| V,(t+8)—V,()—¢| >20d) : 0 <8 < 1, 4] <A
£ n
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Now the resnlt followe from Borel-Cantelli Lemma.
Proof of Theorem 3: From Lemma 4 and the proof of Theorem 1, we
have (8) uniformly for ¢ ¢ (a, b). So by lemma 5 we get a.e.
Aln, k) € n*®qup{|I(n, k, )| : @ <t < b}+o(1)
& nPokgup( |V 1+ o)—V ()-v|:a <t <b,
0 < en®® < log n}4-o(l)
< PAUEHSE)~ 1814102 log ng log n.

This completes the proof.

Remark 2. A similar result holds for strong-mixing random variables
also. In this case one needs to use Theorem 3, Lemmas 3.3 and 3.4 of Babu
and Singh (1978).
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