Computers Math. Applic. Vol. 34, No. 12, pp. 121-135, 1997

Efficient Algorithms for Single- and Two-Layer
Linear Placement of Parallel Graphs

S. C. NANDY
Indian Statistical Institute, Calcutta 700 035, India

G. N. NANDAKUMAR*
Motorola India Electronics Limited, Bangalore - 560 042, India

B. B. BHATTACHARYA
Indian Statistical Institute, Calcutta 700 035, India

(Received July 1995; revised and accepted March 1997)

Abstract—This paper outlines an algorithm for optimum linear ordering (OLO) of a weighted
parallel graph with O(n log k) worst-case time complexity, and O(n + klog(n/k) log k) expected-case
time complexity, where n is the total number of nodes and k is the number of chains in the parallel
graph. Next, the two-layer OLO problem is considered, where the goal is to place the nodes linearly in
two routing layers minimizing the total wire length. The two-layer problem is shown to subsume the
maxcut problem and a befitting heuristic algorithm is proposed. Experimental results on randomly
generated samples show that the heuristic algorithm runs very fast and outputs optimum solutions
in more than 90% instances.

Keywords—VLSI layout, Parallel graphs, Optimal linear placement, Graph theory, Maxcut,
Algorithms, Complexity, NP-completeness.

1. INTRODUCTION

The linear placement problem arises in the design of integrated circuits where, a set of modules
with a given interconnection pattern is to be placed into a set of linearly arranged equidistant
holes on a single routing layer. To describe the problem formally, consider n modules whose
interconnections define an undirected weighted graph G(V, E); each node v € V represents a
module; thus |V| = n. Let ¢;; denote the number of wires connecting two modules represented
by nodes v; and v;. Then the edge e;; € E has an associated cost w(ei;) = ¢ij. In VLSI design,
one major problem is to get the optimal linear ordering (OLO) that minimizes the total wire
length. Thus, the objective function L is the sum of wire lengths in a linear placement of the
modules, i.e.,

n

n
L= Z Z Cz‘j-gija

i=1 j=1
where £;; is the Euclidean distance between v; and v; in linear ordering and the goal is to
minimize L. In general for an arbitrary graph, the OLO problem is known to be NP-complete [1].

*This work was done when the author was at the Indian Statistical Institute, Calcutta.

121

122 S. C. NANDY et al.

However, for some special type of graphs, polynomial time algorithms exist. Adolphson and Hu [2]
have shown that the OLO problem can be solved in O(nlogn) time for a tree, provided the root
is always placed before any of its subtrees in the linear ordering. The unconstrained linear
placement for trees can also be solved with time complexity O(n%2) [3]. The method proposed
by Cheng solves the OLO problem for the parallel graphs defined as follows [4].

Given a set of disjoint undirected weighted graphs G = G1,Ga,... Gy, where each G; has
two distinguished nodes called source and sink, a parallel graph is constructed by coalescing the
sources (sinks) of all the components of the set G to a single source (sink}, respectively.

The time complexity of the OLO algorithm [4] is O(n?), provided the optimal order of each of
the components is known in advance. Thus, in such a situation, a parallel graph is essentially
composed of a set of disjoint chains corresponding to the optimal order of each component G;
of G. Henceforth, we shall refer this type of graphs as parallel graphs.

This paper outlines some interesting properties of the OLO problem for parallel graphs and
presents an improved algorithm which outputs the optimal linear ordering in O(nlogk) worst-
case time and O(n + klog(n/k)log k) expected-case time, where n is the total number of nodes
and k is the number of chains in the parallel graph. Next, the two-layer lineer placement problem
for parallel graphs is formulated, where the nodes of the graph are to be placed in two layers
minimizing the total wire length. Two-layer or multilayer placement problem arises in the layout
of VLSI chips and PCB’s, where two or more layers are often available for wire routing. The
optimum two-layer placement can be achieved by partitioning the set of chains of the parallel
graph into two subsets appropriately and placing them linearly in two different layers. This in
turn, reduces to the maxcut problem of a graph which is known to be NP-complete {1], and an
efficient heuristic algorithm is proposed. The algorithm outputs optimum solutions in around
90% cases on randomly generated parallel graphs of various sizes. It can easily be generalized for
an m-layer linear placement problem, where m > 2.

The paper is organized as follows. New properties of the single layer OLO problem for parallel
graphs, and an improved algorithm with complexity analysis are presented in Section 2. The
formulation of the two-layer problem and a heuristic algorithm with experimental results appear
in Section 3. Finally, the concluding remarks are presented in Section 4.

2. SINGLE LAYER LINEAR
PLACEMENT OF PARALLEL GRAPHS

Given a k-chain parallel graph with arbitrary nonnegative edge weights, the conventional linear
placement problem is to place the nodes of the graph into linearly arranged equidistant holes on
a layer, so as to minimize the total length of interconnections.

2.1. Review of Existing Method

Let G(V,E) be a parallel graph for which an optimum linear ordering is sought. Before pre-
senting an improved algorithm for the OLO problem, we first review the method suggested by
Cheng [4]. Let us consider the three arcs A;, A;, Ak, of the chain shown in Figure 1.

If A; is the only arc between nodes ¢ and k£ — 1 which can be elongated beyond unit length in
an optimal linear order, then (¢; — ¢;)/(£:) > (¢; — cx)/(€;) (see [2]). This motivates us to define
cost-ratio as follows.

Let C(vy,-..,v,) be a chain consisting of n nodes and connected with source s(vo) and sink
t(vnt+1). Let e; denotes the edge connecting v;—; and v;, i = 1, 2, ..., n+1, and ¢; denotes its
cost. Now consider a portion of the chain (v;—1,%4,...,0m—1,9m). The cost-ratio of e,, with

respect to e; is given by p{en, ;) = (cm — &)/ (m — i)

Consider now a k-chain parallel graph. Let n; be the number of nodes in the i*® chain. vy; and
U(n,+1)i are the source (s) and sink (t) nodes, common to all the chains of the parallel graph. The
7" node in the i*? chain is denoted by v;; and the cost of the edge €;; connecting v(;_1); and v;s,

Single and Two-Layer Linear Placement 123

OO 0——§0

Figure 1. Illustration of cost-ratio.

is ¢ji, j = 1,...,n; + 1. The cost ratios p(eji,ex:),j =1,...,n4,i =1,...,k are computed for all
the edges of the parallel graph. Let

k n;
pejein, €140) = min Bn;?u(ej,-, e1:).

Now the set of nodes (vii«,v2i+,...,V(+—1);+) of the i*th chain combined with the source (s)
forms the new source. The node vj«;- is considered as the first node of the i**" chain which
is connected with s. The cost ratio of the edges ej-,5 = 7* +1,...,n; in the i**h chain are
recomputed with respect to e;+;«, provided j* < mn;.. The cost ratios of the other chains remain
invariant. The same process is repeated until all the nodes, excepting ¢, are combined with s.
Finally, ¢ is appended with this ordered set to get the optimal linear order of the parallel graph.

To illustrate the flow of the above algorithm, let us consider the example of a two-chain parallel
graph as shown in Figure 2.

Figure 2. An example of a two-chain parallel graph.

The values of the cost ratio for As, ..., Ag w.r.t. A;, and for Bs, ..., Bg w.r.t. B; are calculated
and p(Asz, A;) is found to be minimum. The new source turns out to be (s, A;), and the edge-cost
joining Az and the new source node changes to 8. In the next iteration, B; is merged to (s, 4,),
so that the new source (s, A1, B;) is formed and the edge-cost of the new source and Bs turns
out to be 5, but the edge-cost of source and A, remains the same. This process is repeated and
finally the optimal linear order (with total cost = 151} is shown in Figure 3.

PERE R Q QR o

Figure 3. Optimum linear placement of the example shown in Figure 2.

It can be easily observed that the above algorithm might take O(n2) time in the worst case.
This can be easily noticed from the example of two chain parallel graph in Figure 2. The following
results reveal the fact that the cost-ratio need not to be recomputed for all nodes in each step.
We exploit this to accelerate our algorithm.

2.2. Some Important Results

In the optimal linear order of a parallel graph, at least one arc of each chain will be elongated
beyond unit length. This follows from the fact that the common source (sink) of all the chains
appear as the leftmost (rightmost) node in the linear order. So, we partition the original problem
into a pair of subproblems as illustrated below. The OLO problem is solved for each subproblem.
Finally, the optimal linear order of the nodes in the parallel graph is obtained by concatenating
the linear order of nodes of the two subproblems.

124 S. C. NANDY et al.

DEFINITION 1. The mincut of a parallel graph is a cut which separates the nodes s and t such
that the sum of the edge-costs crossing the cut is minimum.

From [4], it follows that the original problem can be divided into two disjoint subproblems:
one to the left side of the mincut, and the other to the right side of the mincut. Each subproblem
may be considered as a special case of a rooted tree, where several chains are connected to a
single root node. Hence, the O(nlogn) time algorithm for rooted trees [2] may be used to solve
these two subproblems. However, for our case, the following analysis will show that the same
algorithm {2] can be used to solve the above problem in O(nlog k) time, where k, the number of
chains in the parallel graph, is much less than n.

In the rest of this section, we shall consider the right subproblem. The left subproblem can be
solved similarly. We now state some results that follow from the concepts given in [2].

LEMMA 1. In the optimum linear order of the above subproblem, an edge of the i** chain having
costs cj; may be elongated (i.e., the two vertices of e;; will be positioned in two nonconsecutive
holes in the linear arrangement) only if there is no other edge with cost cj; (' > j) for which
Cjri < Cji.

PROOF. Let the statement of the lemma be false, i.e., the arc e;; having cost c;; is elongated
and there exists another arc e;; having cost ¢j; (7' > j) for which ¢;; < ¢;ji. The cost ratios
of arcs ej; and ejr; with respect to a reference arc ey; are (cj; — c1:)/(£,;) and (¢jr; — e14)/(€54),
respectively. Note that £;; < {;+;, since j < j' and ¢y; is the cost of the edge on the mincut in
chain i. So, for all j, ¢j; < ;. Thus,

Cjry — C14 Cyri — C14 & Cji — Cu.
L £; I ¥

Since e;; is elongated over unit length, the cost-ratio of e;; should be less than that of e;;, which
contradicts the above relation.]
Lemma 1 suggests that given any chain 4, the possible candidates for elongation can be found
by marking only those edges that are not followed by an edge with smaller or equal weight. This
marking can be done in O(n;) unit of time, where n; is the number of edges in the i** chain.
Let NE and N denote the set of marked edges of the ith chain to the left and to the right
side of mincut.

LEMMA 2. Let e, es, and ez be three consecutive marked edges in a chain with costs ¢, ¢a,

and c3. Now, if u{es,e1) > u(es,ez), then ey will no longer be considered as marked edge for

elongation.

PROOF. Follows easily from [2, Theorem 2.2].]
Thus, to find the final list of marked edges in each chain, one needs to compute the cost ratios

of each marked edge with respect to the marked edges that precede it in the chain.

THEOREM 1. Let ey,€e3,...,em € N¥ (o = L or R) denote the list of marked edges from the
mincut onwards along one side of a chain with costs ¢1,¢2,...,0m, Where ¢y < €3 < ++- < ¢,
and let the number of nodes between edges e;_, and e; be ¢; for j = 1,2,...,m. Then

(a) if p(em, e.’i) 2 P"(ej-i'-l! ei): then .U«(emgej-i-l) = piem, ej)l

(b) if plem, ej41) = plej1,€;), then plem,e;) 2 ulej41,€5),

(c) if u(ee,ej+1) > plem,ej+1) and plem, ;) > plej+1,€5), then ulee,e5) > plej1,€;).
PROOF. The proof of the theorem follows from Theorems 2.2 and 2.3 of [2] with minor modifi-
cations. |

Theorem 1 assures the following facts.

(1) If e; and e; are two consecutive marked edges in a chain at some instant of time, then
for any future comparison of cost-ratios, only u(e;, e;) is to be preserved; cost ratios of e;
w.r.t. other edges lying in between e; and e; are not required.

Single and Two-Layer Linear Placement 125

(2) Let ey, ez,...,en, be the current list of marked edges (by Lemmata 1 and 2) with cost-
ratios p(es,e;), u(es,e€a),. .., (€m,em—1), respectively. Now let e, be a marked edge
next to e,, in the same chain. Now to insert e,,s in the current list one has to compute
p(em’, em—1), and compare with p(em, em—1). If p{em:, em—1) < p(€m,em—1), em will no
longer be considered as a marked edge by Lemma 2. Now compare e, with e,_; and
so on until a node e; is obtained with p(eqn,e;-1) > u(e;,ej—1). All the marked edges
from ej41 to e, will no longer be possible candidates for elongation, and hence, can be
deleted from the marked edge-list. The edge e,,» will be marked after ¢; and the cost-ratio
associated with ey, is p(ems,e;). Thus, for each marked edge in its chain the number of
ratio-computations and comparisons is 2 + A, where A is the number of deletions of edges
from the marked edge-list at the time of processing this edge. Again, the total number of
deletions in processing all the edges in a chain cannot exceed the total number of edges in
the chain. Thus, for each chain, the total complexity of preparing the final list of marked
edges is O(n;), where n; is the number of nodes in the i*! chain.

(3) In the final list of marked-edges for any chain, the cost-ratios of an edge w.r.t. the previous
ones will be in increasing order.

The optimal linear order of a k-chain parallel graph can be obtained by merging nodes with
respect to cost ratios for the marked edges of £ chains.

2.3. Complexity Analysis

‘Worst-case

In our algorithm, given in the Appendix, the mincut of the parallel graph having n nodes can
be obtained in O(n) time. For each subproblem, the initial marking of edges (by Lemma 1) in
the i*P chain with n nodes requires O(n;) operations in the worst case. If m edges are initially
marked in a chain, the final list of marked edges on the basis of cost-ratio, can be performed in
O(m) time. Again, in the i*P chain, at most n; edges may be marked. So, in the worst case, the
final list of marked edges can be found in O(n) time. An efficient algorithm [5] can be adopted
to merge the sorted lists of cost-ratios corresponding to k chains, which requires O(nlog k) time.
Thus, the total time complexity of the algorithm is O(nlogk).

Expected-case

THEOREM 2. If the edge-weights are randomly distributed, then the expected number of edges
to be marked in a chain is O(log §}, where § is the number of edges appearing in the chain.
PROOF. Let us mark the edges on the basis of costs in a chain as stated in Lemma 1 (the smallest
element in the chain is the leftmost one). Let f(6) denote the number of marked edges in a chain
of length §. Let the expectation of f{6) be denoted as h(6).

Since the first marked edge may be any one of the 1%, 27d 3rd . §th edge with equal
probability, the expected number of marked edges = {1 + expected number of marked edges in
the right of the first marked edge in the chain}. The length of the remaining part will take the
values (6 — 1) down to 0 with equal probability 1/4. Therefore,

1 6~-1
h(g) =1+ > k(i)

12 1
=1+E§h(z)+3h(é—1)

6-2

S+ 150+ L (14 2 Sh
= +E§ () +3 +5-11_=1 (i)

126 S. C. NANDY et al.

—1+1+(EM—U)E:h

"1+;+———§:M0
1

1 1
1+6+§ +- +3+ h(l)
Note that h(1) is the number of marked edges in a chain of one element. So h{1) = 1. Thus,
h(6)=1+4+1/24+1/3+---+1/(6 -1)+1/6 = log,é.]

An alternative proof can also be devised using the well-known concept of inversion sequence [5).

Theorem 2 suggests that if the edge costs in different chains are randomly distributed, the
expected number of marked edges in a chain of size m is O(logm). Thus, the expected total
number of marked edges in all the chains is O(Zle log n;) which may be at most (klogn/k).
The time required for merging the cost-ratio arrays corresponding to the marked edges for k
chains is O(klog(n/k)logk). Thus, the expected time complexity of the algorithm is O(n +
klog(n/k)logk). The space complexity of our algorithm is O(n).

2.4. Example

For the parallel graph given in Figure 4, the optimal linear placement is worked out as follows.

L2 2L
11532481

Figure 4. An example of a 4-chain parallel graph for demonstration.

The mincut of the graph is shown by a dotted line and the problem is reduced to two subprob-
lems, as shown in Figures 5a and 5b, one to the right side of mincut and the other to the left
side of the mincut. In both the subproblems, a dummy source node s’ is added such that all the
edges on the mincut are incident on it. The sink node for the left (right) subproblem is assumed
to be s (t). The trace of the algorithm for the problem in Figure 5b is shown below.

The first step of our algorithm is to mark the edges in all chains on the basis of their costs
according to Lemma 2. The marked edges (with their costs given in parentheses) for the example,
shown in Figure 5b, are

for chain 1: e11(8), e21(14), e41(16), €51 (19), €61 (22)
2 : egz(6), e72(13)
3 : €43(2), e53(4), e63(8), er3(14)
4: eg4(1), e54(2), €64(5), €74(10).
The final list of marked edges for chain-1 is determined as follows.

o ulea;,e;1) = 6 and ez is a marked edge up to this stage.

o u(es1,enn) = 8/3; since p(eqr, e11) < plen,e11), €21 will no longer remain a marked edge;
e4; will be considered as a marked edge up to this stage.

o ulesi,enn) = 11/4 > pfeq1,€11), 50 eq; and ey; are both marked with cost-ratio puleas, 811)
= 8/3 and p(es1,eq1) = 3.

o yfes1,eq1) =6/2 =3 = p(es1,eq1), 50 51 need not be marked. At this stage, only eq; and
eg1 are marked with cost-ratio p(eq1,e11) = 8/3 = 2.67 and u(es1,€41) = 3, respectively.

Single and Two-Layer Linear Placement 127

Figure 5. Subproblems (a) to the left of mincut, (b} to the right side of mincut.

Similarly, the cost-ratios in all the chains are found as shown in the list
Chain 1: 2.67(eq1), 3(es1)
Chain 2: 3.5(872)
Chain 3: 2(esa), 4(ee3), 6(er3)
Chain 4: 1(654), 3(654), 5(874).
The next step is to merge the cost-ratio arrays. The placement of nodes in the linear order is
done by considering the elements of the merged array sequentially.
The problem corresponding to Figure 5a is solved similarly with source node s’ and sink node s.
The linear orders for the problems in Figures 5a and 5b are

8 V14 V13 Ugq Va3 V12 V2 U32 V4o Us4 U3z 8
and
!
§' V44 V43 V11 V21 V31 V41 Us1 Us4 Us2 Uz Us3 Vg Ugs t
with total costs 494 and 324, respectively. The final placement is obtained by merging the two
chains at §'.

3. TWO-LAYER PLACEMENT

Two-layer linear placement of a weighted graph is an arrangement of nodes in two separate
layers. The slots are unit distance apart in each layer and the number of slots in both the layers
are equal. The source and sink nodes are made available to both the layers through via holes.
The placement is said to be optimum if the total cost of interconnection is minimum. Such a
problem may arise in a VLSI layout design when two layers are available. In this paper, we shall
restrict ourselves to two-layer placement for parallel graphs only.

3.1. Formulation

We will first introduce some important results on the basis of which the two-layer linear place-
ment problem is formulated. Then we will present a heuristic algorithm, its time complexity and
experimental results.

3.1.1. Some important results

DEFINITION 2. The additional cost of linear placement for two chains A and B of a parallel graph
is given by

Cadd(A, B) = Copi(A, B) — C(A) - C(B),
where C(A) and C(B) denote the total cost associated to all the edges of chain A and B,
respectively, and Copt(A, B) is the cost of optimal linear ordering of A and B.

For the two-chain problem in Figure 2 the total optimal cost is 151. The sum of edge-costs of
chain A is 48 and that of chain B is 41. The additional cost is therefore 62. The additional cost
is incurred when two consecutive nodes of a chain are separated by one or more nodes of some
other chain in the linear order so that the wires connecting the former two nodes get elongated
over unit length.

128 S. C. NANDY et al.

DEFINITION 3. An equivalent chain is the optimal linear arrangement of the nodes of more than
one parallel chains. The cost of an edge connecting two nodes of the equivalent chain is the total
cost of all edges of the original parallel graph, that passes through the interval between them.

For example, the equivalent chain corresponding to the two-chain parallel graph of Figure 2 is
shown in Figure 3.

LEMMA 3. Let A be the equivalent chain obtained from the optimal linear placement of two
parallel chains A, and A,. Let A3 be a new chain. Then)
{(a) the optimal linear placement of Ay, Ay, and A3 is equivalent to the optimal linear place-
ment of A and Aj.
(b) Cagda(A, A3) = Cagda(A1, A3) + Cada(Az, A3).

PRrOOF. The proof follows from the fact that in the optimal linear order of the two chains,
the linear order of the nodes in the individual chains remains invariant. The rest follows from
Definition 2. |

THEOREM 3. The cost of optimal linear placement of a k-chain parallel graph with chains A,

As, ..., A is
k

k-1 k
Copt(A1, Az, ..., Ak) = Y _C(A)+ Y Y Cadd(As, 4j).
i=1 i=1 j=i+l
ProOF. The theorem can be proved by induction. For k = 2, the theorem holds by virtue of
Lemma 3. Let the theorem be true for k = £. Now for k =£+1,

Copt(A1, ... Ag, Agy1) = Copt(A1, ..., Ag) + C(Aeg1) + Caaa((A1, . .., Ar), Ags1)
(by definition of additional cost for merging a two chain parallel graph)

¢
= Copt(A1,- -, Ae) + C(Ae41) + Y CaaalAi Aetr)
i=1
¢ -1 ¢ e
=Y C(A)+D_ Y Caaa(Ai4;) + C(Ars1) + Y Codd(As, Aty1)
i=1 i=1 jaitl i=1
(by Lemma 3).

£+1 £ 41
=3 CA)+Y_ Y CaaalAn4).
i=1 i=1 j=i+1
Therefore, it holds for k = £+ 1. (]

Two-layer placement of a parallel graph can now be obtained by dividing the set of parallel
chains into two mutually exclusive sets of chains and placing the optimal linear order of the two
groups in two different layers with two common terminal nodes s and ¢.

Let W be a set of parallel chains. It is divided into two sets Wy and W5 such that W { Wy = W
and W; YW, = ¢. Now the optimum two-layer linear placement of W is obtained by optimally
arranging modules of W; and W5 in two layers. Since the source and sink are fixed, both the
layers have equal number of equidistant slots. Now, if number of modules in one of them is
smaller than the other, it is worth to elongate the edges along the mincut of the smaller set. The
unit of elongation will be the difference in the number of modules. Thus, if n(W;) > n(W5), the
cost of two-layer placement of W is given by

Ciwo(W) = Copte(W1) + Copt (W2) + (n(W1) — n(W3))Crn (W2),
= Copt(W) = Cagd(W1, W2) + (n(W1) — n(W2))Crn(W2),

where n(W;) and Cp, (W;) are, respectively, the number of modules and the cost of mincut in the
set of parallel chains W;.

Single and Two-Layer Linear Placement 129

Since Copt(W) is constant, the optimal two layer linear placement is obtained by partitioning
the set W such that the objective function Cop; = Cagq (W1, Wa) — D(Wq, W3) is maximum.

Here D(W;, W,) is the additional cost due to unequal distribution of the number of modules
in W; and W5 and is given by

D(Wl, W?) o (n(WQ) = n(Wl))Cm(W1), if n(Wy) < n,(W2)’
= (n(W1) — n(W2))Crn(W2), if n(Wa) < n(Wh).

3.1.2. Graph-theoretic formulation

The problem of two-layer placement can now be formulated in the following way. Given a
k-chain parallel graph, a complete graph G'(W) called the cost graph, is formed with k nodes
W = (a1,as,...,ax) corresponding to the chains (Aj, Ag,...,Ax). The cost w(a;,a;) of the
edge connecting nodes a; and a; is set to Caga(Ai, A;) which is obtained by the linear placement
algorithm. To facilitate the computation of D{W;, Ws) for a partition (Wi, Ws) of W, let us
associate (n(.),Cn(.)) with the nodes of G’ corresponding to each chain in the cost graph. The
optimum two-layer partition can now be obtained by identifying a cut (Wj, W2) in the cost graph
such that the cut value,

Cobj= »_ wlai,a;) — D(Wy,Wy)
a; €EWq,a,EW;

is maximum. The first term of the cut value is the sum of edge-costs along the cut of the graph.
If the additional cost due to the unequal distribution of nodes in two layers is not considered,
the problem reduces to the classical maxcut of a graph with positive edge-costs, which is known
to be NP-complete [1]. Our problem involves a variation of the maxcut problem with a certain
pattern of edge-costs. In the next section, an efficient heuristic algorithm is presented to solve
the two-layer OLO problem.

ExAMPLE. Consider the problem of Figure 4. Its cost graph and the two-layer placement solution
are shown in Figure 6 and Figure 7, respectively.

Figure 6. Formulation of the two-layer OLO as a maxcut problem.
Via Vo Yy Vg Yio Vo Vi Vg Vg Vi Vg
s t
Vie Vig Voo Vi Vi Vi3 Vi Vg Vo Vi3 Ve Vs

Figure 7. Two-layer placement for the example shown in Figure 4.

In the final layout, layer-1 consists of the optimal linear order of chain-1 and chain-2, and
layer-2 consists of the optimal linear order of chain-3 and chain-4.

The number of modules in layer-1 is 13, and that of layer-2 is 14. The two extreme nodes of
each layer is connected to fixed terminals s and £. The total cost is 470, which is indeed optimum
as verified by exhaustive search.

3.2. Heuristic Algorithm

The heuristic algorithm for finding the optimal maxcut is based on the following facts.
CAMMA 34:12-E

130 S. C. NANDY et al.

DEFINITION 4. Let W = (W;, W5) be a partition. Then for each node, we define

gain(z) = Z w(z, z) — Z w(z, 2), if x € Wy,

ZEW] ZEWz
gain(z) = Z w(z, z) - Z w(z, 2), if z € Wo.
z€W, zeW,

Thus, gain(z) implies the amount of increase in the cut value if node z is moved to the other set.
Let us now define two primitive operations PUSH and SWAP as follows.

PUSH(z) : A node z is moved from its present set to the other set.
SWAP(z,y) : Two nodes x and y, belonging to two different sets, are swapped.
The following cbservations are now obvious.

FAcT 1. When all the nodes are in a single set, the gain of a node is the sum of costs of all edges
incident to it; otherwise the gain value of each node is determined from Definition 4.

FACT 2a. For a node x € Wy, PUSH(z) changes the gain value of all nodes. If we denote the
updated gain values by gain’, then

gain'(z) = —gain(z),
gain'(y) = gain(y) — 2w(z,y), forallye Wy, y #,
gain’(y) = gain(y) + 2w(z,y), for all y € Wh.

Fact 2b. For a node z € Wy, PUSH(z) changes D(Wy, W;) to Dy (Wq, W2) = D(W; \ {z}, W2
Uz).
Thus, application of PUSH(x) for a node = € W; yields
Cobj = Cadd(W1, W) + gain(z) — D, (W, Wa);
Cadd(W1, W2) = Caaa (W1, Wa) + gain(z);

Wi = W\ {z}; Wa = W2 | J{z}.

Similar expressions for change in the gain values of the nodes, cost of dummy elongation and
value of the objective function can be obtained for PUSH(z) when = € W.

FacT 3a. If x € W; and y € Wa, then SWAP(z, y) increases the cut value by an amount
sgain(z, y) = gain(z) + gain(y) + 2w(z, y).
The gain value of all the nodes will also change according to
gain’(z) = —gain(z) — 2w(z, y),
gain'(y) = —gain(y) — 2w(z,y),

gain’(z) = gain(z) — 2w(z, 2) + 2w(y, z), for all z € W, and 2z # x, and
gain'(z) = gain(z) — 2w(y, z) + 2w(z, 2), for all z € W, and z # y.

Fact 3b. If z € W, and y € W», then SWAP(z, y) changes

D(W1,W2) to Dy, (W1, W3) = D (Wl Ut} \ {=}, w2 | L=\ {y}) .
Cobj = Cadd (W1, W2) + sgain(z, y) — D(m.y)(Wh W2);
Cada(W1, W3) = Caaa(W1, W) + sgain(z, y);

wi=wi| v\ (=i We=W2J{z}\ (v}

Single and Two-Layer Linear Placement 131

(a) PUSH of cl increases the cut value. (b) SWAP of cl and c2 increases the cut value.

Figure 8. Effects of PUSH and SWAP.

Figure 8a demonstrates the advantage of a PUSH operation. In Figure 8b, an example is cited
where a push operation does not reduce the cost of the cut, whereas a SWAP operation does.
The heuristic algorithm for the maxcut problem takes the cost graph G'(W) as input, and starts
keeping all the nodes in one partition, and the other partition empty. It then applies the PUSH
operation successively as far as a positive gain of the cutvalue is observed. Next, it calls SWAP.
If it returns true (i.e., there exists a SWAP operation which yields positive gain) then, it starts
trying PUSH operation again, else the algorithm terminates. The heuristic algorithm based on
facts 1, 2, and 3 is as follows.

ALGORITHM: Two-Layer OLO

Input: A weighted parallel graph G(V, E).
Qutput: Two-layer optimal linear ordering.
Step 1: Construct the cost-graph G'(W} from the graph G;
(* by running Single-Layer-OLO algorithm for each pair of chains *)
(* W is the set of nodes corresponding to the chains of the parallel graph *)
Step 2: call MAXCUT(W,, Ws);
Step 3: call Single-Layer-OLO(W;);
Step 4: call Single-Layer-OLO(W3);
Step 5: stop.

Procedure MAXCUT(W,;, Ws)
Step 1 : Initialize W) «— W; Wy «— ¢; n(W1) «— |W|; n(W;) «— 0; flag = true,

Cr(W1) «— Y Crn(x); Cn(W2) +— 0; Caaa(W1, Wa) «— 0
TEW

Step 2: Compute initial gain of all nodes of Wy in the cost graph by Fact 1;

Step 3: while (flag = true) call PUSH(flag);

Step 4: call SWAP(flag);

Step 5: if (lag = false) then (* no interchange took place in SWAP *) goto Step 6
else (* interchange took place in SWAP *) goto Step 2;

Step 6: return;

Procedure PUSH(flag)

Step 1: Initialize maxval «— 0; z* +— 0; flag = true;
(* Thus, z* is the node which, if PUSHed to the other set, will produce maximum increase
in the cut value *)

132 S. C. NANDY et al.

Step 2a: for each node z do
Calculate D.(W,, W3) using Fact 2b;
Compute TEMP = Cagq(W1, W2) + gain(z) — D (W), Wa);
if TEMP > maxval then maxval «+— TEMP; z* «— z;
Step 2b: if maxval < 0 then flag = false; goto Step 5; (* No gain in PUSH *)
Step 3: Transfer the node z* from its present set to the other set;
Step 4a: Update the gain value of all nodes using Fact 2a;
Step 4b: if x € W; then
Update n(W;) «— n(W1) — size of chain z; Cn(W)) «— Cn(W1) — C(z);
if x € Wy then
Update n(W3) «— n(W2) + size of chain z; Cp(W2) «— Cn(W2) + Cr(z)
Cadd (Wi, Wa) e Cygd(Wr, Wa) + gain(z);
Step 5: return (flag);

Procedure SWAP (flag)
Step 1: Initialize maxval «— 0; z* «— 0; y* «+— 0; flag = true;
(* Thus, (z*, y*) is the pair of nodes from two different sets
which, if SWAP-ed, will produce maximum increase of the objective function. *)
Step 2: for all z € W, and for all y € W5 do
Calculate D,) (W1, W2) using Fact 3b and sgain(z,y) using Fact 3a;
Compute TEMP = Cpqa(W1, W2) + sgain(z,y) — D(z,,) (W1, Wa);
if TEMP > maxval then maxval «— TEMP, z* +—z, y* «— 15
Step 3: if maxval < 0 then flag = false; goto Step 6; (* No gain in SWAP *)
Step 4: W1 — (Wi \ {=z"DU{y'} W2 — (W2 \ {5 Ul="};
Step 5a: Update gain value of all nodes using Fact 3a;
Step 5b: Update n(W;) «— n(W)) — size of chain x* + size of chain y*;
Cm(W1) e Cn(W1) — Ci(z*) + Cr(y*);
n(W2) «— n(W2) + size of chain z* — size of chain y*;
Cin(W2) «— Cm(W2) + Cm(z*) — Cin(y");
Cadd{W1, Wa) —— Caga(W1, Wy) + sgain(z*, y*);
Step 6: return (flag).

Table 1. Summary of experimental results.

Number of | Average Number | Average Number Average CPU
Chains of PUSH of SWAP Time (in seconds)
10 3.9 0.17 0.003
15 5.76 0.33 0.005
20 7.53 0.15 0.008
30 11.16 0.23 0.016
50 24.91 0.89 0.089
100 36.75 0.53 0.194
Table 2. Comparison of the heuristic algorithm with the exhaustive search.
Number of Number of Examples % Deviations from
Chains in Number of for which Optimum Optimum Solution
the Parallel Examples Solution is Obtained (Calculated over +ve
Graph by the Heuristic Deviations Only)
Mean Std. Dev.
10 200 186 0.9618 0.5183
15 200 189 0.4940 0.4828
20 50 47 0.3803 0.1333

Single and Two-Layer Linear Placement

Number of examples in each experiment = 100.

Experiment 1. Number of chains in each sample = 10.

#of
examples

#of PUSH —9

#of
examples

#oISWAP —)

Experiment 2. Number of chains in each sample = 20.

#of
examples

6
#of PUSH
Experiment 3. Number of chains in each sample = 30.

#of
examples

10 11 12
ol PUSH

Experiment 4. Number of chains in each sample = 50.

#of
examples|

38

8
#of PUSH

Experiment 5. Number of chains in each sample = 100.

#of
examples

| #of PUSH —9

Figure 9. Distribution of PUSH and SWAP.

#of
examples

#of
examples

1

#of
examples

I

13
2 2

- :
#of SWAP 9

83

13

a0 ":':'-:
of SWAP —>

#of
examples

70

133

134 S. C. NANDY et al.

3.3. Experimental Results

The proposed heuristic algorithm has been implemented in Pascal and run on a VAX 8650
machine operating at 50 MHz.

A simulation experiment is then performed on randomly generated parallel graphs of various
sizes. The number of chains is varied from 10 to 100. The number of modules in each chain is also
varied randomly between 10 and 100, and the edge-costs are positive random integers between 1
and 100, Table 1 summarizes the results of the experiment. Bar charts indicating frequency
distribution of the number of PUSH and SWAP operations are also shown in Figure 9. In Table 2,
a comparison of the results of the heuristic algorithm with those obtained by exhaustive search
is made. The experimental results reveal that in more than 90% cases, the proposed algorithm
produces optimum solutions. In the rest of the cases, results are very close to the optimum, the
deviation from optimality being less than 1% on the average. However, the experiment is limited
to examples having up to 20 chains, as the time taken by the exhaustive search grows exponentially
with input size. From the simulation result, it is observed that our heuristic algorithm runs quite
fast.

3.4. Complexity of the Algorithm

The complexity of creating the cost-graph for a k-chain parallel graph is O(kn) time, where n
is the total number of nodes. The heuristic algorithm for maxcut partitioning involves two major
procedures, namely PUSH and SWAP. The former requires O(k) time and the latter requires O(k)
time in each call. The time complexity of our heuristic algorithm is O(kn + k(p + 5)), where p
and s denote the number of times the procedures PUSH and SWAP are called, respectively.

It may be recalled that Kernighan and Lin [6] developed a heuristic procedure for mincut
partitioning of a graph into two equal-sized blocks. Later on, in [7] the algorithm is modified.
In (8], the algorithm is extended for multiblock partitioning. In all these algorithms, one starts
with an initial partition which is then iteratively improved in each pass by swapping equal-sized
subsets of nodes from one set to the other. In contrast, our goal is to find a maxcut with no
restriction on the size of the resulting partition. Our heuristic algorithm starts with an initial
partition obtained by applying PUSH operations. Then we try to improve the partition by SWAP.
But PUSH should follow SWAP, if necessary, since in our case there is no restriction on the size
of the partition.

4. CONCLUSION

In this paper, we have presented a new algorithm for optimal linear placement of a weighted
parallel graph. The proposed algorithm has O(n log k) worst-case time complexity, and O(n +
klog(n/k)logk) expected-case time complexity. Next, we have introduced the two-layer OLO
problem and presented a graph-theoretic formulation in terms of maxcut partitioning. The
heuristic procedure for the two-layer OLO problem is then implemented and tested on several
randomly generated samples. Experimental results are very encouraging and reflect the efficiency
of the algorithm. The two-layer linear placement algorithm can easily be generalized to handle
multilayer linear placement problems.

APPENDIX

Algorithm: Single-Layer-OLO
Input: A k-chain parallel graph with nonnegative edge cost.
OQutput: Optimal linear order of the nodes.

Step 1: Find mincut of the graph;

Single and Two-Layer Linear Placement 135

Step 2: For i :=1to k do

2.1: In chain-i mark the edges to both the left and right sides of the mincut and form
two sets EF and EF (using results of Lemma 2);

2.2: Calculate the cost-ratios of all edges in E* using procedure COST-RATIO-FIND
and find the final list of marked edges in EX; The corresponding cost ratios are
stored in M};

2.3: Calculate the cost-ratios of all edges in E? using procedure COST-RATIO-FIND
and find the final list of marked edges in EF; The corresponding cost ratios are
stored in M},

Step 3: (* Form the optimal linear order of the nodes for both sides of the mincut *)

3.1: Merge the sorted list of cost-ratios for MY, (i =1,...,k), and form the optimal
linear order of the nodes in k chains to the left of the mincut in an array Ny,
and determine its cost;

3.2: Merge the sorted list of cost-ratios for MiR, (i=1,...,k), and form the optimal
linear order of the nodes in k chains to the right of the mincut in an array Nj,
and determine its cost;

Step 4: Construct the optimal linear order for the input parallel graph by concatenating N}
and N>. Obtain the additional cost incurred for the optimal linear ordering of the
nodes in the parallel graph.

Procedure COST-RATIO-FIND
Input: A list E = {eg,e1,€2,...,€eq} Of edges corresponding to a chain of parallel graph.
Output: The final list E' = {e, e}, €},...,e5} of marked edges, and

the list M” = {4}, u3,...,pp} of cost ratios (which are in increasing order).

Fori:=1toado

D W

(* e; is the current element of the list E which is to be inserted in the final list of
marked edges E' = {e},€5,...,e,}. The current size of £ is p. *)
begin
J=p;
while (u(ei, €)_1) < p(e),€j_1)) and (5 # 1) do (* pj = plej, e5_,) *)
begin
delete ¢} from E’ and) from M,

j=3-1
end;
add e; to E' and p(e;, e;) to M';

end;
return (* with E’ and M’ *).

REFERENCES

. M.R. Garey and D.S. Johnson, Computers and Intractability—A Guide to the Theory of NP-Completeness,

W.H. Freeman & Co., San Francisco, CA, (1979).

. D. Adolphson and T.C. Hu, Optimal linear ordering, STAM J. Appl. Math. 25, 403423, (1973).

. Y. Shiloach, A minimum linear arrangement algorithm for undirected trees, SIAM J. Comput., 15-32, (1979).
. C.K. Cheng, Linear placement algorithms and application to VLSI design, Networks 17, 439464, (1987).

. D.E. Knuth, The Art of Computer Programming, Sorting and Searching, Volume 3, Addison-Wesley, (1974).
. B.V. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, The Bell System Technical

Journal 49, 291-307, (1970).

. B. Krishnamurthy, An improved mincut algorithm for partitioning VLSI networks, JEEE Transactions on

Computers C-33, 438-446, (1984).

. L.A. Sanchis, Multiple way network partitioning, JEEE Transactions on Computers 38, 62-81, (1989).

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf

