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1. Introduction and motivation

Consider a random variable X having a k-cell multinomial distri-
bution with parameters n and p = (p1, . . . , pk), where p is a function
of q(< k − 1) parameters. Our goal is to develop a class of estimates
of p, which may act as reasonable alternatives to ordinary maximum
likelihood estimates, by minimizing suitable ‘disparity’ measures. A
disparity is a nonnegative measure of discrepancy — with a particular
structure — between two densities which assumes its minimum value
zero only when the densities are identical. For a detailed theoretical
discussion see Lindsay (1994), Basu and Lindsay (1994) and Basu and
Basu (1998). All ‘minimum disparity estimator’s are asymptotically
first order efficient under the model. Several of them have considerable
robustness property under moderate contaminations. However many of
the more robust estimators can be substantially poor under the model
(in terms of efficiency) compared to the maximum likelihood estimator
when the sample size is small (e.g. see Simpson 1987, Park, Basu and
Basu 1995, Basu, Basu and Chaudhury 1997).
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The asymptotic behavior of the minimum disparity estimators,
both at the model and under deviations from it, have been studied
in some detail by several authors including those mentioned in the
previous paragraph. Procedures based on the Hellinger distance and
the Cressie-Read subfamily of disparities (Cressie and Read 1984) have
received particular attention (e.g. Beran 1977, Tamura and Boos 1986,
Simpson 1987, 1989a, 1989b). While the asymptotic efficiency and
the robustness of these procedures are now well established, compre-
hensive theoretical results about the cause of their comparatively poor
behavior in small samples is still unavailable. Several authors includ-
ing Harris and Basu (1994), Basu, Harris and Basu (1996) and Basu,
Basu and Chaudhury (1997) have empirically observed the following:
this lack of small sample efficiency can be partially corrected by an
empty cell penalty which does not alter their asymptotic distributions
or compromise their robustness properties. Basu and Basu (1998)
have considered the small sample properties of some of the more
robust Cressie-Read type methods in the multinomial model. How-
ever, they have only considered the simplest case where the multi-
nomial probabilities are the functions of a single parameter. In the
current paper we present the results of a study for the more com-
plex two-parameter problem under some natural multinomial models.
Among other things this allows us to demonstrate the performance
of the penalized disparity test statistics for a complex null hypothesis
in a natural way where one parameter is left unspecified by the null
hypothesis.

The emphasis of the present paper is on efficiency — more pre-
cisely on small sample efficiency. We make it clear at the outset that
it is not our aim to develop just another robust procedure. The robust-
ness of the procedures considered here are already well established.
What we do is exhibit that the small sample performance of these well
known robust procedures can be improved, often substantially, by a
simple empty cell penalty.

All the computations presented here are exact; the relevant quan-
tities are calculated by enumerating all possible samples and determin-
ing their probabilities under the true distribution. This demonstrates,
at least in these limited settings, the empty cell penalties lead to actual
improvements in the performance of the methods. Such exact compu-
tations have also been considered by Read (1984), Cressie and Read
(1984), Basu and Sarkar (1994), and Basu and Basu (1995), albeit
under different circumstances.
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2. Disparity based inference and the empty cell penalty

Let f���(x) be a parametric density defined on the set {1, 2, 3, . . . ,
k}, ��� ∈ ���. Let X1, . . . , Xn be a random sample from the distribution
of f���(x) and d(x), x = 1, . . . , k be the observed proportion of the
value x among the n sample observations. Cressie and Read (1984)
defined a family of disparities between d = (d(1), . . . , d(k)) and f��� =
( f���(1), . . . , f���(k)) as a function of a single parameter λ ∈ R as

I λ(d, f���) = 1

λ(λ + 1)

k∑
x=1

d(x)

[(
d(x)

f���(x)

)λ

− 1

]
.

Harris and Basu (1996) have considered the Cressie-Read disparity in
the form

I λ
∗ (d, f���)=

k∑
x=1


d(x)

[(
d(x)

f���(x)

)λ

−1

]
λ(λ+1)

+ ( f���(x)−d(x))

λ+1

 , λ>−1

=
∑

x :d(x)�=0

{
d(x)

λ(λ+1)

[(
d(x)

f���(x)

)λ

−1

]
+ ( f���(x) − d(x))

λ + 1

}

+ 1

λ + 1

∑
x :d(x)=0

f���(x)

(2.1)

which makes each term in the summand non-negative. For λ ≤ −1
the disparity is not defined if there are one or more empty cells. For
λ = 0 the divergence is undefined, and I 0

∗ (d, f���) has to be defined
as the limit of I λ

∗ (d, f���) as λ → 0. The minimizer of I 0
∗ is the

maximum likelihood estimator of ���. We will call I 0
∗ (d, f ���) the like-

lihood disparity. Also note that λ = −0.5 corresponds to the (twice,
squared) Hellinger distance. The weight applied to the empty cells by
the disparity I λ

∗ is 1/(λ + 1), as seen from (2.1).
To counter the problem of poor small sample efficiency among

some of the more robust minimum disparity estimators within the
Cressie-Read family (e.g. estimators corresponding to −0.5 ≥ λ >

−1), one can alternatively consider the penalized family of disparities



170

by simply manipulating the weight applied to the empty cells. The
penalized family is defined as

Pλ
ω (d, f���) =

∑
x :d(x)�=0

{
d(x)

λ(λ + 1)

[(
d(x)

f���(x)

)λ

− 1

]

+( f���(x) − d(x))

λ + 1

}
+ ω

∑
x :d(x)=0

f���(x) .

(2.2)

The above is obtained from (2.1) by applying a penalty weight ω for
the empty cells instead of its natural weight 1/(λ + 1). If ω = 1
the penalized disparities put the same weight on the empty cells as
I 0
∗ (d, f ���) would have put on them. The penalty scheme ω = 1/2

puts the same weight as Pearson’s chi-square (λ = 1) does on the
empty cells. Note that the difference between I λ

∗ and Pλ
ω is only in

the way they treat the empty cells. For both of them, the nonempty
cells get equal treatment. The penalty scheme in (2.2) has been ex-
tensively studied in this paper. We have restricted the penalty weight
ω between 0 and 1. For a negative penalty the disparity may not
remain nonnegative. For ω > 1 the efficiency of the estimators appear
to be inferior compared to those for which ω ≤ 1; neither does it
seem intuitively justified to increase the weights of the empty cells
too much. As the total probability of the empty cells asymptotically
go to zero, this penalty does not affect the asymptotic distribution of
the estimators. The minimum disparity estimators and the penalized
minimum disparity estimators are obtained by minimizing I λ

∗ and Pλ
ω

respectively.
Next we look at the hypothesis testing problem using ordinary

and penalized disparities. Consider the simple null hypothesis H0 :
��� = ���0, and define the disparity test statistic T λ = 2n[I λ

∗ (d, f���0
) −

I λ
∗ (d, f

�̂��
)], where �̂�� represents the minimizer of I λ

∗ . The T λ statistics
are asymptotically distributed as χ2(q) under the null for λ > −1
(see Lindsay 1994). For small samples, the chi-square approximation
under the null hypothesis, however, can be quite inaccurate, with the
observed levels being considerably inflated compared to the nominal
levels; consequently, the confidence intervals obtained by inverting
the test statistic also have true confidence coefficients lower than the
nominal ones (see, for example, Simpson 1989a, Table 3).
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An alternative test statistic can be based on the penalized dispar-
ities. Define the penalized family of test statistics

T λ
p,ω = 2n[Pλ

ω (d, f���0
) − Pλ

ω (d, f
�̂��
)] ,

where �̂�� represents the minimizer of Pλ
ω . As they differ only in

the empty cells, the families T λ and T λ
p,ω have the same asymptotic

distribution under the null hypothesis.
The testing procedures described above extend directly to the mul-

tidimensional case when the null hypothesis is composite. Define the
hypothesis of interest to be H0 : ��� ∈ ���0, and assume that the null
hypothesis imposes r independent restrictions on the parameter space.
The test statistics T λ and T λ

p,ω now have the same form as above,

but with f���0
replaced by f

�̂��0
, �̂0 being the corresponding estimate

of ��� under the null. The asymptotic distribution of the disparity test
statistics (here T λ and T λ

p,ω) under composite H0 are χ2(r) and has
been established by Sarkar and Basu (1995). Their proof essentially
follows the arguments of Serfling’s (1980, Section 4.4.4) proof of the
asymptotic null distribution of the likelihood ratio statistic when the
null is composite. The true level of the ordinary disparity test is now
defined as

sup
���∈���0

Pr[T λ ≥ χ2
γ ] (2.3)

and the same for the penalized disparity test is defined as

sup
���∈���0

Pr[T λ
p,ω ≥ χ2

γ ] (2.4)

at nominal level γ .
In the following section we present several exact computations for

disparity based methods in the multinomial model where the model
probabilities are functions of two unknown parameters.

3. Numerical studies

A random sample of n observations on k categories with probabili-
ties p1, . . . , pk generates a multinomial observation X with parameters
n and p = (p1, . . . , pk). For the rest of the paper we will write p̂
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for d, the vector of observed proportions, and p��� for the probability
function f���.

For illustrative purposes we have chosen k = 4. The probability
vector p = (p1, p2, p3, p4) is a known function of a 2-dimensional
parameter vector ���. To obtain the exact probability distribution of �̂��,
the vector of estimators, all possible sample combinations in the sample
space D = {x = (x1, x2, x3, x4)|xi ≥ 0, i = 1, . . . , 4,

∑4
i=1 xi = n} are

enumerated; the distinct values of �̂��(x) and their exact probabilities
can then be calculated using the multinomial probability function under
any given true value of ���.

Several values of n have been used in our study subject to the
restriction that the sample space is not too large to be completely enu-
merated. Two different structures on the multinomial cell probabilities
are considered. The first cell probability structure is derived from the
human blood group distribution (Rao 1973). Every human being may
be classified into one of four blood groups O, A, B and AB. The
inheritance of these is controlled by one of three genes O, A and B,
of which O is recessive to A and B. If π and η are gene frequencies
of A and B, and frequency of O is given by ρ = 1 − π − η then
expected probabilities of the four groups in random mating are given
by

Pr(O) = ρ2

Pr(A) = π2 + 2πρ

Pr(B) = η2 + 2ηρ , and

Pr(AB) = 2πη .

The model generated by ��� = (π, η) will be called the Rao(π, η)
model. For illustrative purpose we have taken ��� = (π, η) = (0.5, 0.3)

as the true value in this paper.
Alternatively, assume that the cell probabilities are generated by

a logistic(α, β) type distribution. In particular, this functional form
is indicated when cumulative logit model gives a good fit to ordinal
categorical response data. The cell probabilities are

p1 = 1/{1 + exp(α)}
p2 = {exp(α)(1 − exp(β))/(1 + exp(α))(1 + exp(α + β))

p3 = {exp(α+β)(1−exp(β))/(1+exp(α+β))(1+exp(α+2β)) , and ,

p4 = 1 − p1 − p2 − p3
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As a function of α and β, we will call this the logit(α, β) model. For
illustrative purpose we have taken ��� = (α, β) = (2.0, −1.5) in this
paper.

One objective in this study is to compare performance of different
penalty schemes for small to moderate sample sizes. Three distinct
values of ω have been considered, ω = 1.0, 0.5 and 0.0. We have com-
pared the performance of the penalized minimum disparity method for
different values of ω, as well as against the ordinary minimum dispar-
ity method. The sample sizes considered are n = 20, 25, 30 and 40. A
larger sample becomes computationally infeasible. The values consid-
ered for λ are 1, 0, – 0.5, –0.6, –0.7, –0.8 and –0.9. The procedures
derived from the last five cases have strong robustness properties and
thus any improvement in their small sample efficiency is of consid-
erable practical interest. In particular, for λ = −0.5 the disparity
is equivalent to the Hellinger distance. For λ ≤ −1, the disparities
are not defined when one or more cells are empty. The disparities
corresponding to λ = 1 and to λ = 0 are the Pearson’s chi-square
disparity and the likelihood disparity respectively. Although they are
commonly used divergences, the corresponding minimum disparity es-
timates are also known for their lack of robustness. For the purpose
of comparison we note that the natural weights attached to the empty
cells by the seven disparities are 1/2, 1, 2, 2.5, 10/3, 5 and 10 for
λ = 1, 0, −0.5, −0.6, −0.7, −0.8, −0.9 respectively. (The numerical
computations presented in this paper are done on a Digital Alpha Unix
Station 255 running Fortran 90 in the Theoretical Statistics and Math-
ematics Unit of the Indian Statistical Institute, Calcutta.)

For each sample point x = (x1, x2, x3, x4), and for each value of
n and λ considered, we calculate estimates of the unknown parameters
by minimizing the disparity I λ

∗ and the penalized disparity Pλ
ω . Let

the estimates be denoted by (π̂I , η̂I ) and (π̂Pω, η̂Pω) respectively for
Rao’s model and (α̂I , β̂I ) and (α̂Pω, β̂Pω) respectively for the logit
model. (The estimators are functions of λ also, but as the value of λ

will be clear from the context, a further subscript has been avoided in
the estimators to reduce notational complications). For each estimator
�̂��(x) and for each (n, λ) combination, we compute the exact mean
square error (MSE) of θ̂i , the i-th component of �̂�� under the true
value ��� as

∑
(θ̂i(x)) − θi)

2 P���(x), where the sum is over the sample
space D, and P���(x) is the probability of the sample x under the cell
probability vector p generated by the true parameters ��� = (θ1, θ2).
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The results comparing the performances of �̂��I and �̂��Pω for dif-
ferent values of n, λ and ω are presented in Tables 1 and 2, where
the true multinomial cell frequencies are generated by Rao(0.5, 0.3)

and the logit(2.0, −1.5) distributions respectively. Several observa-
tions may be made from these tables. For both ordinary and penalized
cases the disparity based on Pearson’s χ2 (λ = 1) is doing the best,
i.e. the corresponding estimator has the smallest MSE for all the four
parameters; however the maximum likelihood estimator (λ = 0) is
only marginally worse. As expected MSE is smaller for larger sample
sizes. The performance of the penalty is clearly remarkable, especially
for large negative values of λ. While the MSEs corresponding to the
ordinary minimum disparity estimators with large negative values of λ

are very high compared to likelihood disparity and the Pearson’s chi-
square, the corresponding MSEs for the penalized robust minimum
disparity estimators are extremely competitive with the cases λ = 1
and λ = 0, especially for ω = 0. It appears that the penalty weight
ω = 1 is doing the worse among the three. Note that we must not
expect the penalties to cause any dramatic improvement in case of
Pearson’s chi-square or the likelihood disparity. In fact, for ω = 1.0
the MSEs corresponding to λ = 1.0 are greater in magnitude than
those obtained using the ordinary disparity.

Next we look at the performances of the statistics T λ and T λ
p,ω in

testing the null hypothesis H0 : ��� = ���0 under the model i.e. when the
probability vector is actually generated by the parameter ���0. Here we
have considered two cases: for Rao’s model we have used the simple
null hypothesis

H0 : (π, η) = (0.5, 0.3) ,

while for the logit model we have considered a composite null

H0 : β = −1.5

with α unknown. In the case of the simple null hypothesis the test
statistics follow a χ2 distribution with 2 degrees of freedom. Hav-
ing determined the nominal critical values based on the degrees of
freedom of the χ2, we have computed the exact probabilities of the
test statistics to exceed the nominal critical points for 10% and 1%
level of significance for the Rao’s model. The results are given in
Tables 3 and 4. Once again, the effect of the penalty is very clearly
visible. A test which cannot hold its level even approximately under
small samples when the data are coming from the model is of little
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Table 1: Exact mean square errors for the parameters of Rao’s model for human
blood group when estimates are obtained through ordinary and penalized minimum dis-
parity methods for three penalty schemes.

Ordinary Disparity Penalized Disparity

ω = 1.0 ω = 0.5 ω = 0.0

λ n MSE(π̂ ) MSE(η̂) MSE(π̂ ) MSE(η̂) MSE(π̂ ) MSE(η̂) MSE(π̂ ) MSE(η̂)

1.0 20 0.008809 0.006017 0.009321 0.006362 0.008809 0.006017 0.009029 0.005870
25 0.007054 0.004773 0.007453 0.005062 0.007054 0.004773 0.007116 0.004672
30 0.005861 0.004034 0.006210 0.004236 0.005861 0.004034 0.005856 0.003938
40 0.004317 0.003012 0.004556 0.003125 0.004317 0.003012 0.004258 0.002936

0.0 20 0.009661 0.006537 0.009661 0.006537 0.009011 0.006187 0.009148 0.006053
25 0.007647 0.005223 0.007647 0.005223 0.007220 0.004963 0.007240 0.004851
30 0.006380 0.004322 0.006380 0.004322 0.005962 0.004136 0.005933 0.004050
40 0.004690 0.003210 0.004690 0.003210 0.004414 0.003091 0.004334 0.003033

−0.5 20 0.011303 0.007298 0.009998 0.006780 0.009240 0.006371 0.009314 0.006234
25 0.008939 0.005715 0.007926 0.005367 0.007414 0.005115 0.007412 0.004977
30 0.007339 0.004691 0.006573 0.004431 0.006108 0.004244 0.006066 0.004140
40 0.005344 0.003433 0.004842 0.003267 0.004522 0.003145 0.004437 0.003093

−0.6 20 0.012063 0.007527 0.010124 0.006837 0.009324 0.006430 0.009391 0.006274
25 0.009444 0.005881 0.007996 0.005421 0.007452 0.005138 0.007454 0.005005
30 0.007769 0.004822 0.006621 0.004458 0.006151 0.004272 0.006093 0.004164
40 0.005583 0.003507 0.004875 0.003281 0.004547 0.003156 0.004464 0.003104

−0.7 20 0.013089 0.007889 0.010234 0.006906 0.009395 0.006485 0.009460 0.006331
25 0.010161 0.006151 0.008132 0.005470 0.007564 0.005173 0.007549 0.005039
30 0.008272 0.005014 0.006671 0.004486 0.006200 0.004302 0.006137 0.004195
40 0.005930 0.003594 0.004910 0.003294 0.004574 0.003166 0.004491 0.003115

−0.8 20 0.014633 0.008405 0.010414 0.006967 0.009552 0.006582 0.009560 0.006387
25 0.011273 0.006446 0.008219 0.005513 0.007637 0.005237 0.007613 0.005095
30 0.009072 0.005200 0.006774 0.004512 0.006287 0.004326 0.006217 0.004222
40 0.006431 0.003717 0.004956 0.003315 0.004619 0.003182 0.004531 0.003134

−0.9 20 0.017064 0.009113 0.010578 0.007034 0.009691 0.006621 0.009670 0.006426
25 0.013067 0.006884 0.008396 0.005563 0.007783 0.005277 0.007741 0.005133
30 0.010420 0.005460 0.006911 0.004547 0.006408 0.004358 0.006320 0.004250
40 0.007235 0.003885 0.005026 0.003338 0.004677 0.003208 0.004587 0.003156

practical value. The penalty has made our tests approximately correct
level γ tests in these cases even in the small sample sizes that we
have considered.
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Table 2: Exact mean square errors for the parameters of logit model when estimates
are obtained through ordinary and penalized minimum disparity methods for three penalty
schemes.

Ordinary Disparity Penalized Disparity

ω = 1.0 ω = 0.5 ω = 0.0

λ n MSE(α̂) MSE(β̂) MSE(α̂) MSE(β̂) MSE(α̂) MSE(β̂) MSE(α̂) MSE(β̂)

1.0 20 0.432207 0.166008 0.479121 0.180245 0.432207 0.166008 0.385877 0.151382
25 0.332799 0.125934 0.357322 0.133171 0.332799 0.125934 0.307295 0.118632
30 0.277126 0.103839 0.291152 0.107766 0.277126 0.103839 0.264043 0.100124
40 0.203599 0.075887 0.207306 0.076906 0.203599 0.075887 0.199717 0.074853

0.0 20 0.526697 0.193995 0.526697 0.193995 0.474182 0.178994 0.425203 0.163927
25 0.390121 0.141742 0.390121 0.141742 0.362653 0.134361 0.336789 0.127045
30 0.313422 0.114188 0.313422 0.114188 0.298949 0.110264 0.285110 0.106530
40 0.224089 0.081701 0.224089 0.081701 0.219898 0.080608 0.215846 0.079578

−0.5 20 0.760069 0.256820 0.597274 0.213806 0.520190 0.193166 0.469048 0.177604
25 0.494823 0.170379 0.428384 0.153529 0.395437 0.144895 0.368483 0.137473
30 0.368251 0.128441 0.337405 0.120693 0.321221 0.116532 0.306998 0.112728
40 0.244027 0.086649 0.236458 0.084783 0.232033 0.083671 0.227925 0.082647

−0.6 20 0.854234 0.284012 0.633313 0.223968 0.540290 0.199630 0.485965 0.183237
25 0.535591 0.181213 0.443371 0.157510 0.405555 0.147913 0.377767 0.140313
30 0.388144 0.133819 0.345627 0.123029 0.327913 0.118607 0.313374 0.114741
40 0.251240 0.088455 0.240115 0.085723 0.235634 0.084620 0.231516 0.083594

−0.7 20 0.960986 0.320254 0.678920 0.235761 0.569690 0.207632 0.506491 0.189175
25 0.590080 0.197391 0.464559 0.163022 0.422658 0.152497 0.393448 0.144587
30 0.415304 0.140629 0.354684 0.125189 0.336331 0.120655 0.321221 0.116673
40 0.259698 0.090520 0.243516 0.086538 0.238871 0.085411 0.234741 0.084383

−0.8 20 1.122466 0.377317 0.719108 0.247407 0.605472 0.217978 0.533224 0.197345
25 0.673978 0.224570 0.484006 0.168299 0.441321 0.157589 0.409618 0.149073
30 0.460369 0.154075 0.365543 0.128104 0.346293 0.123425 0.330829 0.119359
40 0.273727 0.094052 0.248038 0.087688 0.243165 0.086523 0.239016 0.085495

−0.9 20 1.465113 0.492359 0.767246 0.262684 0.647345 0.230690 0.566573 0.207798
25 0.858971 0.282913 0.508514 0.175305 0.463537 0.163923 0.429650 0.154887
30 0.558949 0.184190 0.381511 0.132600 0.361452 0.127713 0.345301 0.123522
40 0.302115 0.102020 0.252776 0.089043 0.247890 0.087880 0.243666 0.086839

To better understand the improvement in the performance of the
test statistics due to the penalty we looked at the histograms of the
exact null distribution of the test statistics T λ and T λ

p,ω with the χ2(2)
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Table 3: Exact levels of the ordinary and penalized minimum disparity test statistics
with three penalty schemes for testing the simple null hypothesis H0 : (π, η) = (0.5, 0.3)
regarding the parameters of Rao’s model for human blood group at nominal level 10%.

Ordinary Disparity Penalized Disparity

ω = 1.0 ω = 0.5 ω = 0.0

λ n Observed Level Observed Level Observed Level Observed Level

1.0 20 0.106859 0.131426 0.106859 0.091283
25 0.109729 0.123500 0.109729 0.097683
30 0.109462 0.126155 0.109462 0.096979
40 0.102732 0.122007 0.102732 0.093209

0.0 20 0.103581 0.103581 0.094846 0.074768
25 0.107865 0.107865 0.094964 0.078068
30 0.109503 0.109503 0.089107 0.084489
40 0.105484 0.105484 0.087004 0.080219

−0.5 20 0.184291 0.102021 0.093705 0.083126
25 0.179125 0.108047 0.097883 0.081181
30 0.170999 0.107752 0.090174 0.081212
40 0.174686 0.102793 0.084721 0.076677

−0.6 20 0.206793 0.101631 0.093461 0.082696
25 0.225200 0.111287 0.100784 0.084361
30 0.232040 0.108186 0.090761 0.081714
40 0.213567 0.106011 0.088199 0.080542

−0.7 20 0.325101 0.104054 0.096020 0.089523
25 0.319481 0.111279 0.101340 0.086802
30 0.301780 0.109779 0.091401 0.083273
40 0.246856 0.107253 0.089474 0.082463

−0.8 20 0.448369 0.108736 0.100939 0.095672
25 0.406010 0.116436 0.102269 0.089825
30 0.352143 0.112462 0.093964 0.086392
40 0.258931 0.106751 0.088504 0.082521

−0.9 20 0.497502 0.109408 0.100945 0.096204
25 0.418517 0.116337 0.102466 0.089692
30 0.356017 0.114281 0.100930 0.090341
40 0.259349 0.107071 0.088716 0.084330

density superimposed under Rao’s model. The null hypothesis con-
sidered was H0 : (π, η) = (0.5, 0.3); for the sake of illustration we
took n = 25, ω = 0.5 and nominal level γ = 0.05. In particular we
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Table 4: Exact levels of the ordinary and penalized minimum disparity test statistics
with three penalty schemes for testing the simple null hypothesis H0 : (π, η) = (0.5, 0.3)
regarding the parameters of Rao’s model for human blood group at nominal level 1%.

Ordinary Disparity Penalized Disparity

ω = 1.0 ω = 0.5 ω = 0.0

λ n Observed Level Observed Level Observed Level Observed Level

1.0 20 0.016078 0.019543 0.016078 0.014625
25 0.015275 0.017882 0.015275 0.014655
30 0.014093 0.016457 0.014093 0.013316
40 0.013605 0.016671 0.013605 0.012592

0.0 20 0.008983 0.008983 0.006568 0.006010
25 0.009625 0.009625 0.006809 0.006014
30 0.010490 0.010490 0.007952 0.006842
40 0.012053 0.012053 0.008133 0.006917

−0.5 20 0.021410 0.009578 0.006578 0.006917
25 0.022216 0.013324 0.008845 0.006525
30 0.024170 0.011684 0.008864 0.008389
40 0.026769 0.011955 0.008334 0.007497

−0.6 20 0.039244 0.010351 0.006873 0.007384
25 0.031864 0.013461 0.009932 0.007484
30 0.036821 0.011891 0.009238 0.008902
40 0.046879 0.012300 0.008852 0.007659

−0.7 20 0.053926 0.010023 0.008251 0.007625
25 0.063053 0.014139 0.013052 0.008118
30 0.071303 0.013189 0.009859 0.009528
40 0.099205 0.012888 0.009627 0.008559

−0.8 20 0.139614 0.010372 0.008600 0.008522
25 0.188266 0.014806 0.013768 0.009576
30 0.203893 0.014390 0.010548 0.010191
40 0.189362 0.014172 0.011374 0.009895

−0.9 20 0.450202 0.010638 0.008892 0.009887
25 0.368709 0.015214 0.014314 0.012239
30 0.303226 0.017710 0.012137 0.012093
40 0.203662 0.014435 0.012453 0.010231

looked at the histograms of T −0.9 and T −0.9
p,0.5 . Our interest is in the

right hand tail area of the histograms, and how well the χ2(2) density
approximates it. In Figure 1, the poor approximation to the very long
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Fig. 1. Histograms of test statistics and their χ2 (2) approximations

and heavy tail of the statistic T −0.9 provided by the χ2(2) density
is evident (the height of each bar represents the exact probability for
the test statistic to lie between the respective end points). However,
the right tails of the histogram of T −0.9

p,0.5 around and beyond the 5%
critical point is very well approximated by the overlaid density, lead-
ing to high agreement in the observed and nominal levels. Similar
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features were observed for γ = 0.1 and 0.01, and other values of λ

in the [−0.5, −1) range, although they have not been presented here
for brevity.

Table 5: Exact levels of the ordinary and penalized minimum disparity test statistics
with three penalty schemes for testing the composite null hypothesis H0 : β = −1.5
regarding the parameters of logit model at nominal level 10%.

Ordinary Disparity Penalized Disparity

ω = 1.0 ω = 0.5 ω = 0.0

λ n Observed Level Observed Level Observed Level Observed Level

1.0 20 0.095901 0.150740 0.095901 0.076076
25 0.096374 0.151670 0.096374 0.092667
30 0.094674 0.156184 0.094674 0.090174
40 0.096979 0.173511 0.096979 0.096725

0.0 20 0.142799 0.142799 0.108600 0.100752
25 0.137898 0.137898 0.103055 0.098943
30 0.141535 0.141535 0.101298 0.098609
40 0.152867 0.152867 0.103420 0.102746

−0.5 20 0.246378 0.137767 0.129488 0.121643
25 0.250641 0.131497 0.107404 0.103691
30 0.253139 0.137712 0.108778 0.106794
40 0.258066 0.142000 0.111829 0.110989

−0.6 20 0.258825 0.138005 0.129685 0.121883
25 0.258712 0.127864 0.108037 0.104271
30 0.256197 0.134621 0.110235 0.107920
40 0.267819 0.142104 0.113472 0.112539

−0.7 20 0.316689 0.138611 0.130250 0.122486
25 0.307577 0.125881 0.110127 0.106360
30 0.307679 0.132534 0.110968 0.108734
40 0.328664 0.133389 0.113749 0.112394

−0.8 20 0.422257 0.139242 0.130805 0.122416
25 0.456079 0.125162 0.110365 0.106598
30 0.426111 0.133223 0.115214 0.113748
40 0.425560 0.131983 0.115363 0.114416

−0.9 20 0.581532 0.140394 0.131923 0.123519
25 0.612361 0.126689 0.113189 0.109330
30 0.628707 0.133140 0.116614 0.115146
40 0.645533 0.117472 0.116054 0.115323
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Table 6: Exact levels of the ordinary and penalized minimum disparity test statistics
with three penalty schemes for testing the composite null hypothesis H0 : β = −1.5
regarding the parameters of logit model at nominal level 5%.

Ordinary Disparity Penalized Disparity

ω = 1.0 ω = 0.5 ω = 0.0

λ n Observed Level Observed Level Observed Level Observed Level

1.0 20 0.053001 0.088905 0.053001 0.047738
25 0.050062 0.076978 0.050062 0.044172
30 0.047668 0.080257 0.047668 0.041869
40 0.046802 0.086700 0.046802 0.046016

0.0 20 0.080175 0.080175 0.054719 0.049084
25 0.061673 0.061673 0.050049 0.047691
30 0.068061 0.068061 0.060122 0.059088
40 0.073473 0.073473 0.053747 0.053451

−0.5 20 0.155083 0.073200 0.055277 0.049355
25 0.159944 0.059908 0.051903 0.049535
30 0.125976 0.063756 0.062399 0.061308
40 0.128084 0.065355 0.065160 0.064949

−0.6 20 0.166887 0.073060 0.055417 0.049374
25 0.170337 0.060815 0.054006 0.051657
30 0.171345 0.063738 0.062380 0.061289
40 0.176251 0.067318 0.067116 0.066911

−0.7 20 0.241835 0.072660 0.054973 0.048942
25 0.244005 0.062151 0.057057 0.054706
30 0.251531 0.064642 0.063284 0.062193
40 0.209547 0.068975 0.068773 0.068567

−0.8 20 0.301509 0.062728 0.055664 0.049561
25 0.312500 0.064554 0.061479 0.059127
30 0.303337 0.066056 0.064648 0.063604
40 0.322263 0.069256 0.069054 0.068848

−0.9 20 0.461987 0.068229 0.061098 0.054923
25 0.498336 0.064511 0.061417 0.058871
30 0.521048 0.067831 0.066422 0.065357
40 0.541143 0.070161 0.069960 0.069754

For the logit model we are testing a composite null hypothesis
and in this case the asymptotic null distribution of the statistics T λ

and T λ
p,ω are both χ2(1) distributions. Having thus calculated their
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Table 7: Exact levels of the ordinary and penalized minimum disparity test statistics
with three penalty schemes for testing the composite null hypothesis H0 : β = −1.5
regarding the parameters of logit model at nominal level 1%.

Ordinary Disparity Penalized Disparity

ω = 1.0 ω = 0.5 ω = 0.0

λ n Observed Level Observed Level Observed Level Observed Level

1.0 20 0.010420 0.021235 0.010420 0.006903
25 0.011208 0.025526 0.011208 0.010538
30 0.010295 0.025153 0.010295 0.009645
40 0.010909 0.024718 0.010909 0.010526

0.0 20 0.014688 0.014688 0.009682 0.007892
25 0.013370 0.013370 0.010445 0.009529
30 0.015655 0.015655 0.009710 0.009261
40 0.014008 0.014008 0.012442 0.012351

−0.5 20 0.034828 0.014808 0.010485 0.008567
25 0.040542 0.013448 0.011532 0.010599
30 0.046836 0.015108 0.014320 0.013860
40 0.052747 0.013467 0.013308 0.013216

−0.6 20 0.057384 0.014918 0.010589 0.008671
25 0.066270 0.013553 0.011690 0.010757
30 0.069320 0.015341 0.014552 0.014089
40 0.077393 0.013935 0.013772 0.013681

−0.7 20 0.099741 0.016217 0.011880 0.009965
25 0.108981 0.015148 0.013285 0.012351
30 0.108437 0.016497 0.015708 0.015245
40 0.090335 0.014448 0.014110 0.014015

−0.8 20 0.156823 0.016470 0.012085 0.010154
25 0.135369 0.016414 0.014542 0.013607
30 0.150324 0.019646 0.018856 0.018384
40 0.151219 0.014923 0.014484 0.014353

−0.9 20 0.311807 0.016604 0.012214 0.010275
25 0.311650 0.018557 0.016687 0.015749
30 0.348043 0.020946 0.020155 0.019683
40 0.342513 0.015485 0.015042 0.014908

asymptotic critical points, we have determined the exact levels of the
tests as the maximum of the observed sizes over all the different values
of the parameter α. The results corresponding to the nominal levels
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γ = 0.1, 0.05 and 0.01 are given in Tables 5-7. For the composite
null hypothesis, too, the findings are similar. The penalties again lead
to major differences in the levels of the tests.

4. Concluding remarks

In this paper we have provided a moderate study on the effects
of an empty cell penalty on some density-based minimum disparity
estimators in multinomial models. These minimum disparity estima-
tors and the corresponding parametric tests are known to have good
robustness and asymptotic optimality properties, but their applicability
is tempered by their observed poor performances in small samples. In
this paper we have attempted to demonstrate the improved performance
of these estimators and tests when a small sample penalty is applied
through some exact comparisons in the multinomial model. It appears
that the penalized estimators discussed do achieve good small sample
efficiency in the cases that we have studied.

We have considered three different weights for the penalty, and
among the cases that we have studied the penalty weight ω = 0 has
done well in terms of the MSE. On the other hand this penalty weight
seems to slightly underestimate the nominal level in the testing prob-
lems. While it is clear that more extensive and detailed investigations
have to be made before a general recommendation about an optimal
value of ω can be made, it does appear that some penalty weight in
the interval [0, 1] may be a reasonable thing to attempt in minimum
disparity inference problems for large negative values of λ.
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Exact minimum disparity inference
in complex multinomial models

Summary

Estimation of the probability vector in a multinomial set-up is an important prac-
tical problem. Under moderate contaminations and model misspecifications several min-
imum distance estimators corresponding to the Cressie-Read family of disparities have
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better robustness properties than the maximum likelihood estimator. However, it has also
been previously observed that when an empty cell penalty is introduced, the above men-
tioned estimators often show marked improvement in their small sample efficiencies. In
this paper we have studied the role of different penalties in reducing the mean square
errors of the estimators and in improving the chi-square approximation of the penalized
test statistics under certain parametric models within the multinomial family.

Inferenza esatta di minima disparità
in modelli multinomiali complessi

Riassunto

La stima del vettore delle probabilità nel contesto della multinomiale è un impor-
tante problema operativo. In caso di moderate contaminazioni ed errori di specificazione
del modello, diversi stimatori di minima distanza corrispondenti alla famiglia di Cressie
e Read delle disparità hanno migliori proprietà di robustezza rispetto allo stimatore di
massima verosimiglianza. Tuttavia, è stato osservato che quando viene introdotta una pe-
nalità per cella vuota, i menzionati stimatori mostrano spesso un marcato miglioramento
dell’efficienza nel caso di piccoli campioni. Nel presente articolo, è stato studiato il ruolo
giocato da differenti penalità nella riduzione dell’errore quadratico medio degli stimatori
e nel miglioramento dell’approssimazione al Chi Quadrato della statistica test penalizzata
sotto alcuni modelli parametrici all’interno della famiglia multinomiale.
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statistics; Empty cells.
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