


we are able to zoom into any desired frequency channels for
further decomposition. The textural measure derived from the
statistical parameters, e.g., energy, is then extracted from each of
the subbands. In order to reduce the number of bases (features)
further, we have used in the second part, a neuro-fuzzy approach
where a fuzzy feature evaluation index is defined and is used to
minimize the total number of features to have same quality of
output in a connectionist framework.

The article is organized as follows: In Section 2, we formulate
the methodology for extraction of features. Section 3 provides the
neuro-fuzzy feature selection algorithm. Section 4 analyzes
experimental results and the conclusion is in Section 5.

2 EXTRACTION OF MULTISCALE WAVELET FEATURES

In this section, we design a methodology of extracting multiscale
wavelet features of a texture image. The entire methodology is
depicted in Fig. 1.

2.1 M-band Wavelets

M-band (M > 2) wavelet decomposition is a direct generalization of

the classical (M ¼ 2-band) wavelet [10], [9]. An M-band wavelet

system consists of a scaling function  1ðxÞ which is given by,

 1

j;kðxÞ ¼
P

kM
j=2 1ðMjxÿ kÞ. Additionally, there areM ÿ 1wave-

let functions given by,  rj;kðxÞ ¼
P

kM
j=2 rðMjxÿ kÞ; r ¼ 2; . . . ;M:

Here, jandkare the scalingand translationparameters, respectively,

and r gives the index of the wavelet functions in thewavelet system.
Although the M-band wavelet decomposition results in a

combination of linear and logarithmic frequency (scale) resolution,
we conjecture that a further recursive decomposition of the high-
frequency regions would characterize textures better. This results in
a tree structured multiband extension of the M-band wavelet
transform which is the discrete M-band wavelet packet transform
(DMbWPT). Thus, a finer and adjustable resolution at high
frequencies is allowed as compared to the case of 2-band wavelet
packet transform. In this work, we use aDMbWPFwhich is similar
to DMbWPT, except that no downsampling occurs between scales
(levels of decomposition) to achieve translational invariance.

In the filtering stage, we make use of Mð¼ 4Þ-band, orthogonal
and linear phase wavelet filter bank following [10]. The one-
dimensional (1D), Mð¼ 4Þ-band scaling (lowpass) and wavelet
(bandpass) bases  r (r ¼ 1; 2; 3; 4) are given in [10]. Here,  1 is the
scaling function and  r, with r ¼ 2; 3; 4, are the wavelet functions.

The filter responses in the frequency domain Hj;rð!Þ (for

r ¼ 1; . . . ; 4) at level j are generated as, Hj;r ¼ H0;rðM
j!jr¼1;...;4).

Scale j ¼ 0 corresponds to thehighest resolution of the signal, i.e., the

original signal IðxÞ before decomposition. Let, ÎIjb;rð!Þ be the Fourier

transform of the output of the wavelet packet b at decomposition

level j obtained from the corresponding signal at the jÿ 1th level

with the rth band of theM-band filters. Then, for 0 � b � 4
j ÿ 1 and

r ¼ 1; 2; 3; 4, we have ÎIjþ1

4bþðrÿ1Þ;qð!Þ ¼ Hj;rð!ÞÎI
j
b;qð!Þ.

From the filter bank theoretic point of view [13], this corresponds

to a filter bankwith channel filters ffiltjb;qð!Þjq ¼ 1; . . . ; 4:g. filtjb;qð!Þ

are given by the recursive relation, filt0
0;qð!Þ ¼ H0;rð!Þ and

filtjþ1

4bþðqÿ1Þ;lð!Þ ¼ Hj;rð!Þfilt
j
b;qð!Þ¼H0;rðM

j!Þfiltjb;qð!Þ. Fig. 2 shows

a general tree structure of 1D discreteM-bandwavelet packet frame

decomposition. Module-A in Fig. 2 comprises of all the filters Hj;r

with r ¼ 1; 2; 3; 4.

For images, we simply use tensor product extension for which

the channel filters are written as filtjb;r½x�y�ð!x; !yÞ ¼ filtjb;r½x�
ð!xÞfilt

j
b;q½y�ð!yÞ. At scale j ¼ 0, the image is first decomposed into

M �M channels using all the filters H0;r and H0;q with

r; q ¼ 1; 2; 3; 4, and without downsampling. The process is re-

peated for each of the subbands in subsequent scales ðjÞ.

2.2 Adaptive Basis Selection

AnM-bandwavelet packet decomposition gives rise toM2
J
number

of bases, for a decomposition depth J . It is quite evident that an

exhaustive search technique to determine the optimal basis from this

large set is computationally expensive. In order to find out a suitable

basiswithoutgoing for a full decomposition,wepropose anadaptive

decomposition algorithm using a maximal criterion of textural

measures extracted from each of the subbands. Then, the significant

subbands are identified and it is decided whether further decom-

position of a particular channelwould generatemore information or

not. This computationally efficient search enables one to zoom into

any desired frequency channel for further decomposition [14].
For this purpose, the image is first decomposed into

M �M channels using the 2D M-band wavelet transform without

downsampling (oversampled). Energy for each subband is then

computed. Among various subbands, those forwhich energy values

exceed �1 percent of the energy of the parent band, are considered

and decomposed further. We further decompose a subband if its

energy value is more than some �2 percent of the total energy of all

the subbands at the current scale. The analysis is performed upto the

second level of decomposition and this results in a set of wavelet

packet bases. These bases corresponding to different resolutions are

assumed to capture and characterize effectively different scales of

texture of the input image. Empirically, we have seen that a value of

�1 ¼ 2ÿ 5 percent and �2 ¼ 50 percent are good choices for the

images we have considered here. This simple top-down splitting

technique performs well for most images.
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Fig. 1. Experimental setup.

Fig. 2. Tree structure of 1D DMbWPF transform and related indices.



2.3 Local Estimator of Textural Measure

Raw wavelet coefficients only are insufficient as complete texture

cues. They are helpful in splitting the textured information into

different frequency channels but without local information (statis-

tics) around apixel.Anonlinearity is needed in order todiscriminate

texture pairs with identical mean brightness and second-order

statistics. To calculate local features of an image,we slide a fixed size

window on the wavelet coefficients of an image and compute the

local statistics ofwindow in each individual position, associate these

values as feature values of the central pixel in each of thesewindows.

There exists a wide variety of textural measures but, in the current

study, energymeasure that represents textural uniformity, i.e., pixel

pairs repetitions is considered as feature. We have used modulus

operator as the nonlinearity and Average Absolute Deviation (AAD)

from the mean is used as a generalized definition of energy to get

separation of features for different patterns.
For a subband image Fbðx; yÞ where 0 � x �M ÿ 1; 0 � y �

N ÿ 1 and subband number b, the local energyEngbðx; yÞ around the

ðx; yÞth pixel is expressed as

Engbðx; yÞ ¼
1

R

X

w

m¼1

X

w

n¼1

j ðFbðm;nÞ ÿ F bðx; yÞÞ j; ð1Þ

where w is the window size and area R ¼ w� w. The term F bðx; yÞ
is the mean around the ðx; yÞth pixel and F0ðx; yÞ ¼ Iðx; yÞ, the
original image.

This step is followed by a smoothing stage using Gaussian low

pass filter hGðx; yÞ to get a feature image Featbðx; yÞ a function of

subband image Fbðx; yÞ and is given by

Featbðx; yÞ ¼
X

ða;bÞ2Gxy

ÿðFbða; bÞhGðxÿ a; yÿ bÞÞ;

where ÿð�Þ gives the energy measure and Gxy is a G�G window

centered around a pixel with coordinates ðx; yÞ. Use of a Gaussian

(weighting) window results in less sparse points (i.e., denser feature

distributions) as compared to when uniform weighting window is

used. The local AAD values from the mean (as shown in (1)) of a

Gaussian window is found to provide robust quality of features in

the feature space for all of test images used. Another issue in this

regard is the size of local window. From a number of experiments, it

is found that the choice of size of the local window is very crucial for

extracting proper features. In an image with patterns of different

texel sizes, the selection of window size suitable for various texel is a

difficult task. For larger texels, it is better to choose larger local

window size but thismay introducemore uncertainty in detection of

the boundary regions. This problem can be solved if the effective

window size changes with the level of resolution. The window of

varying sizes will be able to capture textures with different texel

sizes. Likewise, the sizeG of the Gaussian averaging window is also

an important parameter. Reliable measurement of texture feature

demands larger window size but, on the other hand, more accurate

localization of region boundaries requires smaller window. After

extracting a set of feature images Featbðx; yÞ, a set of feature vectors

are derived from them. The oversampled wavelet transforms

introduce redundancy in filtered images that may be useful getting

for a reliable result in a recognition problem.

3 SELECTION OF WAVELET FEATURES USING A

NEURO-FUZZY METHOD AND SEGMENTATION

3.1 Fuzzy Feature Evaluation Index and Membership
Function

The wavelet features extracted as mentioned in the previous section

are evaluated and few of them are selected using a neuro-fuzzy

feature selection criterion under unsupervised learning. The process

beginswith the clusteringof the entire feature spaceusingkÿmeans

clustering algorithm for grouping the data points into different

clusters with their centers cenq’s, i.e., two sets of samples, namely,

S ¼ fxx1; xx2; � � � ; xxp; � � � ; xxxxN2g and Sc ¼ fcencen1; cencen2; � � � ; cencencg are

formed. Based on this first hand knowledge about the cluster

centers, the neuro-fuzzy feature selection algorithm is developed.
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Fig. 3. Test images (a) Nat5b, (b) Nat5v, and (c) Nat16c. The corresponding segmented outputs (d), (e), and (f), respectively, after neuro-fuzzy feature evaluation.



This method involves the formulation of a fuzzy feature
evaluation index followed by its minimization in connectionist
framework. The feature evaluation index for a set of transformed
features is defined as

E ¼
2

sðsÿ 1Þ

X

p

X

q

1

2
�Tpq 1ÿ �Opq

� �

þ �Opq 1ÿ �Tpq

� �h i

; ð2Þ

where s is the number of samples in which the fuzzy feature
evaluation index is computed. �Opq 2 ½0; 1� and �Tpq 2 ½0; 1� are the
degree of similarity between the pth pattern and qth center in the
n-dimensional original feature space, and in the n0-dimensional

(n0 � n) transformed feature space, respectively (�pq is the member-
ship value of a pair of patterns belonging to a fuzzy set “Similar”).E
decreases as the degree of similarity between xp and cenq in the
transformed feature space tends to either 0 (when �O < 0:5) or 1

(when �O > 0:5). Therefore, our objective is to select those features
for which the evaluation index becomes minimum; thereby
optimizing the degree of the similarity of a pair of patterns �pq in a
feature space, satisfying the characteristics of E in (2). This may be
defined as [15]

�pq ¼ 1ÿ
dpq
D if dpq � D;

¼ 0; otherwise:
ð3Þ

dpq is the distance between the pth pattern and qth cluster center in

the feature space and is defined as

dpq ¼
P

iw
2

i ðxpi ÿ cenqiÞ
2

h i1

2

;

¼
P

iw
2

i�
2

i

� �1

2; �i ¼ ðxpi ÿ cenqiÞ;

ð4Þ

where wi 2 ½0; 1� represents weighting coefficient corresponding to
ith feature. The terms xpi and cenqi are values of ith feature of
pth pattern and qth cluster center, respectively.

The term D in (3) is a parameter which indicates the minimum
separation between a pair of dissimilar patterns. When dpq ¼ 0 and
dpq ¼ D, we have �pq ¼ 1 and 0, respectively. In our investigation,
we have chosenD ¼ �dmax, where dmax is the maximum separation
between a pair of patterns in the entire feature space, and 0 < � � 1

is a user defined constant. � determines the degree of flattening of
the similarity function in (3). The higher the value of �, more will be
the degree, and vice versa. dmax is defined as

dmax ¼
X

i

ðxmaxi ÿ xminiÞ
2

" #1

2

; ð5Þ

where xmaxi and xmini are the maximum and minimum values of
the ith feature in the corresponding feature space.

The weight wi in (4) indicates the relative importance of the
feature xi in measuring the similarity of a pair of patterns. The

higher the value of wi, the more is the importance of xi in
characterizing a cluster.

The computation of �T requires (3), (4), and (5), while �O needs

these equations with wi ¼ 1; 8i. Therefore, the evaluation index E
in (2) is a function of w, i.e., EðwÞ, if we consider ranking of

n features in a set. The problem of feature selection/ranking thus

reduces to finding a set of wis for which E becomes minimum; wis

indicating the relative importance of xis. For the details concerning
the operation of the network, one may refer to [15].

3.2 Connectionist Model

The network consists of an input, a hidden, and an output layer [15].

The input layer consists of a pair of nodes corresponding to each

feature, i.e., 2n nodes, for n-dimensional (original) feature space. The

hidden layer consists of n number of nodes which compute the part

�2

i in (4) for each pair of patterns. The output layer consists of two

nodes. One of them computes �O and the other �T . The feature

evaluation index EðwÞ in (2) is computed from these �-values of the

network. During learning, each pair of patterns are presented at the

input layer and the evaluation index is computed. The connection

weights Wð¼ wjÞs are updated in order to minimize the index

EðWÞ. The task of minimization ofEðWÞ in (2) with respect toW is

performed using gradient-descent technique. EðWÞ, after conver-

gence, attains a local minimum and then the weights (Wj ¼ w2

j ) of
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TABLE 1
Performance with Different Test Images

Fig. 4. Test images (a) Nat10a and (c) patch5. The corresponding segmented

outputs (b) and (d), respectively, after neuro-fuzzy feature evaluation.



the links connecting hidden nodes and the output node computing
�T -values, indicate the order of importance of the features.

As indicated in [15], for selecting an optimal set of features out of
the total s ¼ N2 (image of sizeN �N), the number of patterns to be
presented to the connectionist system in one epoch, during its
training, is sðsÿ1Þ

2
¼ N2ðN2ÿ1Þ

2
, which is a fairly large quantity. This

requires a very high computational cost. On the other hand, in the
proposed modified technique, the similarity between the patterns
and cluster centers are computed, instead of computing it for every
pair of patterns. These cluster centers may be considered as
prototypes for all points belonging to the respective clusters. Thus,
the number of patterns to be presented to the network in one epoch
becomes sðscÿ1Þ

2
¼ N2ðcÿ1Þ

2
, where s ¼ jSj and sc ¼ jScj << s.

The features thus selected are used for segmenting a texture
image. For this purpose, we have used a k-means clustering
algorithm.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the proposed
methodology on various multitexture and real life images for
segmentation. The superiority of this methodology over other
existing methods studied in [16], is also established.

Here,we have considered two 5-texture imagesNat5b andNat5v
(each of 256� 256), a 10-texture imageNat10a (256� 512), and a 16-
texture image Nat16c (512� 512) [16]. We have also worked on
another test image Patch5 (256� 256) comprised of seven texture
classes. Moreover, we have considered two natural scenes ROCK
andMB433 (each of 512� 512). Rock, a complicated image consists
of six classes, viz., dark rocks, light rocks, pebbles, dust, sky, and
horizon. This is an image taken from Sol-3 of the Mars Pathfinder
Mission [17]. MB433, consists of five classes, e.g., leaves1, leaves2,
grass, road, and miscellaneous [18]. Throughout the study, the
parameters are chosen to be, �1 ¼ 2ÿ 5 percent, �2 ¼ 50 percent,
local window sizes (w� w) are 9� 9, and 17� 17 for the first and
second level of resolutions. The averaging window sizes are also
chosen in commensuration with the local windows.

4.1 Performance Evaluation of the Proposed
Methodology

To evaluate the performance of the proposedmethodology, we have
experimented with energy as textural measure. The percentage of
correctly classified pixels is used as the segmentation quality
measure. In order to demonstrate the importance of neuro-fuzzy
feature evaluation,wepresent here the segmented outputs for all the
test images with and without feature evaluation. The results show
that the feature dimensionality is greatly reduced after feature
evaluation. Simple median filtering is applied to the class maps as a
postprocessing step to improve the segmentation results.

Fig. 3d shows the segmented image of Nat5b (Fig. 3a). The five
texture classes can easily be identified here. But, forNat5v (Fig. 3b),
the classification error is more in the segmented output in Fig. 3e as
compared to Fig. 3d, due to wider within class variation. The
percentages of correctly classified pixels are found to be 97.9 percent

and 84.9 percent for Nat5b and Nat5v, respectively. Moreover, the
number of features have been greatly reduced from 21 to 5 forNat5b
and 32 to 5 for Nat5v, by using neuro-fuzzy feature evaluation
(Table 1).

The texture mosaic Nat16c (Fig. 3c) which is comprised of as
many as 16 Brodazt textures, also shows very complex boundaries
between various constituent textures. The segmented image (Fig. 3f)
shows 15 different classes, where two of the classes have been
merged which are also visually unidentifiable from the original
image. For texture mosaicNat10a (Fig. 4a), the segmented output is
presented in Fig. 4b. Note that, although the image contains 10
different Brodazt textures, some of them are not distinctly identifi-
able visually. Interestingly, the proposed methodology is able to
identify more or less all the classes. In the case of Patch5 (Fig. 4c),
there are sevendifferent texture classes.Here, a particular class is not
only confined to a specific region, but also mixed up with other
classes in various regions of the image. Moreover, the boundaries
between various classes, like other test images, are not easily
discriminable. Even then, the different classes in the segmented
image (Fig. 4d) are identified satisfactorily. Table 1 summarizes the
performance of segmentation for all test images of Figs. 3 and 4.

The real-life natural scene images contain natural objects like
roads, brick walls, etc., having uniform texture, and snow, leaves,
trees, etc., more of a fractal nature. Since ground truths about these
images are not always available, we have used a quantitative
performance measure � [19]. It is defined as the ratio of the total
variation and within class variation. The higher the value of �, the
better the segmentation is. In the natural scene, Rock (Fig. 5a), there
are six different texture classes. Here, the boundaries between
various classes, like other images, are not easily discernable. Even
then the classes in the segmented image has been identified
satisfactorily. Similar observations are noted for the image MB433
(Fig. 5b). The segmented images with the neuro-fuzzy feature
evaluation are illustrated in Figs. 5c and 5d. Table 2 summarizes
the � values with and without the feature evaluation step and also
the number of features required for segmentation.

As a part of the investigation, an extensive comparison has been
made to show the superiority of the proposed methodology over a
number of existing related algorithms studied by Randen and
Husøy in [16]. The results have been presented here for Nat5b,
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TABLE 2
Performance with Different Scenes

Fig. 5. Test images (a) ROCK, (b) MB433, and their segmented outputs (c) and (d), respectively, after neuro-fuzzy feature evaluation.
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