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The problem of fermion doubling on a lattice has been discussed here from the
specific geometrical properties of a lattice structure and topological aspects of
chiral anomaly. It is argued that there cannot be chiral anomaly on a lattice and as
such there cannot be any conserved charge. This unveils the root cause of fermion
doubling, and the unwanted fermions just reflect the geometrical properties of a
lattice and may be viewed as to represent the “fictitious’” chiral spinors associated
with the lattice structure which make chiral fermions anomaly free.

I. INTRODUCTION

As is well known, there appears an equal number of species of left- and right-handed Weyl
fermions for a general class of lattice fermion theories for each combination of quantum numbers.
Indeed, a theorem by Nielsen and Ninomiya' states that a space cubic lattice, with a bilinear
Hamiltonian which is local, Hermitian, translation invariant and with bilinear locally defined
conserved charges, has fermions appearing in pairs with opposite chirality and the same internal
quantum numbers. In view of this, a lattice fermion formulation without species doubling and with
explicit chiral symmetry appears to be impossible.

Several attempts have been made to eliminate the unwanted fermions. Wilson® proposed a
way to remove these extra particles by giving them a mass of the order of the cutoff so that we
have just one fermion with a relativistic spectrum in the continuum limit. The disadvantage of
using Wilson fermion is that chiral symmetry is not an exact symmetry. Even for vanishing mass,
the fermion lattice action with the Wilson term is not chiral invariant. Thus the use of Wilson
fermions in a lattice formulation of field theories where chiral invariance is supposed to play an
important role is not possible. Susskind® has proposed a lattice fermion formulation where the
fermion field function has just only one component instead of all four components defined on a
site of the lattice. This solves part of the naive degeneracy and one has a discrete s invariance.
However, continuous chiral transformation cannot be defined. Moreover, because of the fact that
there is likely no Goldstone theorem for discrete symmetries the pion mass comes out too high in
strong coupling calculations.* Thus for the Susskind approach the problem of continuous chiral
symmetry and associated Goldstone boson does remain. Drell ez al.” proposed a model, known as
SLAC fermions, where the condition of locality has been abandoned. In this scheme an infinite
jump propagator has been suggested to solve the fermion doubling problem. This implies a
nonlocal lattice action which contains products of fields arbitrarily far apart. As a consequence, in
a gauge theory with SLAC fermions one gets nonlocal and noncovariant contributions in the
continuum limit. Nielsen and Ninomiya® have constructed a model with only one two-component
fermion on a lattice, dropping the assumption of the existence of a conserved charge. In this
scheme the fermion field is taken to be real. One can assign to the field components charges that
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are not conserved at the scale of the fundamental lattice and only approximately conserved in the
low-energy regime.

Karsten and Smit’ have pointed out that the presence of doublers is related to the fact that the
axial currents are necessarily nonanomalous on a lattice and one has more fermions canceling the
anomaly. Recently Creutz and Tytgat® have noted that the problem of species doubling is not
merely a particular property of the lattice gauge theory. Rather, it is more general in the sense that
a similar phenomenon occurs when we have gauge fields coupled to the chiral currents from an
effective Lagrangian for pseudoscalar mesons. The problem is intricately related to the axial
anomaly. Thus the issue reduces to nonperturbatively removing the extra species when the original
theory is made anomaly free. In this note we shall argue that the very geometrical aspect of a
lattice space structure does not allow the anomaly to exist on a lattice as the anomaly is cancelled
when the topological aspect of chiral anomaly is considered in the background of this lattice
geometry. This bears the seed to remove the problem of fermion doubling on a lattice nonpertur-
batively.

Il. FERMIONS ON A LATTICE

In this section we follow Karsten and Smit’ to show degeneracy of fermions on a lattice. Let
us consider a four-dimensional Euclidean hypercubic lattice. The lattice spacing is a and the
lattice points are labeled with

x,=nga, n,=0,r1,*2. .. u=1234. (1)
The range of the momenta is restricted to the interval

—mla<k,<wla. 2)

To find a lattice version of the continuum action for a free spin 3 fermion field ¢,

S:j d*x

we have to replace the differentials by differences. Thus the lattice fermion action takes the form

§=2

I — - —
2 2w(x)yﬂam(x)—nz¢(x)w(x)], (3)

(4)

2 —wum P(x+a,)—plx+a,)y,p(x)]- mw(xwx)

Here =43, and a, is a vector along the dlrectlon with length a. The action (4) has a global
U(1) invariance qfr(x) Vip(x) and gb(x) Y(x)V ', Ve U(1), which is made local by introduc-
ing a gauge field U ,(x) defined on links (x, x+a#). Thus we write

S=2 |2 o [w(x)yﬂuﬂ(x)¢(x+a,i)—w<x+a,,,)y,,zu,5(xw(x)]—nw(xw(x)} +S(U).

(5)
Here U transforms as follows:
U, (x)=V(x)U(x)V " (x+a,). (6)
For weak fields we can introduce a vector potential v ,(x) by defining
Uu(x)=expligav,(x)]. (7
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Inserting this definition in (5) we can derive Feynman rules by Fourier transformation. The
fermion propagator is

1 71
S(p)y= E yﬂgsinp#aﬁ-m . (8)
e

The g17¢v o vertex function is

gV, cos 5(p—q),a, p+q+k=0. (9)

It can be shown that Eq. (5) effectively describes 16 fermions with degenerate mass m and charge
2. It is noted that we have a 27 degeneracy of fermions in d-dimensions. We can shift the range
of mementa to 7/a<p,<3w/a using periodicity 27/a. The fermion propagator S(p) does not
vanish in the limit —0 in 16 regions in momentum space about the points p,,=0 or 7/a. Let us
denote such points by p. The action (5) is invariant under a group of 16 symmetry transforma-
tions,

A

P(x)=Th(x), P(x)=(x)T7, (10)

where 7=1, and yM’yS(—])"#f“. The transformation 7=y, ys(—1)*1¢ shifts p, to p,+ 7/a
(modulo 27/a), and p=(0,0,0,0) is transformed into p=(7/a,0,0,0) and vice versa, p
=(0,7/a,0,0) into p=(m/a,w/a,0,0) and so on. Now from a study of the propagator S(p) about
a point p we have around each point p all the states of a free Dirac particle with mass m, 16
particles in total. Wilson removed these extra particles by giving them a mass of the order of the
cutoff. He adds an extra term

1 - s . -
5o 2 L) U)o+ ) + gla+a,) UL(x) () = 29(x) (x)] (11)

to the action (5). The fermion propagator now becomes

1 1 .
Sip)= 2 ’)f#—sinp#a+m+—z (I—cos pya)| . (12)
e . a u

For small p,,, the extra term is O(a). This extra term is a momentum-dependent mass term and
gives 15 fermions a mass m +k2/a (k=1, 2, 3, or 4). We have just one fermion with a relativistic
spectrum in the continuum limit a— 0. However, this extra term breaks chiral symmetry.

In the foregoing it is tacitly assumed that all four components of ¢ are defined in a lattice.
Susskind has proposed a lattice fermion formulation where ¢(x) is a one-component field. This
solves part of the naive degeneracy. However, in this case one has a discrete s invariance as a
continuous chiral transformation cannot be defined. An infinite jump propagator [ O(1/a)] has
been proposed by Drell et al.,” known as SLAC propagator, which is characterized by the property
that p, is defined in the range —m/a<<p,<m/a with a period of 27/a and has a gap at p,
=r/a with width 27/a. This gap implies a nonlocal lattice action and in the continuum limit
a—0, one has a nonlocal and Lorentz noncovariant contribution.

Karsten and Smit’ have shown that these 16 fermions have the interesting properties that we
have 8 particles with chiral charge 1 and another 8 particles with chiral charge —1 so that the
fermion content of the theory is anomaly free. Thus we find that in a lattice formulation one has
to give up something: explicit chiral symmetry (Wilson) or locality (SLAC fermions) or one has
extra fermions canceling the anomaly.

J. Math. Phys., Vol. 38, No. 9, September 1997



4454 G. Goswami and P. Bandyopadhyay: Fermion doubling on a lattice and chiral anomaly

lll. LATTICE FERMIONS AND TOPOLOGICAL ASPECTS OF CHIRAL ANOMALY

We here observe that the discretization of space in a lattice can be achieved from Minkowski
space—time by a Lorentz symmetry breaking condition as well as by the g-deformation of the
Lorentz group.’ The Lorentz symmetry is broken when we consider the motion of a particle in an
anisotropic space. Indeed, if we consider that in three-space dimension the components of the
linear momentum satisfy a commutation relation of the form

==

x
lpi. pil=ipe; pel (13)

this corresponds to an axisymmetric system where the anisotropy is introduced along a particular
direction. The motion of a particle in such a space is analogous to the motion of a charged particle
in the field of a magnetic monopole where w corresponds to the monopole strength. The angular
momentum operator J is given by

J=rXp—pr, p=0,x1/2,%1,£3/2,..., (14)

and the eigenvalue of J? is a conserved quantity in this space instead of the eigenvalue of L2. In
Minkowski space—time the effect of anisotropy can be incorporated, retaining relativistic covari-
ance if we consider that a “*direction vector’” §,, is introduced at each space—time point x , so that
in a complexified space—time the coordinate is given by z,=x, +i&, . In an earlier paper'? it has
been shown that the quantization of a fermion can be achieved when we introduce an anisotropy
in the internal space so that the internal variable appears as a ““direction vector’ attached to a
space—time point. The opposite orientations of the ‘‘direction vector’’ correspond to a particle and
antiparticle. In the complexified space—time having the coordinate z,=x,+i¢, , a fermion (an-
tifermion) is characterized by the domain such that &, belongs to the interior of the forward
(backward) light cone and as such represents the upper (lower) half-plane.'’ In such a space one
should take into account the polar coordinates r,#,¢ along with the angle y specifying the
rotational orientation around the ““direction vector”” &, . The eigenvalue of the operator id/dy
given by w just corresponds to the “‘internal helicity.”” This disconnected and anisotropic nature of
space indicates that the behavior of the angular momentum operator in such a region is similar to
that of a charged particle moving in the field of a magnetic monopole. The spherical harmonics
incorporating the term u have been extensively studied by Fierz'? and Hurst."* In fact, we have

I—m

Y;n,,u.:(l+x)*(m*,u);‘2(1_x)f(m+,ujﬂ’2 [(1+x)t‘*m(1_x)t”r,u]eimgbefi,u,\r, (15)

d'~mx

where x =cos 6. The quantities m and w just represent the eigenvalues of the operators ié/d¢ and
id/dy, respectively. It is noted that in such a space we can have half-orbital angular momentum
(I=1/2) with m==*1/2 and w==1/2. This is found to be analogous to the result that a
monopole-charged particle composite representing a dyon satisfying the condition gg = 1 has its
angular momentum shifted by § unit and its statistics shift accordingly.'* This suggests that a
fermion can be viewed as a scalar particle moving with /=1 in such a space.

Now we point out that the overall space where a “‘direction vector’’ (vortex line) is attached
to a space—time point effectively leads to the discretization of space depicting a lattice structure as
any two space points cannot come close together within an infinitesimal distance due to the vortex
lines. Indeed the “‘direction vector’” (vortex line) may be associated with the /.-value of a particle
moving in such a space with /=1/2, and the specification of /,-value for particle and antiparticle
states may be viewed as to represent chiral spinors. Thus we can associate a spin system with this
““direction vector’” (vortex line) when fermions are polarized in one or other direction. This can be
generalized to an n-dimensional Euclidean space when we consider that the latticization of such a
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space can be achieved when we take that this is given by the surface of an (n+ 1)-dimensional
sphere of infinitely large radius having a fictitious monopole at the center. The continuum limit is
attained when the monopole charge vanishes.

Now to study the problem of anomaly on a lattice we note that chiral anomaly arises as a
consequence of the quantization procedure. In an earlier paper'® it has been shown that Nelson’s
stochastic quantization procedure can be generalized to have a relativistic framework and the
quantization of a Fermi field can be achieved when we take into account Brownian motion
processes in the internal space also apart from that in the external space. For the quantization of a
Fermi field, we have to introduce an anisotropy in the internal space so that the internal variable
appears as a ‘‘direction vector.”” The opposite orientations of the ‘‘direction vector’ correspond to
particle and antiparticle. To be equivalent to the Feynman path integral we have to take into
account complexified space—time when the coordinate is given by z,=x,+i§, where &, corre-
sponds to the “*direction vector’” attached to the space—time point x , . ' Since for quantization we
have to introduce Brownian motion process both in the external and internal space, after quanti-
zation, for an observational procedure, we can think of the mean position of the particle in the
external observable space with a stochastic extension as determined by the internal stochastic
variable. The nonrelativistic quantum mechanics is obtained in the sharp point limit."' This analy-
sis of the quantization procedure suggests that we can write the position and momentum variable
of this extended body as

Q,u=q#+iQ‘,u,s (16)

P'u =p #-l-iP -
where ¢, (p,) denotes the mean position (momentum) in the external observable space and
Q.(P,) is given by the internal variable denoting the stochastic extension. Introducing a new
constant w="%/Imec, where m is the mass of the particle, the quantum uncertainty relations can

now be written in terms of the dimensionless variables where we replace 9, by 0, /1 and P, by
P, /mc:
o

[0,; Bl=ivgyy, [0 Pil=iog,s: (17)

As has been shown by Brooke and Prugovecki,'” these relations admit the following representa-
tion of 0, /w and P, /w:

a9
22|
w AP, / (18)
P 9
il P |
w l(aqﬂ+‘:by, )

where ¢, and i, are complex-valued functions. However, when we introduce an anisotropy in
the internal space giving rise to the internal helicity to quantize a fermion, ¢, and i, become
matrix-valued functions due to the noncommutativity character of the components ¢ ,(#,). To
interpret the ‘*direction vector’” as an internal helicity we can choose the chiral coordinate as

i
z"‘=x"‘+i§"‘=x*‘+5hﬁ8“, (19)
where we identify the coordinate in the complex manifold with

E=\50%, a=12, (20)
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6 being a two-component spinor. We now replace the chiral coordinate by the matrices

AA" _ A4’ | 1y AA’
% =3 + 3N 6%, (21)
where
Co1 [x%=xt x24ix?
Ad'
X = 2.3 04 .1
V2 [x —ix® x"+x
and

A4 e SL(2,0).

This helps us to associate the internal helicity with the spinorial variable 6 as we can now
construct the helicity operator'”

S=—NM1gem 7, (22)

where (/) denotes the spinorial variable corresponding to the four-momentum p, (the ca-
nonical conjugate of x,) and is given by the matrix representation
pA =gt (23)
The internal helicity can now be identified with the fermion number It may be noted that since we
have taken the matrix representation of p, as pAA =a1m! necessarily lmplymg P #—0 the
particle will have its mass due to the nonvanishing character of the quantity § It is observed that
the complex conjugate of the chiral coordinate given by (19) will give rise to a massive particle
with opposite internal helicity corresponding to an antifermion.
In this complexified space—time exhibiting the internal helicity state we can write the metric

X, 0.0) =gt (x)8,0,:. (24)

It has been shown elsewhere'® that this metric structure gives rise to the SL(2,C) gauge theory of
gravitation and generates the field strength tensor F,, given in terms of the gauge fields B,
which are matrix-valued having the SL(2,C) group structure, and is given by

Eyy=dyBy—8,But[ By, Bl (25)

This suggests that we can consider a gauge theoretic extension for a fermion and we can identify
the matrix-valued functions ¢,(¢,) in Eq. (18) with the gauge field B u(C,) where B, (C,)
€ SL(2,C). Now we note that if we demand F',,=0 at all points on the boundary § 3 of a certain
volume 7* inside which F,,#0, then the gauge potentials tend to a pure gauge in the limiting
case towards the boundary, i.e., we have

—7r-1
B =0 "d,U. (26)
This helps us to write the Lagrangian in the limiting case
L=M?Tr(9,U"0,U)+Tr[a,UU",0,UU'T?, (27)

where M is a suitable constant having the dimension of mass. It is noted that the Skyrme term
Tr[4,UUT, ¥, 8,UU']? arises here from the term F wrF*” where the first term is related to the
gauge nonmvarlant term M*B xBY in the Lagranglan In view of this we note that the quantization
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of a Fermi field considering an anisotropy in the internal space leading to an internal helicity
corresponds to the realization of a nonlinear o-model where the Skyrme term automatically arises,
stabilizing the soliton. Indeed this is no surprise as the anisotropic feature of the internal space
prevents it from shrinking to zero size. The simplest Lagrangian density which is invariant under
SL(2.C) transformation in spinor affine space is given by'’

L=7"Tr €*BYF ,oF 5, (28)

which is reflection noninvariant. Indeed, it is to be noted that the Skyrme term does not manifestly
express the internal anisotropy as it is invariant under P and 7. So to incorporate this anisotropic
feature in the Lagrangian (27) we should add the Wess—Zumino term where the action is given by

wz:% f ghvkon Tr[Uﬁla#UUfla,,UUf'c?;\UU* laUUU”BPU] d’x, (29)
where x=x,7,x°. Here the physical space—time is the boundary of the five-dimensional domain.
Witten'® has shown that the constant N has to be an integer for the existence of a consistent
quantum description of the Skyrmion. The quantization of N is analogous to the Dirac quantiza-
tion of the product eg of electric and magnetic charges. It is noted that the Lagrangian (28) is
associated with the Wess—Zumino term in the nonlinear o-model. It may be pointed out here that
the expression (29) vanishes unless U e SU(n) with n=3."8 From this analysis, it appears that
massive fermions appear as solitons and the fermion number is of topological origin. Indeed, for
the Hermitian representation we can take the group manifold SU(2) and this leads to a mapping
from the space three-sphere S° to the group space S°[SU(2)=S5"] and the corresponding winding
number is given by

1

— vaf =1 =1 -1
=557 LB et T[T g, Ul *d, B ~dU]. (30)

Evidently ¢ can be taken to represent the fermion number.
The Lagrangian density in spinor affine space given by Eq. (28) gives rise to a conserved
current

J0=e"*PB,XF g, (31)

where the gauge field B,=B,,-g and the field strength F,,,=F,,-g. g being the infinitesimal
generators of the group SL(2,C) in tangent space

0 0 1 0 0 1
g1= - &=y _1l" &%|¢ ol (32)

1 0
Indeed from the properties of the above Lagrangian, we find'’

e***F(9,F 53— B,XF,5) =0, (33)
which suggests that
Jy=e"PB XF 5= €*"*F3,F 5. (34)
Then, using the antisymmetric property of the Levi-Civita tensor density e***#, we get

3, 44=€""P3,0,F ,z=0. (35)
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Since in this formalism SL(2,C) gauge fields act as background fields for a Dirac spinor giving
rise to its topological properties, to describe matter field in this formalism, the Lagrangian will be
modified by the introduction of the SL(2,C) invariant Lagrangian density. Hence for a Dirac field
neglecting the mass term, we write

L=—yy,D p—} Tt ePV°F 4F 5, (36)

where D, is the SL(2,C) gauge covariant derivative defined by D ,=d,—igB, where g is some
coupling strength. It is to be observed that by the introduction of the SL(2,C) gauge field La-
grangian we are effectively taking into account the effect of the extension of the fermionic part
giving rise to the internal helicity in terms of the gauge fields. Now if we split the Dirac massless
spinor in chiral forms and identify the internal helicity + 1/2(— 1/2) with left (right) chirality
corresponding to #(#), we can write

by D b=y, d,b—igy, B g

— 8= S TR B Ty Bt By Bt by, B, G

Then the three SL(2,C) gauge field equations give rise to the following three conservation laws:'"”
[ M= igibry i) +J,1=0,
3 LK =gy ) +ig gy i) +J51=0, (38)
L H(—ighy ) +7,1=0.
These three equations represent a consistent set of equations if we choose
Jy==J02, L=+, (39)
which evidently guarantees the vector current conservation. Then we can write
3,1, +J3)=0,
YRy R TI) 40)
(Y= T) =0.
From these we have
(P Ys )=l y= =20, (41)

Thus the anomaly is expressed here in terms of the gauge field current Ji. However, since in this
formalism the chiral currents are modified by the introduction of Ji, we note from Eq. (40) that
the anomaly vanishes. The charge corresponding to the gauge field part is

q=fJ3 d3x=j<urfacfw doiFy. i,j.k=123. (42)

Visualizing Fj;( to be the magnetic-field-like components for the vector potential Bf, we see that
g is actually associated with the magnetic pole strength for the corresponding field distribution.

Thus we find that the quantization of Fermi field associates a background magnetic field and the
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charge corresponding to the gauge field effectively represents a magnetic charge. The term
"B Tr wvl g in the Lagrangian can be actually expressed as a four divergence of the form
d,(0* where

OQk=—

2
o3 €7 Tr| B,F gy~ 3 (BuBgB,)|. (43)

We recognize that the gauge field Lagrangian is related to the Pontryagin density

P=—

T6m2 Tr* Bty AL (44)

where (0# is the Chern—Simons secondary characteristic class. The Pontryagin index

= f P d*x (45)

is a topological invariant. As we know, the introduction of the Chern—Simons characteristic class
modifies the axial vector current as

T5_ 45
=1 4250, (46)

where apj i= 0 though ﬁMJfL#O. We find from Eq. (40) that the Chern—Simons secondary char-
acteristic class is effectively represented by the current Ji constructed from the SL(2,C) gauge
field. Thus we have the Chern—Simons topology in-built in the system and it is associated with the
topological aspects of a fermion.

This analysis suggests that anomaly vanishes when we take into account the quantum geom-
etry where the microlocal space—time is characterized by an anisotropic feature such that a “‘di-
rection vector’ (vortex line), £, is attached to a space—time point x, so that in the complexified
space—time the coordinate is given by z,=x,+i§, . However, in the naive Minkowski space—
time where the coordinate is just represented by x,, , we come across anomaly as a consequence of
the quantum mechanical symmetry breaking. We have pointed out earlier that the geometrical
feature of lattice structure of space effectively incorporates a similar geometry as the latticization
can be viewed as the introduction of a *‘vortex line’” at a space—time point. Also, this may be
caused by the introduction of a fictitious magnetic monopole at the center of a sphere so that the
lattice space is given by the surface. Now as the anomaly is associated with a magnetic charge g
given by the Pontryagin index where the monopole strength w is related to this by the relation
g=2u, we note that the very lattice structure suggests that there cannot be any anomaly on a
lattice. Indeed the anomaly which is associated with the current Ji effectively may be taken to
arise from the geometrical feature of a lattice space characterized by the ““vortex line”” attached to
a space—time point or a *‘fictitious”” monopole at the center of a sphere where the surface repre-
sents a lattice structure. Thus we have a chiral current associated with a lattice site when the gauge
field lies in the link. This chiral current may be related to a chiral fermion as we have the relation

2_ 14 45
i L
so that we have a solution of the form
Jh= =Yy, (1 +ys) i (47)
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as the vector current is conserved. In view of this we note that the very geometrical feature of a
lattice structure is as if there are ‘“fictitious’” chiral fermions at a lattice site. These are responsible
for the cancelation of anomaly on a lattice. This unveils the root cause of fermion doubling and the
extra spinors just represent these “fictitious’” chiral fermions.

IV. SPECIES DOUBLING AND FERMIONIC CHARGE

Nielson and Ninomiya® have constructed a model with only one two-component fermion on a
lattice, dropping the assumption of the existence of a conserved charge, e.g., fermion number.
Thus the corresponding fermion field is taken to be real. However, we can assign locally defined
but only approximately conserved charges. It may be noted that if we do not require that the
charge be locally defined, it is possible to define a conserved charge for a real field on a lattice
since we can assign the charge Q(p) the value +1 for some values of the momentum p and
—1 for the opposite p-value. One might then either leave the charge undefined outside such
regions in p space or let Q(p) have discontinuities as a function of p, meaning the charge not
being locally defined. If, however, we want the charge to be locally defined, then there must exist
for all values of the momentum p in the Brillouin Zone many eigenstates with a given charge
eigenvalue. To a model with only one Weyl particle, we can then only assign approximately
conserved charge. In fact, it is possible to formulate a model which looks like that of the complex
field formulation with nonconserved charges as the Hamiltonian does not satisfy the condition for
the complex-valued formulation with conserved charges. This suggests that charges are not con-
served but are approximately conserved in the low-energy regime only. It may be pointed out here
that as the lattice fermions are found to be nonanomalous there cannot be any locally defined
conserved charge. This follows from the fact that the chiral anomaly is associated with the
Pontryagin index which is a topological index related to the fermion number. Indeed, it has been
shown in an earlier paper’ that we have the Pontryagin index ¢ which satisfies the relation

qZZﬂ:j &l d4x:—% j a5 . (48)
Here u (as well as ¢) corresponds to a monopole strength satisfying the Dirac quantization
condition epx=3. It is noted that ¢ is an integer where u can take the value 0,+1/2,%+1,
+3/2,... . Thus the quantization condition e =1/2 is equivalent to the relation eq=1 and for
pu==%1/2,ie., g==*1, we have e=*1 depicting the fermionic charge. Now from the relation
(48) we note that when there is no anomaly, the Pontryagin index vanishes and hence we cannot
define a conserved charge like fermion number. It may be added here that chiral anomaly is related
with the Berry phase?® where the phase factor is given by ¢/®® with

dg=2mpH. (49)

Evidently from the above relation (48) we note that when the theory is nonanomalous, the Berry
Phase loses its topological character and can be removed. Thus for lattice fermions we have the
specific property that the Hamiltonian for a time-dependent closed path evolution allows an eigen-
state with only a dynamical phase factor when the quantum phase of Berry is removed to the
dynamical phase.

V. DISCUSSION

In this note we have argued that the problem of fermion doubling on a lattice is not an isolated
event as it may occur when the original theory of fermion is anomaly free. This is consistent with
the observation of Creutz and Tytgat." Indeed, it has been pointed out that the very geometrical
aspect of the discretization of space in a lattice can be viewed as if there are ‘‘fictitious’” chiral
fermions on a site which cancels the anomaly. In view of this, we can interpret that the unwanted
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fermions just reflect the geometrical properties of a lattice and can be identified with these *‘fic-
titious’” chiral fermions associated with the lattice structure. In reality, these fermions need not
exist. It may be added here that in a recent paper’' we have shown that chiral anomaly gives rise
to the mass of a particle. This suggests that anomaly effectively generates a length scale. Now for
a discrete space in a lattice, the length scale of the order of lattice spacing effectively can be
viewed as if generated by the “*hidden’ anomaly which may be taken to be generated by the
“fictitious’” chiral fermions associated with the latticization of Minkowski space—time. It may be
noted that the lattice theory does not just provide one extra particle which is enough to cancel the
anomaly as in d-dimensions, we have in total 2¢ fermions. This follows from the fact that the
““direction vector’” £, attached to a lattice site x,, also has the same dimension as x,, and this is
responsible for the discretization in every direction. This leads to the generation of all other
““fictitious’” spinors such that the theory becomes nonanomalous. Indeed this picture suggests that
one can generate a one-dimensional lattice theory taking the continuum limit in the remaining
directions, e.g., in three dimensions of a four-dimensional lattice theory.

Finally, we point out here that though we generally take that the lattice spacing a—0 to attain
the continuum limit, it is not so naive as it involves the loss of specific geometrical features solely
related to the lattice structure where the continuum space—time is devoid of these properties.
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