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Abstract

We consider arc discance median for ciecubsr daca. It 18 shown o admit an almess surc
asympnotis Linear represemation. in the process of deriving (s vepregenta i, an aluorithin 1o
nbtam a saable version of This statestic e oa =20 of observationg Trom the civele i also
el oprl

AME Nubjeor Classifearions 62G20, 62H11

Koy words Circalar median, Babacar representaton: Assoiptotic normalisy

L. Introduction

For w st of observarions on the circle, one can define # location of its ceniral
iendeney by minimizing the sum of geodesic distanees of an athitrary point an the
circle from Lhese points wnd by simaligneously searching lor the painl where Uhis
eetimibnudm s atlamed. Liv and Singh (P92} have called i1 the are distance median for
circular data. Vhis 1s also known as the Muardia—Fisher median for citeular dala
{Small, 1990} and is m spieit the same as Muacdia® (1972} median. This notion of
cireular median (hencelorth abbreviated 1o c-median) has been studied by Liv and
Singly {1992 In the context of their nodon of depuh foe direcctions] daty, and also by
Turkavastha (1991a} in characterteation theory. Also see Leath (1981), Webrly and
shine (1%51}) and Ko and Guttarp (1988} for other works in c-median.

In this papet we wndertake the study of some aspects of asymptotics ior the
c-median. One of the major teols for studying the large sample behaviour of o statistic
consists in deriviop an asvmptotc linear representation of the same. For sample
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quantiles, such a representation was obtained by Bahadur (1966), which came to be
known later as ‘Bahadur representation of quantiles’. Also see Kiefer (1967), Sen
(1968), Ghosh (1971), Dutta and Sen (1971), Sen and Ghosh (1971), Sen (1972), and
de Haan and Taconis-Haantjes (1979) for related works in linear data. It is therefore
worthwhile to investigate whether sample c-median admits any such representation.
This investigation is the subject matter of this paper.

The organization of the paper is as follows. In Section 2, we state the set of
assumptions under which the main representation theorem is proved and also record
some immediate consequences of these assumptions. In Section 3, we state a property
of population c-median which is analogous to the one connecting minimum mean
absolute deviation with the linear median. In Section 4, we develop an algorithm to
obtain a suitable version of c-median and study this version accordingly. This
algorithm is also worth recording in view of the fact that our definition of sample
c-median involves minimizing a function (depending on the data) over the circle.
Employing the major findings of Sections 2—4, we finally establish strong consistency
of sample c-median in Section 5 and prove the main representation theorem in
Section 6.

2. Preliminaries

We begin by introducing the definition of an interval on the circle and also of the
antipodal point of an arbitrary point on the circle.

Note. For two numbers a, be[0,2n) with a<b, we denote the set [0,a]u[b,2n) by
[b,a]. If, however, a>b, [b,a] denotes the usual closed interval of R. Observe that
[b,a] indeed denotes a closed interval over the circle. The notation for an open, or
a half-open, interval over the circle is similar. We also define for any xe[0,2n), its
antipodal point, denoted x*, by

x*=x+n((mod 2n)).

Let {X;: i=1} be a sequence of independent and identically distributed circular
random variables defined over some probability space {Q,.s/,#}. This means,
0< X (w)<2r for all we and for every iz 1 Denote the distribution function of
X by F. We make the following assumptions about F:

(A.1) F is continuous.

(A.2) There exists a unique 8e€[0,n), denoted 8y, such that G(0)=4, where
G:[0,2r)—[0,1] is defined as

G(x)=P(X 1€(x, x*]). 2.1

(A.3) There exists ¢>0 such that F(x) is differentiable either (a) at every
x€(lo—¢& 0p+e)u(0F —e, 05 +¢), if O0<bo<m, or (b)at every xe(Rm—ggu
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(m—en+eu{2n}, if 6,=0. In case (b), F'(x) is to be understood as the right-
derivative when x=0, and as the left-derivative when x=2r. In this case, we stipulate
further that F'(0)=F'(2r). We denote F'(x), whenever it exists, by f(x).

{A.4) There exists a positive constant K such that either (a) |f(x)—/f(0y)]<
Kix—0q*2, if |x—04) <& and | f(x)=f(0F)| <K|x—0%"'2, if |x —0%| <&, whenever
0<fy<m, or (b) |f(x)=f(0)|<KI|x|'? if 0<x<e |f(x)=f(n)|<K|x—m|"2 if
|x—n|<eand | f(xX)—f2m)| <K|x—=2n|12, if 2n —e < x < 2n, whenever ), =0.

(A.5) f{00)#f(0F).

Let us now define

e {00 it /(00)>(05).
03 if /(00)</(05).

Thus,

S(M)>f(M*).

o
(%]

In consideration of (A.2) and (2.2), we therefore have the following fact.

Fact 2.1. M is the unique population c-median {(in the sense of Mardia (1972, p. 28))
of Xy.

Remark 2.1. It should be pointed out that in order to define c-median of an arbitrary
circular random variable X having distribution function F, it is not necessary to have
such a strong requirement as the existence of density of X (see Mardia, 1972, p. 28). It
is enough to have differentiability of F at M and M*, where G(M)=3, and then
demand (2.2). Fact 2.1 indeed asuumes this modified definition of Mardia’s {1972)
median. We shall see later (Theorem 3.1) that M will also be the unique arc distance
median of X;.

We conclude this section with the following result that studies the behaviour of the
function G(x). This result will be needed to prove the main representation theorem in
Section 6.

Lemma 2.1. Assume (A.1)—(A.5). Then we have the assertion (a) below if 0 < M < n, and
(b) if M=0.

(@) G(x)>%if xe(M* M), =% if xe{M,M*}, <} if xe(M,M*).
Moreover, there exists 6 >0 such that G is strictly increasing on [M —8, M + 8] and
strictly decreasing on [M*—9, M* +5].

(b) G(x)>1%if xe(0,n), =} if xe{0,n},>% if xe(n, 2m).
Moreover, there exists 6 >0 such that G is strictly decreasing on [2n—6,8] and strictly
increasing on [t—98,m+4].



80 S. Purkayastha / Journal of Statistical Planning and Inference 46 (1995) 77-91

Proof. We shall provide the proof for part (a) only. The proof for part (b) is similar.

The first assertion follows from the facts that G is continuous on [O0,2n),
G(x)=% if and only if x=M or M* G'(M)(=f(M*)—f(M)) is negative, and
G(x)+ G(x*)=1 for any x€[0, 2r). These facts are easy to verify. Details can be found
in Purkayastha (1991b).

In order to verify the second assertion, first we observe that G'(x)=/(x*)—f(x) for
xeM—eM+e)u(M*—g M*+¢). In consideration of (A4) and the definition
of M, this implies our assertion. [J

Remark 2.2. If M == or n<M <2, it is possible to establish results analogous to
part (a) or part (b) of the above lemma by using the fact that for any xe[0,2n),
G(x)+ G(x*)=1.

3. A property of population circular median

We begin by stating the fact that for any integer p> 1, (S?,d) is a compact metric
space, where SP={xeR?*': |x|=1}, and d(x,y)=cos '(xTy) [=the unique
angle 6€[0, ] such that cos@=x"y], x,yeS?. This metric d is indeed the geodesic
distance on the sphere. For p=2, the relevance of ‘d’ in the study of spherical median
can be found in Fisher (1985). See also Cabrera and Watson (1990).

We shall, however, focus our attention on the case corresponding to p=1. Observe
that if we identify S ' = {(cos 6, sin 6): 0 <6 <2n} with [0, 2r) through the identification
(cosf,sinf)=0, the metric d* induced by d on [0,2r), has the form
d*@,,0,)=n—|n—(0,—0,|, 81,0,€[0,21). We agree to write d in place of d*.

Consider now the function D:[0,2r)—R defined as follows:

D(y)=E{d(X,y)}. (3.1)

We state below a few properties of the function D. These properties are easy to verify.
Details can be found in Purkayastha (1991b). See also Mardia (1972).

Lemma 3.1. (a) D(y)+D(y*)=1 for every ye[0,2n).

{b) lim_,,,_ D(y)=D(0) and D is uniformly continuous on [0, 2m).

(c) D is differentiable on [0, 2r) with D'(y)=1—2G(y), 0<y <2n. (For y=0, D'(y) is
indeed the right derivative.)

Remark 3.1. It should be mentioned that parts (a} and (b) of the above lemma are true
for any circular random variable, i.e., without any restriction of F. Part (c), however,
requires the additional assumption of continuity of F, i.e., (A.1).

We shall conclude this section by stating the following theorem, which is indeed the
goal we have set out with. Before we state it, we note that in view of part (b) of the
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preceding lemma it makes sense to talk if min{ D(y): 0<y <2n}. For the result to hold
we need the assumptions (A.1), (A.2), (A.4), (A.5) and differentiability of F at 6, and 0§.
The proof follows by employing Lemmas 2.1 and 3.1(c).

Theorem 3.1. {z€[0,2n): D(z)=ming<, ., D(y)}={M}.

Remark 3.2. In Mardia (1972, p. 31), a result similar to the above theorem can be
found. See also Liu and Singh (1992).

4. A definition of sample circular median

We develop our definition of sample circular median in this section. It is indeed
a version of sample arc distance median for circular data (Liu and Singh, 1992), or
equivalently of Mardia—Fisher median for circular data (Small, 1990). This definition
is obtained by minimizing the sample analogue of the function D, defined in (3.1). We
shall address the issue of minimization of the sample analogue, and obtain our
definition accordingly. We shall see that sample circular median so defined enjoys
a natural property (Theorem 4.1). This property will, moreover, be used to prove the
main representation theorem in Section 6. It should be mentioned here that our
definition coincides with the one proposed in Purkayastha (1991a), where we re-
stricted our attention only to small sample sizes, viz. n=2,3, and 4.

To begin with, we choose and fix x;€[0,2n), i=1,...,n. We now define

d(x)=Y d(x,x;), 0<x<2n (4.1
i=1

Observe that apart from a multiplicative constant (= 1/n), d(x) is indeed the sample
analogue of D(x), as defined in (3.1). Observe, moreover, that as in the case with the
population c-median, it makes sense to talk of min {d~(x): 0<x<2n}. We now prove

two lemmas, which settle the problem of minimizing d(x) over xe[0, 2n).

Lemma 4.1. There exists te{l,...,n} such that

d(x,)=min {d(x): 0<x <2nl.

Proof. Let us write {x{,....x,Ju{x}, ..., x¥ }:{zl,...,z;}, where z;€[0,2n), 1<i<gl,
and z; <---<z;. Define the sets A,..., A; by 4;=[z;_;,z;]forj=1,.. L (zo=2). Itis
now easy to verify that d is linear on each of [0, 2,1, (21,227, ... [zi— 1. 2,1, [z, 2t] with
(d(0)—d(z)))/2n —z,)=(d(z,)—d(0))/z, in case z,>0. Therefore we must have
min{d(x): 0<x<2n}=d(z;p) for joe{l,....l}. The rest of the proof consists in
establishing that z;,=x,, for some 1,e{1,....n}.
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Suppose, on the contrary, that z;,# x, for every te{l,...,n}, and that z;,=x} for
some p. This implies in turn that there exists an integer p’ such that x,# x,,.. Therefore
it makes sense to define the following function:

di(x)=Y d(x,x;), 0<x<2m,

where the sum is taken over all those i for which x;#Xx,. Now define the sets
By,...Bi_; by Bj=(zj_1,zj+1) forj=1,..,1—1, (2,4 1 =20). Observe that d, is linear
on Bj, and that Jl(zo)gjl(zjo) for some zoeB;, with zy#z;o. Moreover,
d(x.x,)<d(zjo, x,) for every xe Bjo, with equality if and only if x =z;,. It is now easy
to see that J(zo)<¢7(zjo), contradicting the definition of z;,. This contradiction
establishes our assertion. [

Now we introduce the following sets of integers which will be needed in the next
lemma.
{1,..,n}={1,2,n} if i=1,
(@ Nimy={1,...n}={i—1,ii+1} if i=2,..,n—1,
{1,..,n}—{1,n—1,n} if i=n;
whenever n is an even number greater than 2, and

(b) Nim={1,..,n}—{i} fori=1,..,n,

whenever n is an odd number greater than 2.

Lemma 4.2. Suppose x;€[0,2n),i=1,...,n(n>2), are such that xy,...,X,, x¥,....x} are
all distinct. Denote by x,<--- <Xy the x,-’~s arranged in increasing order. Suppose,
moreover, that for every i=1,...,n, d(xy)#c(x;) for all je Ni(n). Then,

(a) whenever n is even,

{ ye[0,2n): d(y)= min J(x)}= [X6- 19> X Js 4.2)
0g<x<2n

Jor some i(x0)= X)) and
(b) whenever n is odd,

{ye[O, 2n): d(y)= min J(x)}= {xa}s

0<x<2rn

for some i.

Note. The quantities or sets that appear in the proofs of both Lemmas 4.1 and 4.2 will
be assumed to bear the same meaning,
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Proof. We shall provide the proof for part (a) only: The proof for part (b} is similar.

We begin with the observation that there exist real constants g,,...,4;,¢ and
Cq,...,Cpc such that d~(x)=gj(x)+cj for xeA;, j=1,...,1 and Jl(x)=gx+c for xeBj,.
Observe now that for every fixed ye[0, 2n), x—>d(x, y) is a piecewise linear continuous
function with every line segment having gradient +1 or —1 which implies that every
g;, being a sum of even(=n) number of +1 or —I, is an even number, positive.
negative, or zero. Observe also that g=gjo0+ 1 =g¢;0+1—1 (g1+1=g,), which in turn
implies g0, —gjo=2.

The next step consists in proving that either

g}'o:O and dJjo+1 22, (4:')
or

gjo=—2 and gj+,=0. (4.4)

In view of the last sentence of the preceding paragraph it suffices to show that g;0 <0
and gjo+; =0. Suppose, if possible, that g;o>0 or g;o. <0. In the first case we have,
moreover, g;o.; >0 and it is easy to obtain ye A, with y# z;, such that d(y) <(~,(:j0 ),
contradicting the definition of z;,. In the second case we are led again to the same
contradiction. Hence either (4.3) or (4.4) holds.

As a consequence of (4.3), it follows that d is constant on Ajo and that
cf(zjo)<d~(zj0+1). It is now easy to see that C,, is a subset of the set appearing on the
left-hand side of (4.2). We omit the details. Similarly, from (4.4) we arrive at the same
conclusion with C,, replaced by C,, . ;. The rest of the proof indeed follows from the
conditions of the lemma. [

Remark 4.1. It should be mentioned that in the study of linear data also we have
assertions similar in spirit to the assertions of the above lemma and, moreover, the
relationship between such assertions and the linear median is well known. We shall
mimic that idea in order to define sample c-median.

We now introduce the following sets which will be needed in our definition:

U,lz{(X(l), ...,x(,,))eR": 0<.\'(1)<"' SX(,,)<2K},
An(x("’)={ye[0,2n): Y d(y,xg)= min ) d(x, x(,»))}, xWeU,,
i=1 O0<x<2ni=1

Co o (x™) = [(X-1X@ ] i=1,....80, (X0)=Xu), whenever n is even.
o {x@}, i=1,...,n, whenever n is odd,

Eiw={x"eU, s#t=|xy—xu|>0 and # 7, 4,(x")=C; ,(x™)},
1<ign, nzi,
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E{,= {x""eU,,: SFEI=|Xg—Xu|>0 and #m7,

Z d(X(,'),X(j))# Z d(X(p), x“)) fOr all pENi(n)}, lélén, nZZ,
j=1

j=1
E,= () Ein

i=1
En= U Etn

Note in view of Lemma 4.2 that
E,CE,. 4.5)
Definition 4.1. Suppose x, ..., x,€[0, 2n) (n>2). Denote the x;’s, arranged in increas-

ing order by x(), ..., X, and write x™=(x, ..., X¢). The c-median of x,,...,x,,
denoted m,, is defined as follows:

ﬂl)_'i_z;__}-ﬂ(mod ) if xPek,
Xi-n+Xq . .
(a) m,= ('—1)2—& if x™eE;,.i=2,...,n,
X if xX™¢E,, and j=min{: x,H€A(x™)},

whenever n is even;

(b)= xg if x®ekE; . i=1,...,n,
T xgy if x™¢E,, and j=min{t: x,ed,(x™)},

whenever »n is odd.

Remark 4.2. The definition of sample c-median for n=1 or 2 is obvious.We do not
state them formally.

Remark 4.3. The idea behind the definition of m,, when n is even, is the following:
recall that [0, 2r) is a representation of the circle. Thus, for x™eE,, C; ,(x™) is indeed
an ‘interval’ for every i=1, ..., n. The c-median m, is then defined as the mid-point of
this interval.

Remark 4.4. Even though our definition of sample c-median appears to be somewhat
cumbersome, a close scrutiny of the proofs of Lemmas 4.1 and 4.2 indeed reveals that
in order to implement the algorithm described in the definition we need only to
compute ¥7_ | {n—|n—|xqy—x@l | for t=1,..,n
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The final result of this section indeed states that sample c-median as defined above
enjoys a natural property. However, we need some more notation before stating it. We
denote by M, the sample ¢-median of X,,...,X,, a set of i.i.d. observations from
a circular distribution F. Moreover, we denote by G, the function obtained from (2.1)
by replacing F with F,, the empirical distribution function corresponding to F, and by
D,(v), the sample analogue of D(y) defined in (3.1). We assume that M, is measurable.

Theorem 4.1. Assume that F is continuous. Then, we have

Proof. We shall provide the proof for part (a) only. The proof for part (b) is similar,

We begin with the observation that P(X™eE{,)=1 for every i=1,...,n, which is
casy to verify. In view of (4.5), it therefore suffices to show that X eE, implies that
Gu(M,)=73.

Choose we such that X™(w)=(X 1,(®), .... X m(®))€E; , for some i with | <i<n,
say io. This implies D,(y) restricted to C;, ,(X™ (w)) is a constant.

Observe now that for xe[0,2n)—{ X ,(w), .... X (o), X)), ... X&),

D (x)=n[1-2G,(x)]x =) Xp(l+ Y X uH(w)+ Y 21— x(w)) (4.6)

1 0 < x < m, where the first sum in (4.6) is taken over all those i for which 0 < X ;,(w) < x.
the second one over all those i for which x < X y(w) < x+m. and the last one over all
those i for which x+m <X (w)<2n. A similar relation holds if n<x<2n. Let us
recall now from Lemma 4.2, part (a) and Definition 4.1 that M,eC;, (X" (w)). Taken

with the last sentence of the preceding paragraph and (4.6), this implies G,(M,)=}3.
completing the proof. [

Remark 4.5. In view of Fact 2.1, Theorems 3.1 and 4.1, it is clear that arc distance
median is indeed a meaningful version of Mardia’s (1972) median. See also some of the
discussions of Liu and Singh (1992) in this context.

Remark 4.6. In Purkayastha (1991b), some more properties enjoyed by sample
c-median M, can be found.

5. Strong consistency of sample circular median
We begin by recalling that ([0, 2n), d) is a compact metric space. In view of this fact,

Theorem 3.1, and our definition of sample c-median, we can now adapt suitably
Theorem (ii) of Sverdrup-Thygeson (1981} to establish the following result. For the
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result to hold, we need the same assumptions as the ones we did for Theorem 3.1 to
hold. We omit the details.

Theorem 5.1. lim, ., d(M,, M)=0.

6. Main representation theorem

We need a few lemmas to prove the main representation theorem. The first result is
true for any circular distribution F.

Lemma 6.1. There exists a positive constant C (not depending on F) such that

P< sup |G,,(x)—G(x)|>d)<Ce_""2/2, d>0, n=1,2,...

0<x<2n

Proof. It is casy to see that
sup{|G,(x)— G{x)|: 0<x <2} =sup{|{ Fa(x*)— F(x*)}
—{F(x)—F(x)}]: 0<x <2m}.
The proof now follows by appealing to the well-known exponential-type probability

inequality for the Kolmogorov—Smirnov distance (Dvoretzky et al., 1956). [

Before we prove the next result, we need some more definitions. Assume (A.1}HA.3)
and (A.5). Observe that the function G, defined in (2.1), is differentiable at each
xe{ze[0,2n): d(M, z) <e}u{ze[0,2n): d(M*,z)<e} (this ¢ is the same as the one in
(A.3)) with derivative G'(x)=f(x*)—f(x). We denote G'(x) by g(x). Define a sequence
of positive numbers {¢,: n>2} by

_ 8(log n)*2
g (M)

Define subsets {I,: n>2} and {J,: n=2} of [0,2n) by
I,={xe[0,2n): d(x, M}<g,}, Jo=1{x€[0,2m): d(x, M*)<¢g,}.

Lemma 6.2. Assume (A.1)—(A.5). Then with probability 1,
M,el, 6.1)

Jor all n, sufficiently large.

Proof. We provide the proof corresponding to the case 0 < M < r only. The proofs for
the other cases are essentially similar except for a few minor modifications.
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Observe that if we assert that with probability 1,
M,el,uJ, (6.2)

for all n, sufficiently large, then in view of Theorem 4.1 and the definitions of I, and J,.
(6.1) will follow. It, therefore, suffices to establish (6.2).

Note that in view of the facts about the function G, recorded in Section 2 (in
particular Lemma 2.1), we have the following: there exists an integer N >0 such that

inf {|G(x)—4|: xe(I,0d,)*} =|G(M +e,)—3| or |GIM*—¢,)—%] {6.3)

foralt n=N [(I,0J,)°=[0,2n)—(I,uJ,)]. Again from differentiability of G at both
M and M * it can be seen that there exists an integer N> N such that

4(logn)'/? 4(logn)t'?
|G(M+an)—%|>~(%';l~ and |G(M*+sn>—%|>%~f,§)v (6.4)
for all n=N,. From (6.3) and (6.4) now it follows that
4(log n)!72
inf {|G(x)—3|: xe(I,uJ,)°} >L0—%r—2ll— (6.3)
n

for all n=N,. Taken with Theorem 4.1, (6.5) now implies that

2 ] 1/2
P(Moelly0d)) < P Go(M,) = GIM, )| > 008N (6.6)

nt/?

for all n= N, The assertion (6.2) now follows by employing Lemma 6.1 in (6.6), and
then by invoking the Borel-Cantelli lemma. [

Lemma 6.3. Assume (A.1)—(A.5). Then the following expansion for the function G(x)
holds:
(a) if 0<M <2m,

GX)=GM)+(x—=M)g(M)+O(|x—=M|*?), |x—Mj<e,
and
(b) if M=0,

(x)= G(M)+xg(M)+O(Ix|*?), 0<x<s,
Tl GMY 4+ (x=2m)g(M)+ O(jx—=2r]??), 2n—e<x<2m.

Proof. The proof follows immediately from the mean-value theorem and (A.4). !

Let us now recall that the Bahadur representation for the linear median gives
indeed a representation for

|§1/2.n—51/z|5gn(f1/2,n—51/2),
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where £;,, is the population median and &;;; , is the sample median based on
a random sample of size n. In the present situation, we shall replace |,/ ,—&;,2] by
d(M,, M). As regards the sgn part, we observe that there is no natural order on the
circle. Therefore, we shall force one such notion into the picture that serves our
purpose. The following definition is made towards this end.

Definition 6.1. We define a sequence of random variables {Z,: n>1} as follows: for
0<M<m,

, _{d(M,,,M) if M<M,<M*

—d(M,,M) otherwise,
and for n<M <2nm,

4 =AM, M) i M <M,<M,
" 1d(M,, M) otherwise.

Lemma 6.4. Assume (A.1)—(A.5). Then with probability 1,
G(M,)~G(M)=Z,g(M)+O({d(M,, M)}*"?), n—cc.

Proof. The proof follows from Theorem 5.2 and Lemma 6.3. [

The following result is a slightly modified version of Lemma 1 of Bahadur (1966).
A careful scrutiny of the proof of this lemma reveals that it does not make use of the
assumption that the underlying distribution function (H, say} is twice differentiable at
the quantile under consideration (&, say) in its full force, rather it only assumes that
H is continuously differentiable on a neighbourhood containing ¢. In view of this
observation, the following result follows immediately from this lemma.

Lemma 6.5. Suppose that H is a distribution function defined over R. Suppose aeR is
such that H is differentiable on (a, a+ ) for some >0 and differentiable from the right
at a. Write H'(x)=h(x), xel=(a,a+8). Suppose h is continuous on I, and moreover
lim, ., h(x)=H' (a). Let {a,} be a sequence of positive numbers such that

collogn)t/?

a,,~——nl—/2——, n— 00,

Put
K,=sup{|[Hy(a+x)—H,(a)]-[H(a+x)—H(a)]|: 0<x<a,},

where H, is the empirical distribution function corresponding to H. Then with
probability 1,

K,=0(n" ¥*(logn)**), n—w.
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Remark 6.1. If instead of assuming H to be differentiable continuously on [a, a+§)
we assume H to be differentiable continuously on (a—4, a], the resulting assertion
(with supremum taken over —a,<x<0) is also true.

Lemma 6.6. Assume (A.1){A.5). Define
Ty=sup{|[G,(x)—G,(M)]—[G(x)—G(M)]|: xel,;
Then with probability 1,
T,=0(n ¥*logn**), n-x.

Proof. The proof follows by expressing G, and G in terms of F,, and F, respectively.
and then by adapting suitably Lemma 6.5 and Remark 6.1 to this situation. [ |

Now we prove the main representation theorem of this paper.
Theorem 6.1. Assume (A.1}HA.5). Then the random variables Z, admit the following

Bahadur-type representation:

1= GuM)
Zn=2 n +Rn,
g(M)

where with probability 1,

R,=0(n"3*(logn)®*), n-x.

Proof. In view of Lemmas 6.2, 6.4 and 6.6, we have the following: with probability 1.
G,(M,)—G,(M)=Z,g(M)+O(n"¥*(lognp>*), n-owxc. (6.6)

The proof now follows from (6.6) and Theorem 4.1. [

The following corollary is an immediate consequence of the above theorem.

Corollary 6.1, As n tends to <, \/n Z, converges weakly to a normal distribution with
mean 0 and variance 1/4g*(M).

Remark 6.2. 1t is easy to see that the Euclidean metric on R?, restricted to S !, induces
the metric d, on [0,2n) given by d,(#;,0;)=2sin(d(0,,0,)/2), where d is the metric
defined in Section 3. It now seems natural to ask whether we still have assertions like
Theorems 5.1, 6.1 and Corollary 6.1, if we redefine Z, by replacing d by d,. It is not
difficult to see from Theorems 5.1, 6.1, Corollary 6.1 and the fact |sin x — x|=O(]x3).
x—0, that the answer is in the affirmative.
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Remark 6.3. This remark is made to discuss applicability of Theorem 5.1 and
Corollary 6.1 for a particular distribution.

It turns out that most of the standard circular distributions are symmetric and
unimodal around a fixed point on the circle. This guarantees existence of a unique
population c-median (see Mardia, 1972, pp. 46, 47). Thus assumptions (A.1)}{A.3) and
(A.5) are satisfied by most of the circular distributions. As regards assumption (A.4), it
really states that f is Lipschitz continuous of order # at both 8, and 8¢ (with Lipschitz
continuity being defined suitably when 8, =0). A sufficient condition that implies (A.4)
is the following:

(A.4) fis differentiable from both left and right at 8, and 8§ as well if 0 <8, <. If,
however, 8, =, fis differentiable from right at 0, from left at 2x, and from
both left and right at «.

Note that it is easier to check (A.4) mathematically than to check (A.4).

Remark 6.4. In Ducharme and Milasevic (1987) (henceforth abbreviated to DM),
a result similar to Corollary 6.1 can be found. However, it appears that there are some
mistakes and gaps in their approach. In what follows, we present a brief discussion of
this modestly.

DM restrict their attention to symmetric and unimodal circular distributions, and
assume without loss of generality that the population c-median M (u in the notation
of DM) lies in [0, m). However, it 1s a mistake to take the sample c-median M, (y,, in
the notation of DM) also in [0, ) since such a strategy does not take care of the
relation f(M)>f (M *) and uses prior knowledge about the population c-median. The
difficulty becomes apparent when M =0. In this situation, with high probability one
would get samples with M, close to 2w; whereas an appeal to the definition of sample
c-median of DM would indeed imply that M, is close to n for such samples.
Consequently, the claim of DM that strong consistency of sample c-median can be
established along the lines of Pollard (1984, p. 7) is not true. A similar difficulty is
encountered also in Section 2 of DM.

Remark 6.5. In view of Ghosh’s (1971) simpler proof of a weaker version of Bahadur’s
result, it will be of some interest to see whether it is possible to obtain a similar weaker
version of Theorem 6.1,

Remark 6.6. In view of Mardia’s (1972, p. 33) extension of the notion of circular
median to quantiles of circular random variables, it will be of some interest to
see whether it is possible to prove a result analogous to Theorem 6.1 for such
quantiles.
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