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1. INTRODUCTION

Let X and Y be two real-valued random variables having unknown
continuous distribution functions (d.f.’s) F and G respectively. In this
article we are concerned with fixed-width confidence interval estimation
of the parameter

9:P(X<Y):/F(y)dG(y) (1.1)

by using a partially sequential sampling scheme in which there is a
random sample of fixed size from one of the populations and, using
this information, the observations from the other population are drawn
one-by-one sequentially until a prefixed requirement is attained.

There are many practical situations in which the observations from
one of these distributions are easy and relatively inexpensive to collect,
while the sample observations corresponding to the other population are
costly and difficult to obtain. For example, the easily collected sample
might be on X, a standard treatment observations and the sample that is
more difficult to obtain corresponds to Y, a new treatment data. In such
situations we would like to gather data (may be large) on X and collect
only enough observations necessary in order to reach a decision regard-
ing the problem under consideration. Quite often, in several industrial
and biomedical applications, one may wish to compare a new technique
or therapy with some existing one. Since the existing technique or therapy
is in use for quite some time some observations on it are readily available,
and one may wish to collect some observations on the new technique or
therapy as per requirement. To achieve these goals we consider collecting
Y-observations in a sequential manner and the sampling is terminated
in the sense that it will never require more than a preset number of
treatment observations.

In connection with the problem of testing H: F=G against F > G,
several partial sequential designs were proposed and studied by Wolfe,!"!
Orban and Wolfe®®?! and Chatterjee and Bandyopadhyay.[ For details
one can also see the book by Randles and Wolfe.”! This article, moti-
vated by Hjort and Fenstad!® (see also Khan,!”! provides a fixed-width
confidence interval of 6 wusing the following partial sequential
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sampling procedure. Let X,,, = (X},..., X,,) be a random sample of fixed
size m (>1) on X and {Y,,, n> 1} be a sequence of observations on Y. Let
6, be a sequence of estimators based on X, and (Y7,...,Y,), n>1.
Suppose for each m, there is a positive integer r=r(m) such that, as
m — 0o, we have r — o0o. We also assume that as m — oo,

sup |6, — 6] — 0, (1.2)

in probability. Then, for given d(> 0), we introduce the random variable
N(d) = supin = 116, — 6] = d}, (1.3)

which is related to a partially sequential fixed-width confidence interval
of 6 in the sense that there exists a positive integer v=uv(m) such that
asymptotically, for given « € (0,1),

P(6,— 6 <dforalln>v)=1—a. (1.4)

The random variable of the type N(d) is well-studied by Hjort and
Fenstad® in connection with sequential fixed-width confidence interval
estimation. A terminal version corresponding to Eq. (1.4) is that
there exists a positive integer v* =v*(m) (different from v) such that
asymptotically

P(6,—6l <d)>1—a forall n>v". (1.5)

Under sequential set-up, Eq. (1.5) is well-studied by many research-
ers. For details one can go through the book by Ghosh et al.”’ But, unlike
the existing procedure, we, as in Eq. (1.3), can also attach here a random
variable N*(d) such that, for each n>2, N*(d)>or<n is completely
determined by |6, —6|>d or < d. It is worth to mention that, under
Eq. (1.2), the variables N(d) and N*(d) are both finite with probability
one. Also the asymptotic results related to N*(d) can easily be found
from that of N(d) as a terminal case.

We organize the rest of the article in the following way. Section 2
presents, along with some asymptotic results, the limiting distributions of
sup{ﬁ|é,, — 0|, n>r} and d>N(d). Section 3 discusses the different par-
tially sequential fixed-width confidence intervals of 6. The convergence of
E(d 2N(d)) is also studied in Sec. 4. Section 5 contains some numerical
computations for comparing the different procedures. Some concluding
remarks appear in Sec. 6.
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2. SOME ASYMPTOTIC RESULTS

Let F,,(x) be the empirical d.f. based on X,,. Then, for each observed
Y, we set

n m

n 1 n 1
9;1 :ZZF/H(Y/) :%ZZM(‘X"’YJ—)’ (21)
J=1

j=1 i=l

where u(a, b)=1 or 0 according as a< or >b. We now provide the
following result that is useful in the subsequent derivations. For this
we assume that, for each m, there is a positive integer r=r(m) such
that, as m — oo,

r— oo but %—> A €0, 00). (2.2)

Throughout in this article, whenever m — oo, we mean that Eq. (2.2)
holds. In this context, we like to mention that explicit sequential meth-
odologies based on generalized U-statistics and associated asymptotics
were studied by Williams and Sen."'!'!) Their methods are relevant for
studying various asymptotics related to the variable N*(d) but not to
N(d). Hence we need some further development in the direction appro-
priate for the variable N(d). As a first step towards this development,
we consider the following lemma.

Lemma 2.1. As m — 00,

n>r

sup| /7(6, — 6) %; 2 (G —0) - % > (FEX) -6 =0,
i=1 Jj=1

where G(x) = 1 — G(x).

Proof. We write

m

1 _
Vi = FulY)) = F(Y)) = —3 (G(X,) =)

i=1

so that

m n

1 n . 1 ) 1
w2y V=G0 =) (G =0 =) (F(Y) =)

i=1 j=1
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Observe that, given X, V,’s are independently and identically
distributed (i.i.d.) random variables with ““zero’ expectation and

m 2
Var(V/Xa) = / [Fn(3) — FO)P dG(5) — ( > 60 - )

=0’(Xp) (say).

By Glivenko-Cantelli’s lemma, it is not difficult to show that, as m — oo,
0 (X) —> 0,
and hence, since 0(X,,) is uniformly bounded, we get

E(6*(X,,)) — 0. (2.3)
Now, for every €>0,

1 n
(sup E V| > —) =EP (sup Xm),
n=r ; n>r

ZZ ij
which, by Hajek-Renyi inequality (see Rao,'? pp. 143), is

=1
[ ( Za X+ Y az(xm)/iz)} < S,

i=r+1

€

7;

=

and hence, by Eq. (2.3), the required result follows. ]
Note. From the above lemma, it is easy to check that, as m — oo,

sup |6A,7 -0 N 0.
Remark. While proving the above lemma, we could incorporate earlier
methodologies (see e.g., Williams and Sen!'").

Limiting Distribution of sup{ﬁ|é,, — 6|, n>r}: Here we introduce
the following random variables:

_ 1 n m
Up==3 (F,,,(Y,) Z G(X; )) 24)
J=1

Uy = Z(G(X) —6)/o1, (2.5)
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and

0y = %; (F(Y) ~6)/os, .6)
where

ot = [160 - 6FdFeo. o = [P0~ PdG), @)
Clearly

6, —6=U,+0,Uy,, (2.8)

and, by Lemma 2.1, we have

\/;Un — 02\/;0271 + €4, (29)

where, as m — oo,

sup le,| —> 0. (2.10)

n=r

Let {n(r) = n,,(¢), 0 < ¢t < 1} be a sequence of non-increasing, right-
continuous and positive integers such that

n(l)y)=r and n(t) > o0 as t— 0. (2.11)
In particular, for every m (>1), if we take

n(t):min{n:%gt], 0<r<1, (2.12)

then Eq. (2.11) is satisfied. Let us then introduce the following stochastic
processes:

I/Vm(l) = \/;Un(l)a 0<r<1,
—0, 1=0. 2.13)

and

Zm(l) = \/F02,7(/), 0<t < 1,
=0, t=0. (2.14)

Let us now write lim, ¢ Z,,(t) = Z,,(0 + 0) and lim, o W,, (1) = W, (0 + 0).
Then from Lemma 2.1 of Sen!'* it is easy to verify that Z,,(0 + 0) is equal
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to “zero” with probability one, and hence it is not difficult to extend the
definition of Eq. (2.14) at ¢=0. Thus the stochastic process
Z,=1{Z,(), 0 <t <1} belongs to D[0, 1] equipped with Skorkhod
Ji-topology. But, with a view to extending the definition (2.13) at =0,
we consider the following lemma.

Lemma 2.2. For every m (>1), W,,(0+0)=0 with probability one.

Proof. Here we show that, for every m (>1),
P(lif(r)l W,.(t) = ()) =1. (2.15)
t
For this it is enough to show that, for every € >0,

= €
lim P U, — ] =0. 2.16
ki)ngo <11I2nre>l<)2(k | ”| ~ \/; ) ( )

Now, using the fact that, given Xy, U, is the mean of i.i.d. random
variables having “zero” expectation and variance

2
1 m _
S» = Ey, (F,,,(Yl) - ;ZG%)) < Ey,Fa(Y) <1,
i=1

we have, on applying Hajek-Renyi inequality, the expression under limit
of the left hand side of Eq. (2.16) as

N g
< (E) 27FES2) <27 50 as k> oo.

Hence Eq. (2.15) is true. O

Thus, using the above lemma, the stochastic process W,, = {W,,(?),
0 <t < 1} belongs to D[0, 1] equipped with Skorkhod J;-topology. Let
W={W(), 0<t<1} be a Wiener process on D[0, 1] (with C(0, 1] as

support). Then we prove the following theorems.

Theorem 2.1. As m — oo,

L o W, in the Ji-topology on D|0, 1].
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Proof. From Sen,!'*! as U,, is the mean of i.i.d. random variables with
*““zero’ expectation and unit variance, it can be easily established that the
process Z,, converges in distribution to the process W. O

Theorem 2.2. For any fixed x (>0),

lim P(ﬁsup |én -0 < x) = P< sup o, W(t) + Vo, Z| < x),

=00 n>r 0<t<1

where Z is an N(0, 1) random variable distributed independently of W.
Proof. Using Eqgs. (2.8) and (2.13), we get

«/;SUP |én -0 = sup |I/Vm(t) + Gl\/;01171|' (217)

nx=r 0<t<1
By CLT, as m — o0,
V7O, 5 N(O, ). (2.18)

Hence, as U, is distributed independently of {U,,}, we get, using
Eq. (2.14) and Theorem 2.1, as m — oo,

sup |02Z,,(t) + 01/7UL,| LN sup |o, W(t) + ﬁalZ‘. (2.19)
1

0<t< 0<t<1

But, in view of Egs. (2.9) and (2.10), we get, as m — oo,

sup ‘ I/Vm(t) + o] \/;01m| — sup ‘U2Zirr([) + Ul\/;[]lm‘
1 1

0<i=< 0=t=<

= sup |Wm(t) - U2Zn1([)| _P> O,

0<t<1

and hence, Eq. (2.19) implies the required result. O
Note. From the above theorem it is easy to find

lim P(mé,. —0 < x) - P(|a2 W(1) + VAo Z| < x)

m— 00

ol —2 |1, (2.20)

,/0%—1—)\012

where ®(-) is the d.f. of an N(0, 1) random variable.
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Limiting Distribution of d®N(d): Here we assume that, for each m
(=1), there is d=d(m) (> 0) such that, as m — oo,

d— 0 but dym— b(>0). .21)

In particular, if we take d = b/s/m, b>0. Equation (2.21) is satisfied.
Now, given b, v>0 and m > 1, we can find r to be the smallest integer
> ym/b* and v, (=rd°) satisfying: vy — b>/m<v <. Let V be a random
variable such that, for a random variable U having the d.f. given by
Result 1 of the Appendix,

V )
S SS— 1 2.22
03 + (o} /P @-22)

Then we get the following theorem.
Theorem 2.3. As m — oo,
d2N@d) > v,
Proof. For every v (>0), we have
P(d*N(d) = v) = P(N(d) = 1)
= P(ﬁsup 16, — 6] > m)
n=r

which, by Theorem 2.2, tends to

P( sup
0<r<l

and hence, from Result 1 of the Appendix, we get

WO+ 02| = VF).

lim P(d*N(d) <v)= ¢ A )
m—00 /O’% + (U%/bz)v
This implies our required result. O

Note. From Eq. (2.20) it is easy to see that, for every v (>0),

lim P(d*N*(d) <v) =2® M 1, (2.23)

m— 00 /05 + (alz/bz)v
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which means that

AN d) > v, (2.24)

where /7 * / 03 + (03/b*)V* ~ Chi-square one degree of freedom.

3. FIXED-WIDTH CONFIDENCE INTERVALS

In this section, we discuss the construction of different fixed-width
confidence intervals using the limiting distributions obtained in the
previous section. These are obtained as follows.

First we consider the fixed-width confidence interval using the
limiting distribution of d>N(d). Let, for given « € (0,1), u, be such that

W(ua) =1l-o

Then, for given (m, b, o7, 07), we have v as the smallest integer n (>1)
satisfying

2 2
7 b\/(n/m) 5 | s 274’1(721/;0, .
03 + (n/m)o? b* = ofug
provided »* — 6312 > 0. (3.1)

One sufficient condition for satisfying the second inequality of
Eq. (3.1) is that b>u,. For v satisfying Eq. (3.1), we get

lim PIN(d) <v) =1 —a, (3.2)

and hence a sequence of fixed-width confidence interval for 6 of length 2d
with confidence coefficient 1 — « is given by

6, —d, b,+d), n=v. (3.3)

In practice o7 and o, are unknown and hence Eq. (3.3) cannot be
used. We then modify the above procedure as follows. For each n (>2),
we provide the estimators:

71m
&%n:[m(’;)] SO wXYux,y) — &,

i=1 1< j<j'<n

—1 n
6§,T=[n(’:)] Yo D uXnYu(X.Y) — 6.

I<i<i’'<m j=I
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Then, as m — oo,

sup

n>r

%—1’ L0, k=1,2,
Ok

for every r satisfying Eq. (2.2). Further, if we write D to be the smallest
integer n (>2) satisfying

m 6%,, ué

n [ - A S—
— 2 A2 2 b
b* — oy, uy

rovided 5* —&%u2 > 0, (3.4)
p 1n“%a

then we get the following theorem.

Theorem 3.1. As m — oo,
D D~
(i) P(Nd)<v)—>1—a,

where “D ~ v’ means that v/v — 1, in probability.

Proof. For any €>0,

DY)

m m

ED<v Oor D>,

where v; = v — me and v, =v+ me. Now

A2 2

A maoyy iy,

V< = Supﬁ
- U,

<V
k<v, b” — O U

and

) 2
moz[vz]ua

b2 =2

V>V, = — 5
O] Her

> V.

As m — o0, both the left hand members of the above inequalities divided
by m converge in probability to A = (o35u2)/(b* — otul), but (vi/m) —
A+ (=1)e, k=1, 2. Hence we get

lim P(v <v;) = lim P(V > v,) =0.
m—00 m—00

This implies (i).
Again

P(N(d) > D) = P(%dzN(d) > vd2> = P(V > ™).
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Thus we get

lim P(N(d) > p) = lim P(N(d) > v),

which implies (ii). O

Hence, instead of Eq. (3.3), we get the following random sequence of
fixed-width confidence intervals of length 2d:

O—d,6+d), n=>m, (3.5)

because, by Theorem 3.1 (ii), we get, as m — oo,

n=>v

P(sup 16, — 6] < d) =P(N(d) <?D) > | —a. (3.6)

The terminal fixed-width confidence interval corresponding to
Eq. (3.5) can also be given by

by —d, 05 +d), (3.7)
where v* is obtained by Eq. (3.4) with u, replaced by z,, satisfying
D(r,)=1—0w/2.

Then, as in Eq. (3.6), we have, using the note under Theorem 2.3,
as m — 0o,

P(l6y — 6l <d)=P(N*(d) <) > 1 —a. (3.8)
Now, to compare Eq. (3.5) with Eq. (3.7), we, for a specific F and G,

compute the ratios v/m and v*/m for some selected b and «. These are
given in Sec. 5. The following ratio

E(N(d li E(d*N(d
po tim BV _ limy o EEN) 59)
m—o0c E(N*(d))  lim,, ., E(d°N*(d))
can also be used as a measure of Asymptotic Relative Efficiency (ARE) of
Eq. (3.5) relative to Eq. (3.7). We study the convergence of these expecta-
tions in the next section.
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4. CONVERGENCE OF EXPECTATIONS

We have studied the limiting distributions of d*>N(d) and d>N*(d).
The present section provides the convergence of E(d*N(d)) and
E(d*N*(d)). This can be achieved by using the following theorem.

Theorem 4.1. Suppose r satisfies Eq. (2.2). Then, for every a (>0), m(>1)
and for some K (>0), we have

N a K
Plsup|f,—0|>—) <—.
(nzlr)l | \/;) at

Proof. Using Eq. (2.8), we can write

A 2a a a
P 6,—0|>— P v Pl|U —.
(Snlil;)l n | > ﬁ) = <snlil?| \/—) =+ (l iml = 1\/;>
4.1

As E(U},) < (4/m?), we have

2
- a ro 40 r\2
P(lulml > ) <% gy, ¢ < 2L (5) 42)
o1/ a* at \m

Let k be a positive integer such that, for a given m, 28 <r<2t*+1,
Then, writing nU, = S,,. we note that S, given X, is the sum of i.i.d.
bounded random variables having zero expectations. Hence, utilizing a
generalizations of Kolmogorov’s inequality to the conditional probability
for given X,,, we get

&
(sup|Un| _—) < ZP(sug] Si257 )
n>r i=k n<2'

2, E(Sy | Xm)
=2 e

4r2 D @Y @
< . 4.3
- a4 — 24 T 344 ()

Thus, by Egs. (4.2) and (4.3), the right hand side of Eq. (4.1) is

4
< al—4 [% + (%)240‘}]. (4.4)



88 Bandyopadhyay, Das, and Biswas

Now, by Eq. (2.2), there exists K (>0) such that Eq. (4.4) cannot exceed
K/a* for all m (>1). Hence the result. O

Using Theorem 2.3 and the above theorem we get

E(d’N(d)) = fooo P(d*N(d) = v)dv — /OOO P(V > v)dy

:/w 1— Y w (4.5)
0

o3+ (a1 /b%)y

Similarly, from the note under Theorem 2.3, we get

2 A7 oo _ ﬁ
E(d*N (d))—>/0 2(1-o —m dv. (4.6)

Hence, for given F, G, and b, we can compute Egs. (4.5) and (4.6) and
hence p through numerical integration. These are given in Sec. 5.

5. NUMERICAL COMPUTATIONS

We provide some related computational results in this section. We
have done a detailed computations taking « = 0.01, 0.05, 0.1, and different
distributions and different possible values of m. But, for brevity, we present
only a few tables which will be sufficient to illustrate the behavior of our
methodology. Table 1 provides the u, and 7, values for different «. For the
Tables 2-3, we consider o =0.05, m =100 and we take F= N(0, 1). If we
take G = N(0, 1), we get 0 =0.5and o7 = 03 = 0.0833. Table 2 provides the
values of v and v* for different b for F= N(0, 1) and Case (1): G= N(0, 1),
Case (2): G=N(0, 2°) (where #=0.5 also, and o7 = 0.03205 and
o7 = 0.14758), Case (3): G=N(1, 2°) (where =0.67264, o7 = 0.02671
o1 = 0.12786) and Case (4): G = N(3, 2%) (where the values are respectively
0.91014, 0.00624 and 0.04145), respectively. In Table 3, the choices of G are
respectively Case (5): C(0,1), Case (6): C(0, 2%), Case (7): C(1, 2°) and Case
(8): C(3, 2%), where C(u, o°) is the Cauchy distribution with location
parameter p and scale parameter o. For Case (5), 6=0.5, o1 = 0.04556,
and a% = 0.12680 ; for Case (6), the values are respectively 0.5, 0.01820,
and 0.17257; for Case (7), these are 0.62876, 0.01455, and 0.16564, respec-
tively; and for Case (8), these values are 0.80079, 0.00340, and 0.12885,
respectively. We present the computations of p for (d, m) such that b=1.2.
For example, with F=N(0, 1) and G=N(0, 1), and for b=1.2, the
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Table 1. The values of u, and 1, for different «.
a Uy

0.01 2.8073 2.5758
0.05 2.2415 1.9600
0.1 1.9600 1.6449

Table 2. The values of v and v* for F= N(0, 1), and case (1): G= N(0, 1),
case (2): G=N(0, 2°) and case (3): G= N(1, 2%), and case (4): G= N(3, 2.

Case (1) Case (2) Case (3) Case (4)

b v v¥ v v¥ v V¥ v V¥
0.2 2404 993
0.4 2489 856 162 118
0.5 834 447

0.6 373 240 285 191 64 48
0.7 587 189

0.8 190 101 155 110 127 92 35 26
0.9 107 66

1.0 73 48 89 65 75 55 22 17
1.1 53 36

1.2 41 29 58 44 50 37 15 12

Table 3. The values of v and v* for F= N(0, 1), and case (5): G=C(0, 1),
case (6): G=C(0, 2%), case (7): G=C(1, 2%), and case (8): G=C(3, 2%).

Case (5) Case (6) Case (7) Case (8)
b v v¥ v V¥ ) V¥ v v*
0.2 2822 1837
0.3 4928 1867
0.4 1265 735 958 612
0.5 3022 650
0.6 487 264 323 229 291 210 189 143
0.8 155 105 159 117 147 109 104 79
1.0 83 60 96 72 90 68 66 51
1.2 53 39 65 49 61 46 46 35

89
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Table 4. Numerator and denominator of Eq. (3.9) with their ratio p
with F=N(0, 1) and b=1.2.

G Numerator of Eq. (3.9) Denominator of Eq. (3.9) 0

N(0, 1) 0.154782 0.205476 1.327519
N0, 2%) 0.158748 0.292472 1.842367
N(, 2%) 0.135739 0.249829 1.840510
N@3, 2% 0.042001 0.077023 1.833837
c(, 1) 0.141369 0.261153 1.847314
(0, 2% 0.179568 0.329987 1.837672
c(, 2% 0.170934 0.313918 1.836483
(G, 2% 0.129774 0.237871 1.832972

numerator and the denominator of Eq. (3.9) are respectively 0.20548 and
0.15478. In Table 4 we present the values of the numerator and denomi-
nator of Eq. (3.9) and also their ratio p. Most of the values
of p are quite close. Quite expectedly, the required sample size of the
proposed procedure is larger.

6. CONCLUDING REMARKS

We illustrate our proposed procedure by one real dataset. The data
has been collected on two hourly basis from an aluminium factory in
August 1999. Grindability is an important characteristic of aluminium
powder which is basically the granual size. Aluminium hydrate is heated
at some predetermined temperature for providing aluminium powder.
Several process parameters were there. For our purpose we consider
mineral dose, a particular chemical mixed with aluminium hydrate at
the rate of kg/h. In the first phase of the study, the mineral dose was
6.66-6.72 kg/h. There were m = 26 observations. Then the second sample
involved the mineral dose of 4.44-4.92kg/h, and 75 observations were
collected. Our objective is to find the value of v and v* if the second
sample were collected using our present sampling scheme to achieve a
fixed-width confidence interval. At «=0.05, we observe that for 5=0.3
the value of v is 40 and v* is 30. If we set 5=0.4, vV =22, and »* = 18.
Thus the method could be easily used in such a situation to plan the
experiment and obtain the exact number of samples required to achieve
a fixed-width confidence interval.

The proposed procedure can be interpreted as a fixed-width confi-
dence interval for the stress-strength reliability, where X and Y are the
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stress on and strength of a particular component. Thus the application of
the proposed technique can be extended to the reliability set up also. The
procedure is useful only when we require that the difference between the
parametric value and its estimator will not exceed a preassigned value for
a long duration of time. Specifically in quality control application of
delicate and expensive tools we may require such kind of protection.

APPENDIX

Result 1. Let W={W(f), 0 <t<1} be a Wiener process distributed inde-
pendently of Z having an N(0, 1) distribution. Then, the d.f. y¥(u) of the
random variable U = sup{|/pW (1) + /1 —pZ|, 0<t<1}, where p €
(0,1] can be obtained from the relation:

W(u) = i [D((4k + 1)) + D((4k — 3)u) — 20((4k — Du)], u > 0.

k=—o00
Proof. We have
Y(u) = P(U < u)
:P<|«/l—7W(t)+\/l—pZ| <uforall1:0<¢< 1)

e u 1—p

=| Pl- —z[—== W)=
/_oo < N p

_2/1;” forallt:Ogtgl)dCb(z),

which, from Sen,"'™ (p. 42) (see also Parthasarathy,!' p. 230), can be
written as

Si=

u
— | | do(2), Al
» ﬁ)] ®(2) (A.1)
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Figure 1. Plot of ¥/(u) against u.

where N is an N (0, 1) random variable. If we take the integral under the
sums of (A.1), we get the required result using the relation

—0<a, b<oo,
—00

o0 b
f O(az + b)dd(z) = @(7m>,

and making some routine calculations. Note that the above operation is
valid since both the series converge uniformly in z for each fixed u. [

Remark. Figure 1 provides a plot of v(u) against u. It is observed that
¥(u) is almost equal to zero up to u=0.5, then it rises sharply and reaches
almost up to unity between u#=2.5 and 3.
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