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Abstract

Flow of a thin liquid film of a power-law fluid caused by the unsteady stretching of a surface is investigated by
using a similarity transformation. This transformation reduces the unsteady boundary-layer equations to a non-linear
ordinary differential equation governed by a nondimensional unsteadiness parameter S. The effect of S on the film
thickness is explored numerically for different values of the power-law index »n. A physical explanation for the findings
is also provided.
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1. Introduction

The prime aim in almost every extrusion application is to maintain the surface quality of the
extrudate. All coating processes demand a smooth glossy surface to meet the requirements for
best appearance and optimum service properties such as low friction, transparency and strength.
Frequently, a textured surface is required, perhaps to prevent layers of thin films from adhering
together or to produce a combination of high translucency with high diffusion in a light fitting.
The problem of the coextrusion of thin surface layers needs special attention to gain some
knowledge for controlling the coating product efficiently. Crane [1] and McCormack and Crane
[2] studied the steady two-dimensional flow of a Newtonian fluid induced by the stretching of
an elastic flat sheet in its own plane with a velocity varying linearly with the distance from



2 H.I. Andersson et al. | J. Non-Newtonian Fluid Mech. 62 (1996) 1-8

a fixed point due to the application of a uniform stress. This problem was extended to a class
of visco-elastic fluids known as second-order fluids by Rajagopal et al. [3] and they solved the
boundary layer equations numerically. Later on Dandapat and Gupta [4] examined the same
problem with heat transfer and obtained an exact analytical solution of the non-linear equation
governing the self-similar flow, which is consistent with the numerical results in Ref. [3].
Recently Andersson and Dandapat [5] examined this stretching sheet problem initiated in Ref.
[1] for fluids obeying the power-law model. It is interesting to note that in all these above studies
the fluid on the stretching sheet is considered to extend to infinity when in reality the fluid will
adhere to the sheet as a thin liquid film. Wang [6] first considered the finite film on the stretching
surface and solved the unsteady Newtonian fluid flow problem induced by an accelerating
stretching surface. Later on Usha and Sridharan [7] studied the analogous axisymmetric flow
problem.

Needless to say, most of the paints or protective coatings applied on an extrudate are in
general non-Newtonian fluids. In the present study we therefore examine the behaviour of a
liquid film of an incompressible non-Newtonian fluid obeying the Ostwald-de-Waele power-law
model due to unsteady stretching of the surface. It will be demonstrated that a similarity
transformation exists, which exactly transforms the non-Newtonian boundary layer problem
into an ordinary differential equation. Numerical solutions will elucidate the effects of non-New-
tonian fluid behaviour.

2. Formulation of the problem

Consider the flow of a thin liquid film of an incompressible fluid obeying the power-law
model. The flow arises due to the stretching of an elastic sheet parallel with the x-axis at y = 0.
Two equal and opposite increasing forces are applied along the x-axis, so that the stretching of
the wall is accelerated but the origin remains fixed. The basic equations governing the resulting
boundary layer flow are, in usual notation
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where u and v are the velocity components along the x and y directions respectively, p is the
density and ,, represents the shear stress. In the present problem, we have du/dy <0, this gives
the shear stress as
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where K is called the consistency coefficient and #» is the power-law index. For the particular
parameter value n = 1, one can retrieve the Newtonian fluid model with dynamic coefficient of
viscosity K. As n deviates from unity, deviations from Newtonian behaviour occur. For example,
n<1 and n> 1 correspond to pseudoplastic and dilatant fluids respectively.
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Combining Egs. (20) and (3) we have
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The flow is caused solely by the stretching of the elastic surface at y =0 with a velocity
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where ¢ and « are positive constants both with dimensions time~'. It should be pointed out here
that the analysis is valid only for time ¢ < (1/a). Further it should be noted that the end effects
and gravity are negligible and that surface tension is sufficiently large such that the film surface
remains smooth and stable throughout the motion. Egs. (1) and (4) have the similarity solution
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where the similarity variable # is given by
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Clearly, the u and v values given in Eq. (6) satisfy the mass continuity equation (1) and after
substitution in Eq. (4) we get
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where S (=a/c) is a dimensionless measure of unsteadiness and a prime denotes differentiation
with respect to #.

The boundary conditions are: no-slip on the stretching boundary (# = 0) and vanishing of the
shear stress at the free boundary (y = A(x, t) or y = £} along with the constraint that the motion
must satisfy the kinematic condition

v=U—t ®)

at the free surface. In dimensionless form these boundary conditions become
SO =1, f(0)=0 (10)
S(B)=0 (11)
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and
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Clearly, for n = 1, the above problem simplifies considerably and we revert to the study of Wang

(6]-

3. Numerical results

The highly non-linear differential equation (8) subject to the boundary conditions (10)—(12)
constitutes a two-point boundary-value problem, which can be solved by a standard shooting
method. The third-order ODE is formulated as a set of three first-order equations and integrated
as an initial value problem using the ODEX routine [8]. Trial values of f”(0) are adjusted
iteratively by Powell’s method using the DNSQE routine [9] until the outer condition (11) is
satisfied to within a tolerance error of 10! for a tentative position of the free boundary f. The
numerical solution thus obtained generally does not satisfy the kinematic free surface condition
(12). The estimated value of f is therefore systematically adjusted until Eq. (12) is satisfied to
within 10~'°,

Converged numerical results were obtained for a pseudo-plastic fluid (z = 0.8) and a dilatant
fluid (n = 1.2) as well as for the Newtonian case #n = 1.0 over a wide range of the unsteadiness
parameter S. Velocity similarity profiles f'(r) are shown in Fig. 1 for two representative values
of S. The varnation of the dimensionless film thickness f with S is presented in Fig. 2, while
dimensionless forms of the free-surface velocity f(f) and the velocity gradient f”(0) on the
stretching sheet are displayed in Figs. 3 and 4 respectively. The velocity gradient f”(0) is related
to the dimensionless skin-friction coefficient C; according to its definition

_ =21,(0)

Cr= =2[—/"(0)]" - Rez V"=V (13)

pU*
where Re, = pU? " x"/K is a local Reynolds number based on the sheet velocity U defined in
Eq. (5).

4. Discussion and conclusions

Let us first recall the major findings of Wang [6] for the particular parameter value n =1 of
a Newtonian fluid. Wang observed that, for positive values of the unsteadiness parameter,
solutions exist only for 0 < S < 2. Moreover, when S tends to zero the solution approaches the
analytical solution of Crane [1], which corresponds to an infinitely thick layer of fluid, while the
limiting solution as S— 2.0 represents a liquid film with infinitesimal thickness. It was also
observed that the film thickness f decreased monotonically with increasing S, whereas the
magnitude of the wall gradient —f"(0) increased with S until it reached a maximum of 1.283
near S=1.11 and thereafter rapidly decreased to zero as S approached 2.0. The numerical
results presented by Wang [6] were supplemented by asymptotic solutions for thin and thick
films, i.e. for S~ 2 and § = 0 respectively. These asymptotes are shown as broken lines in Figs.
2 and 4 in order to demonstrate the accuracy of the present computations for n = 1.

The velocity profiles presented in Fig. 1 show that even moderate deviations from Newtonian
rheology (n=1) have a significant influence on the variation of the horizontal velocity
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Fig. 1. Similarity velocity profiles f'(#) for different values of the power-law index n: (a) S=0.8; (b) S=1.2.

component u across the liquid film. For a given value of the unsteadiness parameter, the
pseudo-plastic film (»n = 0.8) is thinner and exhibits a greater surface velocity than a Newtonian
film, while the opposite behaviour is observed for the dilatant fluid (» = 1.2). Pseudo-plastic
fluids are commonly known as shear-thinning fluids since the viscosity function becomes
progressively reduced with increasing shear rates, whereas dilatant substances have viscosity
functions that increase with the shear rate and thus become progressively more viscous and
thicken with increasing rates of shear. It is therefore not surprising to observe that the
shear-thinning pseudo-plastics are more amenable to flow nearly as an inviscid layer on top
of the stretching sheet than are the shear-thickening or dilatant fluids. For § = 1.2, for example,
the velocity varies by 36.5% across the film for n = 0.8 and by as much as 80.2% for n = 1.2; cf.
Fig. 1b.
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Fig. 2. Film thickness § vs. unsteadiness parameter S. The broken lines denote asymptotic solutions for n =1 by
Wang (Eqgs. (19) and (33) in Ref. [6]).

The variations with .S of the dimensionless film thickness § and the surface velocity f'(f) in
Figs. 2 and 3 respectively, show the same tendency for all values of S, but the effect of the
power-law index is more pronounced for the higher S values. For a particular value S, of S, the
film became infinitely thin (f —0) and the surface velocity f'(f) approached one. This critical
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Fig. 3. Free-surface velocity f'(#) vs. unsteadiness parameter S.
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Fig. 4. Surface shear stress —f”(0) vs. unsteadiness parameter S. The broken lines denote asymptotic solutions for
n=1 by Wang (Eqgs. (21) and (34) in Ref. [6]).

parameter value, above which no solutions could be obtained, turned out to be strongly fluid
dependent. While Wang [6] found S, = 2.0 for a Newtonian fluid, the present calculations show
that S, is about 1.67 for n = 0.8 and 2.50 for n = 1.2. Admittedly, the computations are difficult
to perform in the extreme limits when ff — oo and f — 0, and the reported values of S, are meant
as estimates; cf. also Fig. 2.

The variation with S of the velocity gradient at the stretching surface f”(0) in Fig. 4 shows
that the same trend as reported by Wang [6] for » =1 is maintained for non-Newtonian films.
However, the maximum of —f”(0) appears to increase slightly with n, and so do the S values
for which the maximum is reached. It is interesting to observe from Fig. 4 that the trend of the
variation of f”(0) with n for given S changes from S =0.8 to S=1.2. For § = 0.8 the magnitude
of the surface gradient is greater for the pseudo-plastic fluid than for the dilatant fluid, whereas
the opposite holds for S = 1.2. This observation indicates that the velocity profiles for S = 0.8 in
Fig. la intersect each other close to the #-axis.

Finally, it should be emphasized that although the dimensionless film thickness f is a constant
(which depends on S and n), the actual thickness of the liquid layer

K 1/(n+1) ’

h(x, 1) = ﬂ|: 2/_/0"} XD L (] )2 =i+ D (14)
¢

is a function of time and position. In the Newtonian case » = 1, however, & becomes a function

only of time, whereas for non-Newtonian films the thickness decreases with x for pseudo-plastics

(n < 1) while the film thickens in the streamwise direction for dilatant fluids (n > 1).
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