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Abstract

Using the Gazeau—Klauder formalism we construct coherent state corresponding to the Morse potential. Some properties of

this coherent state have also been examined.

1. Introduction

Coherent states of the harmonic oscillator were
introduced as the most classical quantum state and
such states have many interesting properties as well
as applications [1]. However, the concept of coherent
state is not confined to the harmonic oscillator only
but it has been generalized to various systems, for
example, those with Lie algebraic su(1,1) or su(2)
symmetry [2] or even nonlinear algebraic symmetry
[3-5].

Coherent states are generally constructed by (i) us-
ing the displacement operator technique or defining
them as (ii) lowering operator eigenstates or (iii) mini-
mum uncertainty states. However, even when such op-
erators do not exist different approaches have been
utilized to construct coherent states corresponding to
various quantum mechanical potentials [6—10]. Indeed
it has been shown that in principle coherent states
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can be constructed corresponding to arbitrary poten-
tials [11]. However, in practise it is not always easy
to obtain a closed form expressions for coherent states
for arbitrary potentials. In a recent paper Gazeau and
Klauder determined a set of criteria which a coherent
state should satisfy [12] and subsequently a number of
exactly solvable nonlinear problems has been treated
using the Gazeau—Klauder approach [13—15]. In the
present Letter we shall employ the Gazeau—Klauder
formalism to construct coherent states of the Morse
potential and examine some of their properties.

2. Gazeau—Klauder coherent state of the Morse
potential

According to Gazeau and Klauder [12] a two para-
meter set of coherent states |J, ), J > 0 and —o0 <
y < 400 should satisfy the following requirements:

(1) Continuity of labelling: (J',y") — (J,y) =>
Wy = 11, v);
(2) Resolution of unity: 1= [ |J, y){J, y|du(J, y);
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(3) Temporal stability: e "H#|J, y) = |J, y + wt);
(4) Action identity: (J, y|H|J,y) =wJ.

Let us now consider the case when the Hamiltonian
possesses only a discrete spectrum:

Hin)=E,|n) =wey|n), 0=Ej<Ei<Ey<---.

(M

Then the GK coherent state is defined as

>, Jn/2 exp(—iyey)
o) =N T STy, @)
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where N is a normalization constant given by:
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In (3) p, denotes the moments of a probability
distribution p(x) and are given by [12]

R

n
pn=/x”p<x)dx=]"[ei, po=1. 4)
0 i=1
It can be shown that the coherent state in (2) satisfy all
the four criteria stated above.

Let us now apply the above formalism to construct
coherent state of the Morse potential. The Morse
potential and the corresponding energy spectrum are
given by

V) =M+ 1)? = QM +3)e™ + e, (5)
E,=M+1)*—(M+1-n)?,
n=0,1,2,...,< (M +1), (6)

where for the sake of convenience we have taken
M = a positive integer. Note that unlike the harmonic
oscillator (and similar potentials) the spectrum of the
Morse potential is finite dimensional. Thus the Morse
potential coherent state is given by
M inp2 —iyE,
[ ) Morse ZNZ‘I@*VL% (7
n=0 \/p_n

where the normalization constant N and the moments
pn are given, respectively, by

M —1,2
N:[Z] : ®)

o Pn

4 _n+1)Ir2M +2)
P=5 = oM +2—n)

‘We note that the series (8) determining the normaliza-
tion constant N is a finite series and thus it exists for
all values of J. Next it is necessary to find a proba-
bility distribution which has only a finite number of
moments given by (9). To this end we first note the
following result [16]:

)

/x“]u(ax) dx =2"q !
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—Rev—l<Reu<§. (10)

Now using (10) the probability distribution is found to
be

p(x)=T2M +2)x~ M 5y (24). (11)

It can be casily checked that the probability dis-
tribution (11) has exactly (M + 1) moments given
by (9). Also the distribution (11) cannot have more
than (M + 1) moments since in that case the condi-
tions in (10) and (5) will become incompatible. Now
it can be shown that the coherent state (7) satisfies
the criteria (1)~(3) mentioned earlier. The fourth cri-
teria, i.e., the action identity is also satisfied albeit in
a slightly modified way: morse (V| H | ¥ )Morse = f(J)
where f is a certain function of J. We note that this
modification is not characteristic of the Morse poten-
tial coherent state only but of all coherent states corre-
sponding to systems with a finite dimensional energy
spectrum. In the next section we shall examine some
properties of the Morse coherent state (7).

3. Properties of the Morse coherent state

In this section we shall examine some properties of
the Morse coherent state (7). As mentioned earlier co-
herent states can be constructed in different ways. For
example, they can be defined as minimum uncertainty
states [11]. In contrast the GK coherent states may or
may not be minimum uncertainty states. So it is inter-
esting to examine whether or not the Morse coherent
states are minimum uncertainty states with respect to
some symmetry algebra. In order to do so it is neces-
sary to determine the raising and lowering operators.
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For the Morse potential such operators exist but usu-
ally depend on the quantum number n [11]. In other
words such operators connect two consecutive states.
In order to circumvent this difficulty we define raising
and lowering operators with the help of projection op-
erators suitable for treating finite dimensional systems
[17,18]. Thus we define

M
A=) xaln = 1)(nl,
n=1

M
AT=3 ") — 1. (12)
n=I1

In order that A™ and A can be interpreted as raising and
lowering operator, respectively, it is necessary that x,
should satisty the condition x¢o = xap+1 = 0. This will
ensure that a state beyond |M) cannot be created by
application of the raising operator. Clearly there can be
various choices for the function y;, (and consequently
for AT and A) satisfying the above condition. Here we
choose a simple form of x,;:

Xn = n(M —n-+ l)eiV(En_En—l)' (13)

The action of the raising and lowering operators A*
and A act on the eigenstates in the following way:
Aln) = xuln=1), ATln) =g ln+ 1),

Al0) = AT[M) =0, (14)
and it can be shown that together with an operator Ag

(defined below) they satisfy the su(2) algebra:

[AT, A] =240 = 2N — M), [Ao, AT] = AT,

M
[Ap. Al=—A,  N=) nln)nl. (15)
n=1

We note that the algebra (15) would be different
for a different choice of x,. In the present case the
Morse Hamiltonian is a nonlinear function of the
generator Ag:

2
M. (16)

Let us now introduce the following Hermitian
operators:

H=MAo+ M) —

A+ Af A— AT
X = + , Y= i
2 2i

(17)

The uncertainty relation between X and Y reads

2

(ax?ar?)> ilix. v)
((Ax)?)=(x?) - (x)% (18)

The states which saturate the uncertainty relation (18)
are called minimum uncertainty states or more gener-
ally intelligent states. We shall now examine the be-
haviour of Morse coherent states with respect to the
inequality (18). In order to do this we consider the
functional F(J) defined by

F(J) =((AX)?){(AY)?) - %y([x, Y1) (19)
Thus from (18) it follows that F(J) > 0 and the
equality sign will indicate that the coherent state
is a minimum uncertainty or intelligent state. We
now compute F(J) with the help of the following
expectation values:

(A)=(A")
:NZMX_:I L2 M—n
= VoM —n+1’
(4%)=(a"?)
:NzM‘zJ'Hl (M —n)(M —n—1)
o V@M —n+1DH2M —n)’
M-1 _,
(ata)=n2 3 I @1=m
= @M —n+1)
M=1 1
(aAT) = N? “(n+ (M —n), (20)
n=0 ™"

and the results are plotted in Fig. 1 against J for M =8
and M = 10. At this point we note that F'(J) # 0 for
the coherent state (7) for any value of the parameters
so that it is not an exact minimum uncertainty state.
However, if F(J) is small enough then the coherent
state may be regarded as an approximate minimum
uncertainty or intelligent state. From Fig. 1 we find
that for both M =8 and M = 10, F(J) ~ 0 for
a relatively low range of values of J (depending,
of course, on the order of smallness we accept as
zero). Thus in this range of J the coherent state (7)
is an approximate minimum uncertainty state. Also
F(J) increases with J and for larger values of J,
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Fig. 1. Graph of F (J) against J for M = 10 (solid curve) and M =8
(broken curve).

it is appreciably different from zero. Thus for larger
values of J, (7) cannot be regarded as an approximate
minimum uncertainty state. It is also interesting to
observe that F(J) is larger for M = 8 compared to
M = 10. In other words F'(J) can be made smaller by
increasing M.

As mentioned before F(J) > 0 and it is an increas-
ing function of J. This raises the possibility that there
might be squeezing for certain values of J and M.
In order to examine such a possibility we introduce
squeezing parameters Sy and Sy:

_2((AX)?)

_2((AY)?)
CNxL YD

YL Y el

X
Then the state is said to be squeezed if Sy < 1 or
Sy < 1 and the smaller the value of S, (or Sy) the
larger is the squeezing. We have evaluated S, and S
using (20) and the results are plotted in Fig. 2 for
different values of M. From Fig. 2 we find that S, is
a decreasing function of J and Sy has an increasing
trend. We also find that S, < 1 while Sy > 1 over the
same range. From the Fig. 2 we also find that Sy is
smaller for M = 8§ than for M = 10 while the converse
is true for S,. We have also verified that S, (Sy)
becomes smaller (larger) if M is reduced and/or J is
increased. Thus we conclude that the Morse coherent

0 10 20 4 30 40

Fig. 2. Graph of Sy for M = 10 (solid curve), M = 8 (dotted curve)
and Sy for M = 10 (broken curve), M = 8 (thick curve) against J.

state exhibits squeezing and the squeezing can be
increased or decreased by tuning the parameters.

4. Conclusion

Here we have constructed coherent state of the
Morse potential following the Gazeau—Klauder for-
malism. Some properties of this coherent state have
also been examined. In particular, it has been shown
that the Morse coherent state possesses both classical
like feature (approximate minimum uncertainty prop-
erty) as well as nonclassical feature (squeezing prop-
erty) in different parameter regimes. Finally, we would
like to point out that the properties studied here are
not characteristic of the coherent state (7) only but are
shared by GK coherent states of several other poten-
tials such as Rosen—Morse potential, soliton potential
etc. This is due to the fact that although these poten-
tials have different wave functions they have the same
spectral properties as the Morse potential.
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