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RESUME. — On développe une théorie des frontidres pour des processus
de Markov quantiques associés i des semi-groupes non conservatifs de

contractions complétement positives sur uoe algébre de von Neumann,
parallélement & la théore classique de Feller, Chung et Dynkin,

1. INTRODUCTION

In classical probability theory it 1s well known that, to any one parameter
semigroup of substochastic matrices or transition probability operators, one
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can associate a Markov process with an exit time which can be interpreted
as a stop time at which the trajectory of the process goes out of the state
space or hits a boundary. There are various possibilities for continuing the
process after the exit time in such a manner that the Markov property and
stationarity of transition probabilities are retained. Feller [Fe 1,2] initated the
study of this problem by a functional analytic approach based on resolvents
or Laplace trunsforms of one parameter positive contraction semigroups
whereas Chung [C1.2] and Dynkin [Dy] outlined a pathwise approach. The
aim of the present paper is to investigate the same problem for guantum
Markov flows when substochastic matrices or transition probability operators
are replaced by completely positive linear contraction maps on a unital von
Neumann algebra of operators in a Hilbert space.

Tn Section 2 it is shown how, by using the famous Stinespring’s theorem
[5t, P1] and the GNS construction, one can associate a canonical weak
Markov flow to any one parameter semigroup of completely positive
contractions on a von Neumann or O alpgebra. To any such semigroup
we introduce, in Section 3, the notion of entrance and exit cocycles and
demonstrate how a Feller perurbation of the semigroup can be constructed
using a pair (S, w) where 5 is a cocycle and w is a state. The resolvent of
the perturbed semigroup is an exact quanmm analogue of Feller’s formula
in [Fe 2]. This raises the basic open problem of constructing the Markow
Aow of the perturbed semigroup mom the flow of the original semigroup. In
order 1o study this problem we present in Section 4 a general procedore of
gluing two quantum processes and their Gltrations By using gquantum stop
times [H, PS] which are adapted spectral measures in the closed interval
{0, >¢]. In Section 5 a quanturn Markov flow for the perturbed semigroup
is obtained by gluing countably many copies of a Markoy flow for the
unperturbed semigroup when the exit cocycle is the expectation of an exit
time. We conclude the last section with several examples of nonconservative
quantum Markov flows which admit exit imes. Eventhough the presentation
is done for the case of continuous time the reader can easily construct the
discrete time analogue of many of ovr results.

Alternative approaches 1o dilations of quantum dynamical semigroups
on a O™ algebra may be found in [EL], [Em], [Sa] and [Vi-S). However,
they are too weak especially becaose nothing concrete is mentioned about
the conditional expectation of an cobservable at time ¢ when the algebra
of observables up to time 5 is fixed for some 0 < 5 < f. Owr approach
in Theorem 2.12, 2.13 is much more direct and closer to the spirit of
classical probability. This is iMustrated by several examples in the course
of the present exposition. A more elaborate and leisorely treatment of thess
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ideas is included in the PhDD. thesis of Bhat [B]. The case of dilation of a
nonstationary quantum dynamical evolution is examined in the note [BP].

2. COMPLETELY POSITIVE SEMIGROUPS
AND WEAK MARKOY FLOWS

Motivated by the notion of a quantum Markov process introduced by
Accardi, Frigerio and Lewis [AFL] and influenced by the absence of
conditional expectation in many situations il quantum probability we
introduce here a weaker notion of a Markov flow and describe how such
a weak Markov flow can be associated to any one parameter sermigroup of
completely positive linear maps of a von Neumann algebra into itself. This
may be viewed as a continuous time version of Stinespring’s theorem [St].

Let H be any complex Hilbert space with scalar product < -, - > linear
in the second variable. By a weak filtratton ' on H we mean a family
F = {F(t).t = 0} of orthogonal projection operators nondecreasing in
the variable ¢. Denote by B(M) the algebra of all bounded operators om
H and write

B = {F{)XF(t}, X € B(H)}

for every ¢t. Then { HZ t > 0} is a nondecreasing family of * subalgebras
of B(#). The map EJ : B(H) — B ;) detined by

Ef(X) = F()X F(t)

is called the weak conditional expectation with Tespect to F' at time ¢,

Prorosirion 2.1, — The weak conditional expectation maps {[E 14 =0}

sufisfy the following
(i} EY is a completely positive and contractive {inear map;

(i) EJF =:F(1);

(1ii) Ei[X =X forall X € B‘]*"

(iv) Ef(XY) = XEJ(Y),E§(YX) =EJ(Y)X forall X € Bi.Y

B(H);

(v} Ef E = = E},, where s At = min(s,1).

Proof. — Immediate. W
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Derarmions 2.2 — Lot 4 be a von Neomann algebra of operalors on
a Hilbert space My and let {T,,¢ > 0} be a one parumeter semigroup of
contractive and completely positive linear maps of 4 into irself with 7 being
identity. A triple (H, I, j,) is called 2 weak Markov flow with expeciation
setigronp {13} if H is a Hilbert space containing Hy, as a subspace, F'is a
weak filtration on K with F(0) having range Hy and {j,,t = 0} is o family
of * homomorphisms from A into B(H} satisfying the following

0 EXjo(X) = XF(0) and {X)E(t) = FOHMX)F() for all
t =08 € A

G0 EEf(X) = (T (XN F(#) forall 0 < s St <00, X € A

The Mow is said to be subordinate it j,(T) < F(t) foralit. If §.(T) = F(#)
for all ¢ it is said to be conservative,

Condition (i) describes faithfuloess of jp and adaptedness of the flow to
the filtratiom F' whereas comdition {31} deseribes the Markov property of the
flow. In the case of a subordinate flow the factor £7{s} on the right hand side
of (i} may be dropped. Tt may be noted that if (K, F, 5,) is a weak Markaoy
flow then (H, F, j,{-)F(t)} is a subordinate weak Markov flow.

For any X € A denote by FLx and Ry respectively the lincar maps
from A into itself defined by LxY = XY aod AxY = YX for all
Y € A Ly and By commute with each other for any X, Y. For any finite
sequence £ o= (£, .t in B and X = (X, . X} A (of length n)
write (£, X) = 5(t1. by oo ooy Xy eoey Koo ) = 1, (X1 bigy (X2 )oode, (Xn). In
particular, j(t, X} = f{X). For s = (s1.....6m). X = {X1,....Xw).t =

(e bl X = (M Xo) we have - jla, X354, F) = s 0. (26X
where {E:-E} = (31!"':sr:ut'l.'"'rtrh}![inij = {Xlr"".Xm:Yl:"w}:Bj'
Since cach 7, 15 a homomorphism we have jis, £ X,V )300,7) =
Jat, X ¥V, and jla. X)y(s, .Y, 2) = j(a,L, XY, Z). With these
conventions we shall establish a few clementary propositions concerning
the operators §(¢, X ) and their expectation values,

Prorostion 2.3, - Let (H, F, §:) be a weak Markov flow with expeciation
semigroup {T,} on a von Newmann algebra of operators on a Hilbert space
Hy. Then the following holds .

(3} e (X)F(8) = F(£)5(X]) = F()j(X)F(t) foraltt 2 0. X € A/

(W H0<s <t <o < by X1 Xz ooy X € A then

Eij{i‘ i:l = jl:S._ T—‘;h —BLXJ_ 'I_:t']— [T L.‘:n_J.T3n--1‘r_-. 1{X'[l\.|:|ﬁ1|:'g:|;

({ii) if ty = 2o = o 28y 2 5 = 0 then

Ef;.f(ﬁi) = gl Lo s B, Ly ey - Bx, Th i { X0 ) FU8)

Arrcles de {institut Henri Poirceré - Prabahilitgs et Statistiques



MARKOY DILATIONS OF NONCONSERVATIVE DYNAMICAL SEMIGROURS 605

Proaf. — From property (i) in Definition 2.2 we have

F$)j(t. X) = {j(t. X")F(£)}"
= {F{t)5(t, X}
= Fia)i(s, X1 F'(t)
= j(t, X)F{t).
This proves {i). Te prove (i} we use property (i) of this proposition and the
increasing nature of F{t} repeatedly. Thus
Efi(t. X)
= F(F(L)0(t X )eog (b, Xn ) F (b1 ) Fis)
= F(a)jlfn, Xo)F (0 ) F (te)i(te, Xo)oof{bn, Xn ) F(tn_1 1 (5]
= F(s}j(te. X1){E2. Xa)}F (82)7 (83, Xs).. J{t, X ) F (b1 ) F (8}
= Fla)ilte, oyt Kiyoooy X 1) F (Bam 103 (80, X ) F (£0- 1} F ()
= Flahilty, b1y X1y X 1)i(80 1 Ty or (X )IF(s)
SR T b M Xl Bl et ok K )

Mow (i} follows by induction on n. A similar argoment yields (i),

Prorosmon 2.4. - Let (H, F, 3} be a subordinate weak Markov flow
with expectation semigroup {T,} on a unital von Neumann algebra A of
aperators on a Hitbert space Ho. Then the following holds:

B0 B e 0 Bk By ey o iy Bl
?{Li) = j{fl-t:a1KXﬂ} where

},-" = Lx| I:t-z—h LXj-I‘h—Ez T ILA-n—Q.I'lEn—‘I —cn—z{‘x-ﬂ—lj‘:

(i} ff0 <t <fg 0o <ty S, S8 <t <o < Ey g Hhen
I{EB 2 j{fh'---,tf.-]_,t:uXh--“Xg_ 1,?3] where

}’ = Rxn'Ts,- = . LJI:{T$='+1—‘L‘-=' e I'L.\.-u_ith_.l--Cn_ﬂ{xﬂ.—lj'

Proof. — First we prove (i). Sioce Ft) is increasing and j, is a
homomorphism Definition 2.2 together with the hypothesis that 3{¢, 1) <
F(t) implies
it X}

= j['tl: N SR X'l: v Xﬂ—ﬂj(t‘ﬂ—b Ijj(tﬂ—lr X?i—l:lj{tm Ijj{tm Xn:l
=,'.i'-|:t'1-~-~:t'n—21 Xl- vriq Xﬂ—E}F(ﬁﬂ---i}jEtu—h X'n --I}F{tn—f}j(f‘ﬂr Xﬂ.}
= j“h N ST S J‘:‘1:- ey Xn—li: Xﬂ--'.ZTf.... i g(Xn—lj'.vXﬂ}'
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Now (i) follows by induction on . To prove (i) we apply (i) to the sequence
ta E fi < f.;;+] =R ol -1 and obtain

Fltabeny ot X Moy X ) = Hlitn e, YV X5)

whete

y-i == LX._TG,'+|_ —t; 7T I"’JC,_-_ zﬂ“_l —#ay :{Xﬂ'-]}‘
Now observe that

j(t’il—lj i:. rrl.rX'i—ll le Xﬂ.}
= il e X N B ) (s Y Pl )i (e X
= .i(tt‘—] 1 tﬂ-:l X’-—] H T—‘:‘; —t [Y"}Xﬂ-}

which implies (ii), W

The next theorem is of particular importance in reducing the computation
of moments.

TuEOREM 2.3, ~ Let (M. F. j:) satisfy the conditions of Proposition 2.4
Then for any seguence ty,ts, ...t it By and Xy, ... X, in A there
EXIRIS O SEQUEHCE 81,80, 8, 0 By and ¥1,... ¥, in A such that
MR, =5, 8m = In, efther 87 < 8y < .. < 8, OF 5] > 852 > .. > B
O8] Hy > o > 8 € Spa1 < e < 8y, Jorsome kand 78, X) = {5, Y).

Froaf. - Without loss of generality we may assume that &) # 4 #--- #
t. If {¢;} itself is either monotonic increasing or decreasing there is nothing
to prove, If #; < -+ < # > f.y then either £, < &y < .. < L or
b < o tp_1 = by =ty < .. < 1 for some k. By Proposition 2.4
we may then express 71, bipls A1 Kip1) 85 jlE1. 842, ¥, X ) or
it e tro 1t X1, o0, Xe—1: ¥} In any case the length of the {-sequence
gets teduced in F(6L X)) H b > . >t <t € 00 < tege = hrasn
We may once again express F{te, bret. oo Thgetls S is St ls s Xhteq1) i0
terms of a sequence of leogth not excecding £+ 1. Rest follows by induction
on the length. =

CoroLLARY 2.6. — Ler (H. I, j,) satisfy the conditions of Proposition 2.4,
Then for any sequence ty,ta, ... t, in B and X|, X, ..., X, in A there
exist by = 81 > 83 > .. ¥ &m > O < noand V1,V 0 Y in A such
that j(t, X)F(0} = j(s,¥)F(0).
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Froaf. —In view of Theorem 2.5 we may assume without loss of generality
that ) > #2 > ... = Iy < b1 < .. < {,. Now by Proposition 2.4 and
the fact that F{U) = 73(f) we have

j(tmrfm+l! Ay t-’::- -}'rm-. 4'1(?:-!4-1& rery X‘?tjfliu}

== J‘“’m- tﬂl-}-l! anay I':ra:. I:L. Xm:- ﬂYm—l:- EEEE X:l:!.:u I]
= j“m: 0%, 'r} = j(tm' Y}If{ﬂj

for some Y in 4. This completes the proof. =

Prorosimion 2.7, — Let (H, F, 1) be as in Proposition 2.4, Suppose that it
is also conservative. ff 51 > 2 > 2 a2 h 2l > >ty T Oond
{81,820y S © {t1. 82, 0 tn | then forany X1, Xo, o, X in A

J(s, X)F(0) = j(£. Y)IF(U)

where
Y. = {X_.i; if t; = 5; for some §,

I otferantze.

FProof. - Let ;, = &,....4;_ = 4,,. Then

F (5, X‘I"} = .?-(va I:Jj”a,,_.Xr]
= F{""rjj(ii..zxf']
= ‘F{t‘.rﬂ +1]‘F(!‘1‘«—:+2j U Fl:t; ij{t‘i, : Xr:'
= jl:tir_|+l1fir_|—3'. v bia—1ada,,y I:« I: seea I:- X_Tj
from which the required result follows., W
Frorosition 2.8, — Let {H, F,4) be ax in Proposition 2.4, Suppose
t2s > 0, X0 8 50 V.2, 5 B € A Then
F{njj{”kﬂ. Hlr—1q 0000 8], tr Flserea Si!rX.i.': X.‘.:—l'. "':\-—Kl: Y: Z'.l:- naay zk]F[[}}
= F[n}{Tf‘h‘[‘-‘t—u R'Zk T*'i.-—l LT LXJ Rzl TT—Sl f:},}}Fl:ﬂ}

Proagf. — We have

jlisir t: 313—'{13 K Z'.I.:I
= jloL X (a1)j (8 Y ) F (s )3(91. 1)
= j[sh Lxl-HZLTf a [Y”

Now the required result follows by repeating the same argument successively
replacing the role of { by that of 37,40, ..., 5. H

Yol. 31, n® 4-190%5,
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Prorosmion 2.9, — Let (H.F.j,) be as in Proposiion 2.4. Suppose
L =N T e | I S Xz,...,X*,Y._ZLZQ,...,Zk € A Then
there exist elements X[, 7} depending only on 51, ..., 0, X, ..., X; and
A1y dop Euch the

F[ﬂ}j(ﬁk., ceey B E‘. Hyweny Fhin X.‘H viay Xl: K z]_-. vy Z},:IF(U:]
= F{YT AT, (X )Y Lo o ZE)HF(0).

Progf. — Since t < 83 < £ we have

j{t &1, 32?}71 Z'I [ 'Z'E]
= J(8 Y ) F(32)7(81, Z1)F(52)7(82, 72}
FEY V(2. Ty —a(Z1) 2]

Repeating this argument we get

it 8, e 3. Y, Eive &) = Jlt ae. Y, ZI.}

where Z; depends only on 51, ..., 8¢, Z1, ... £p. SINCE 8¢ < 3p1 < .. <
§1 = t and t < s, we have from (i) in Proposition 2.4

Alae, gesr ey isb, Xny K piadas ¥ )= ok Xt 1)
where X depends only on X;...., X}, #1..., 5. Combining the two we
obtain
s 8hmiy ey 31,8081, o 81 K Kers o X0, Y 200y Zy)
= j(ax, L, 0%, X;. ¥, Z1).
Since 0 < 5. > { we have
F(0)7 (808, s, X5, ¥, Zi ) F{0)
— PO)F(#)i(sx, XF @it Y )F@)i(s4, Z) PO F(0)
= F{O) T Ty (X Y T, o[ Z3))F(0). W

Prorostion 2.10. — Let (M, F, 5;) be as in Proposition 2.4, Suppose
that 8y = 83 > > 8] =+ 2 8 > -0 > & A Anea A Y,
Zy,y o 2y € A Then
F{n}j[.’ik, ATy ey J1,y £, F19 83, crn Spa Xk:n ‘Yk—'l:- ey XI?Y-'.' Z1 iy zfi}frl:ﬂjl

= F(D]{TNLLKJ;RA’Z#.I:H_:—M-

<o L Bp Ty (Lo, (X YT, {2 (D)

!
where X;_,

Z! | depend onfv on 4, ., 30, X K1 4y 2
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Proaf. — By (i} in Proposition 2.4 we have

j{-“i—l:\- B2y B, tr*xé_—lz XJ.—‘.G: aaay XI: YII — j["si"h t!l X:;.a-]_.‘}/} [2‘1)

where X_, depends only on #7,..., 8.1, Xy. ..., Xi.1. Since £ 83 < %
we have

3{f 3n.92. Y, By, Zo) = (8, Y} F (s2)i(51, Zr)F(82)4(82. Z2)
= jlt o V.1 il B0) Z2):

Repeating this argument up to the pair 5;_z, 5;..1 we get

}I:t LI TR K T Y, Zl- - Z‘i—l} = j[l, Hi 1. Y: ZE—'[]I' {22}

Since 5; < ¢ < 5;.7 we have

j[siﬂ. Hi1, :, Bi1. 84, X&! X-E—]_'. Y.' J?1';__1_: z‘t}
= jli-gé:l t: St'rX-i-!TSi_;'- 3[‘Y£—-L:|YI‘1¢—1—E-{X£—1:|! zi) (2'3.:'

Combining (2.13-(2.3) and using Proposition 2.8 for the sequence
Bn Sk 1a oo iy fu Hy Bip 1y ey 83 We Obtuin the required result. W

Prorosrrion 2,11, = Suppose {H, I, j¢) is a conservative weak Markov
How with a strongly continuous expectarion semigroup {Ti} on a unital von
Newnann algebra A of operators on a Hilbert space Ho. Then for any
u, 1! € Mo, finite sequences 5 = (51,...,600,8 = (8], .., 8% ) in RL and
XX VXL AL A the function

B[ty = {F{x X g (Y )58, X hu'}

is continuous in T ¢ Hy.

Proof. - Since F{Dhu = uw, F{U)u' = »' we can apply Corollary 2.6
and assume without loss of generality that s, > % > --- > 5. and
g} > &h > - = s),. Since the flow is conservative we can apply Proposition

wol. 31, n® 41935
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2.7 and assume without loss of generality that the sequences s and 5 arc
same and strictly decreasing, Then ¢{1) assumes the form

Bb) = (o, FUODF(80, nmty ey 810 bon oy S0, Xy oo
XE Y XL XL E(0)').

Now the strong continuity and contractivity properties of {73} mwgether with
Proposition 2.8, 2.9 and 2.10 respectively imply the continuity of ¢(t) in
the intervals [s4,00). [0, 5] and [w, 5 1],i=kk—-1,..2 =

THEOREM 2.12. — Let A be a unita! von Newmann algebra of operators
in a Hilhert space Hy and let {T,} be a semigroup of completely positive
tinear maps of A into itself such that T, ix identity and Ty(1) = I for
all t. Then there exists a conservarive weak Markov flow (M, F, 5,) on A
satisfying the following :

(i} Ho © H and Hy is the range of F(0);

(il The ser {jit. X)u.u € Hpt = [ttz, et = 0LX =
(X1 Xoy X)X edl <i<a,n=1,2_.} is total in H;

(iii) The expectation semigroup of (N, F, i) is {T,};

(iv) & (H'\F' ji) is another subordinate weak Markov flow with
expectation semigroup {Ti} such thar the range of F'{0) is Hy and (ii)
holdy with j.H replaced by §',H' then there exists a unilary isomenphism
UV H — H satisfeing

RO = IO, UH(XOU™ = §I(X)

Jorall £t = 0. X ¢ A;
(v} If {T4} is strongly continuous on the Banach space A then the maps
t— F(t) and t — j,(X) are strongly continuous for cach X € A

Proof. — From [P2] it is known that there exists a family {A,, ¢ > 0} of
Hilbert spaces with fg = Hy, = unital homomorphisms J, : .4 — B(h,)
and isometries Vs, 8) : By — h, for 00 < 5 < ¢t < oo such that (a)
Ju( X} = X (b)) Vis,s) = I Vst LX)V (s, t) = LT (X))
(@) V{t,u)V(s,) = V(s,u) forall 0 < v < ¢ < u < oc. Let M = | A,

a0
be the disjoint union of all the f, considered as abstact sets. Define the

map K : Mx M — C by

Hi{uv)= (Vis svi)u, V(t, s Vi,

L

whenever o € A, ¢ € fiy, 5V denoting the maximum of « and £ We claim
that K is 4 positive definite kernel on M. Tndeed, consider arbitrary scalars

Amgles de irstingt Henri Princaréd - Probabilités et Staristiques
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el Ehg, l<i<nandputs=s5"a"- - -Va, Then
ZE’E r1p B (1, 105

L
= ZE;G_.;{F[S{: Vg, Visg, 4 sy ug)
Lf
= ZE,‘C‘.J;{V{Sf W sV e, 8 Vo, Vi v sy 0V (ag, 8V 8, Jug)

= Zc‘.tc‘j (V{5 80u:. Visg, s)uy)

Z{‘?V ut”h =4,

which proves the claim. Hence by the GNS theorem there exists a Hilbert
space K and a map A : M — K such that {A{u), » € A1} s total in K and

Kiu,v) = {Mu), A(v)) for all u,v € M.
If w,» € hy then

(Alu). Ale)) = K, v) = {u, ),
Thus A is an isometry from fy onto a subspace A, of X If 5 < ¢ and
u € h, then Vs, t)u € hy and
[IA{a} — MV (s, thu)]|?
= 2|[ul|? — 2 Re K, Vs, t)u)
= 2ju||* — 2Re {V{s, t)u, V{s, )y, = 0.
Thus K, € K, whenever s < ¢, Denote by £'(¢) the projection onto K,
and define j. by
GUX) = AL(XIATIE()  for Xe A, t20

where A7 35 the inverse of the map A - by — K, Since the range of (X))
is contained in &, and J, is a * homomorphism from 4 into B({A,) it follows
that 7,{X) = E(t)AL(X)A T E{t), X € A is a * homomorphism from .4

mte B and 7(7) = E{L).
Now consider w,v € h,, s < t. Then

{Au IIJ}IZXII (v}
= {(MV (s thu), 2 XAV (5, 8)0))
= {Vs, the, J (X} {x, f w}
= {u, V{a, ) BV (s, )
= {u, ST (X ])v)
= {Alw), Fo(Lr—s (X)) A(w))-

Yol 31, 0% 41



612 B. V. RATARAMA BHAT AND E. R, PARTHASARATHY

E()j(X)E(s) = j(Ti (X)) if XeAd s<t.

Denote by H < X the closed subspace spanned by the set A of all vectors
of the form j{f, Xu,uw € Hy,t = {f, ...t X = (X1, X0t =0,
X.e A n=12 . Denote by H, T H the closed subspzu:e sparmed by
the set M, C M of all vectors of the same form j{t, X)u with #; € ¢
for every & We now claim that H, = H N A, Indeed, Iet £ = j{s, X)u
where 8 = (51,..,4,), X = (X, )00 2 5 2 00X, & A u e Hy.
Then £ is in the range of 7{s1, X1) which is contained in &, C X Thus
M, ¢ K K and therefore M, © H N X,. Now consider an element of
the form v = E{{)j(s X)u where w € Hy, 2 = (53, ...8,) and 5; = 1)
Then = jit, 51, .., 8. 4. X1 ey X Ju. Since (K, B, 4, ) s a conservative
weak Markov flow it follows from Corollary 2.6 that we can express
7= F(t. 8, 8 Yo Yo, o, Yo Ju where £ > 8] > --- > & = 0 and
hence 1 & Hy. Thus E(#)M C H, and therefore H N X, © H, proving
the claim. Denote by F(t) the projection on H, in the Hilbert space H and
F{ X)) the restriction of 7,{X) to H. Then {H, £, j,) is a conservative weak
Markov flow satisfying properties {i) - (31} of the theorem,

To prove (iv) we observe that the proofs of Theorem 2.5, Corollary 2.6
and Proposition 2.8 imply that

(s X)u, j{E Ywp = (" Xw. 5'(8, Yv)

forali wov e Hos = (61, 8m it = (B, et ). X = (X1, X)L Y =
{¥1,..., ¥, }. This shows that the comespondence .}[ﬁ,i}lu — §'(8, X)u is
isometnic and hence extends uniquely to a unitary iromorphism from M
onto 'H' satislying (iv). Observe that cyclicity (property (ii})) forces ji to
be conservative.

Propetty (v) of the theorem is immediate from Proposition 2.11 and the
fact that j; is a homomorphism for every t > 0. W

MNow we extend Theorem 2. 12 to non-conservative contractive semigronps.

TueoreM 2.13. — Let A be a unital von Newmann algebra of operators
in a Hilbert space Hy and let {T:} be a semigroup of completely positive
linear maps of A into itself such that Ty ix identity and T,(T) < 7 for all 1.
Then there exists a subordinate weak Markov flow (M, F_ 3:) on A satisfving
(i) = (¥) of Theorem 212,

Progf. - Consider the extended von Neumann algebra A=A C acting
on the Hilbert space Hy = H, & C. For convenience we denote the element

Amptaler de Finsitg Hewrt Poircard - Probabilités et Stotistiques
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X@eof A for X € Aand ¢ € C, by the column vector (*). Define
t‘t1emaps]]_1,4—>ﬁby

ﬁ(‘f)=(Tf[x}+’3”"T*“}j), Xed ceC (24)

s

Then { T;} i5 4 conservative one parameler semigroup of completely positive
linear maps. If {1} } is strongly contimious so is {T.}. Thus Theorem 2.12
becomes applicable for {’I } and we have a conservative weak Martkov low
{’H F , 7+ } on A with expectation semigroup {1}}' Define the operators £/{{)
and _.r;_{}l:l on H by,

~ {1 - 1
F[f}:jt(l) _]Il(l):
. 5 (X 5
jcl:X:]_—_jf(ﬂ) for t>0and X € A

Before obtaining the required Markov flow we prove the following
statements, For 0 << s < t, X € Aandce C

A {1 .
(a} { it ( 1)} is a family of projections nondecreasing in &

(b} -f*{xjjn (2 =1 ({1])_?;{‘(} =0

{c) {F{1)} is a family of projections nondecreasing in t;
{d) Range of F{0) is My and range of F(t) increases to the orthogomnal

complement of range of o L) t incroases o oo;

X o R
(&) ()7, ] = Fol X — eIV E'(s) + cF(a).
Property (a} folluws from the identity

(55 0) =) Peon(ren )
-5(0)irn (i)
AT

i
1
Now make use of (a) to obtain

i X)50 ([]]) = b (i)?s (?)?H (lljj =0= (T),T:[X}

Wl 31, n® a-19as



614 B. V. RAJARAMA BHAT ANT K. R. PARTHASARATHY

and

roma= () 5(0) () -+()
= Js (f) —.-?n@ & .m(tlj) + Jo (T) = F(s) = F(s)F(t).

Clearly F{f)* = F(t). This proves (b} and (c). The runge of Flo) is
Ho B C and hence the range of £(0) is H,,. The second part of (d) follows
s ?;{fj increases to the identity operator in M as ¢ increases to oo, Now
from {a) and (b),

s () 6() -+ ) 5 0)
i) +3(() -5

~ {0 o~
Let H be the orthogonal complement of the range of jg 1 in ‘M., Making

use of (a)-(d) we can estrict F(t) and j.( X ) to M and verify that (K, F, Je)is
4 subordinate weak Markov flow with expectation semigroup {7 ¢ } satisfying
(). (111}, and (v} of Theorem 2.12. Denote by H, C H the closed subspace
spanned by the set A, of all vectors of the form j (t, X)u, with #; < ¢ for
every 1 and u € Hy. We now claim that the range of F(t) is H,. Indeed,
consider £ = f{t, X)u with £; < ¢ for every # and u € ‘H,,. Then,

0= () - (1) 5) -5 (5o

and hence the ragne of F(¢) contains H,. Now for ¢ > s, >0 X; 2.4
el forl<:<nandwu e Hy,ucC, considﬂrn:}(ﬁ._ (l )
From the statement (e} proved above,

F(t)n = (jo (X1 - e1D)F(s))

NLATHEATENZ AV
+ 01 F(81) )y (ﬂzz)hd (r':r) e (ﬂ ) (:)
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By induction on n we conclude that F(t)n is a linear combination of
elements in M. The closed linear span of all vectors n of the form above
is the range of £'(¢) and as the range of ¥(t) is clearly contained in the
range of F(t] we conclude that H, contains the whole of the range of
F(#). This proves properties (i) and (iv) of Theorem 2.12 for the Markoy
flow (H,F.5). ®

Note that the construction in (2.4} is the quantum probabilistic analogue
of associating with a substochastic semigroup £ = ({p;;{(t1)} 1 <4,j < 2
of matrices the stochastic semigroup P, = ({fi;;(#)},0 < 1,§ < oo where

s (1) ezl j=1,
0 ifi=0,j>1,
5,01 = 1 " i i=10, =0,
1= pislt) if i1, j=0.
i-1

In other words we have incorporated an absorbing houndary, This is reflected
1)
in the increasing nature of the family of projections {j, ( 1) }. It may also

o T
be noted that in general {4, ﬂ) } is not a commuting family of projections.

We conclude this section with three examples of the construction involved
in Theorem 2.12 and 2,13,

Example 2.14. — Let A be the cominutative von Neumann algebra of 2 x 2
diagonal matrices and let 7, : A — A be the semigroup defined by

e Oy _[e™a4+(l—c")H 0
Tt([lfl f;]) B [ () h

for a,b € C,r > 0 being a fixed constant. 4 acts on €2 in a natral way.
Put H = C? @B L*(H.) with filtration £ given by #'(t) = ! &5 x¢ where {
is the identity operator in C? and x; denotes multiplication by the indicator
function x4 in L3Ry ). Define j; : A — B(H) by

i ([D ED = aQ() + B(P(E) — Q)

where Q(t) 1s the rank one projection onto the subspace generated by the
unit vector e~ ¥fe; & f; with

1 g
a=(g)  He)= Vet (e

%ol 31 n* 4-1995
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A rouling computation shows that £(s)j, (X ) F (s} = j.(Ti_.(X)) for all
Xedand <5 <t Thus (K, F,7) provides a weak Markov flow
with expectation semigroup {I;} satisfying all the properties mentioned in
Theotem 2.12. Tt is instructive to compare this with the Markov flow of

classical probability theory associated with the one parameter semigroup of
it L—p

a 1
Fxample 2.15. — Let H be a positive selfadjoint operator in Hj, Consider

the nonconservative one parameter semigroup {7, } of completely positive
maps on B{Hg) defined by

2 » 2 stochastic matrices

TiX)=e®Hxe™ =0, X B{H).

Following [HIP] introduce the unitary operators {L7(5,1).0 < 5 < t < o}
in the Hilbert space

H = Hy @ L3Ry Ho)

. ug Y A(s 8} Bls.t) g
ven() = Gy 1450mn) (%)

where wy and © = w(-) are the components of an arbitrary element in H
with respect to the direct sum decomposition in the definition of H and

given by

Ala ) =g e H
B(s,t)u = ~{2H )12 /m ¥oeg @i O E gyl
(€ th0)iz) = i (2 2H) e,
(D{s, thu)(z) = —ELW Kol (WX () He & M ulyidy,
It is known from |HIP| that
Ui, t)Wirsi=00nt) foral 0Sr<s<t <

and [f{s,{) is an operator of the form V{0 in the
direct sum decomposition H = H{s,t)PH(s t) where Hist) =
Ho & LA([s.t], Ho). Define F{t) to be the projection on the subspace
H(0, ) and put

. ; e Y
i) = vy (g Juo.n,

Ananfex e Vhesster Hems Foincarg - Probubililes o1 Slalistigues
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Then j,(f} = j(L1F(t) < F(t). From the fact that {I7(s, )} is 4 time
orthogonal dilation of the positive contraction semigroup {e~*#} it follows
that F(OU(0,0F(s) = U0, ) {e* " H P Iy @0} where the term
in { } on the nght hand side is with respect to the decomposition

H = Mo &5 L0, 8], Hy) @ L3{[s,00), Ha). Thus
Fia)i( X)F(s)
= GO U () ) FOUE 0.0

T, (X)) 0
a

= (0, 8)° ( 5 )U(D, s}F(s)

= 7. (T s XN F(5).

In other words (H, F, j,) is a subordinate weak Markov flow with expectation
sermigroup {7}

Example 2.16. — Let {J,,# > 0} be an Evans-Hudson flow [P1, Me]
determined by structure maps {#%,4,7 > 0} on a onital von Neumann
algebra of operators on a Hilbert space My 50 that the quantum stochastic
differential equations

AR(X) =S R(E(XNdANE),  R(X)=X®l, XeA

b f

are fuifilled in the Hilbert space H = Hy @ L'(L* (R} ® %), T indicating
the boson Fock space over its argument. Let F'() denote the projection onto
the subspace H, = Hq @ [{L2(0,# & %) & ®p C H where @, is the Fock
vacuum in U'[ L[t o) % £2). Define j,(X) = H(X)F(tLt =0, X € A
Then {H,F.j,) i a conservative weak Markoy flow with expectation
semigroup Tp = #% [ > (. However, this need not satisfy the cyclicily
condition (i) of Theorem 212

3. FELLER PERTURBATIONS OF POSITIVE SEMIGROUPS

Tn his analysis of Kolmogorov equations Feller [Fe 1.2.3] constructed a
class of substochastic semigroups called minimal semigroups and outlined
a muethed of constructing new sermigroups including stochastic ones by
perturbing their resolvents (or Laplace transforms) uppropriately. The same
goal was achieved more directly by u puthwise approach in the works of
Chung [C1.2] and I3ynkin [Dy 1. In the context of quantum Markov provesses

Yol AL omT A= 1905,
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minimal semigroups associated to Lindblad cyguations were introduced by
Davies [Da] and their dilations to Evans-Hudson flows were studied by
Mohari [Mo] and Fagnola [Fa]. Following the spirit of Feller and Chung
we outline a general method of perturbation for positive semigroups on a
von Neumann algebr,

Let A be a von Neumann algebra of operators in a Hilbert space H and
let 1; : A — At = 0 be a strongly continuous positive semigroup of
linear maps so that the following conditions are fulfilled : (i) T{X) = X
for all X € A; (ii) T.(TH(X)) = T3 {X) for all X € A5t = O
(1i1) il_l;ll XY=, (X)forall X € 4.4 =0, () T{X) = 0 for all
X>20,X e 420

We consider two types of perturbations of {T;} which wicld new
semigroups, The first type arises from what we call an exit cocycle for
the semigroup {T;}. The second anses from a dualisation of the first and 1s
based on an entrance cocycle for the same semigroup. The terminology is
motivated from considerations of ¢lassical Markov processes.

Dermrreon 3.1, — Let F5(R.) be the family of all bounded Borel subsets
ol By. A map 5 : H(R,) — Ay, the cone of nonnegative elements in
A, s called an A -—valued Radon measure on R_. if, for any sequence
{ £} of disjoint elements in Fo(R | ) such that UE!- e FillL), S[UE;} =
ZS {£:) where the right hand stde converges in Lthe strong sense.

i
Duvanen 3.2, — An A, -valued Radon measure 9 on B, is called an

exit cocvele tor the semigroup {73} if

T(S(F))=S(E+1t) forall Ec R{R,), t=0.  (3.1)

Remark 3.3, — The strong continuity of the semigroup {T,} and the
fact that Ty is identity imply that every exit cocyele is nonatomic, ie.,
S({t}) = 0 for all £ = 0.

Exampie 3.4, — Choose and fix an ¢lement B in 4., Define
Sg(k) = f Bt [ Fe F{R,} (3.2}
E

Then the semigroup property and positivity of {T;} imply that 55 is an
exit cocycle,
Another class of exit cocycles is obtained by the following definition.

Annales de lustitue Henrd Poincard - Probabilités el Statisgues
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DeFmiTion 3.5. - Let A € A Then A is called excesyive for the semigroup
{L}if T(A) < Aforallt >0 If T(A) = A forall t > 0, A is said
to be harmonic.

Example 3.6.— Let 4 € Abe excessive for {7, }. Define a Radon measure
& by putting
Silo b)) =TA) - T(A) for 0<a<h< . (3.3)

Since A is excessive and 7; is positive we have S([a,b]) = T,(A —
2i-alA)) = 0. Since Ty(S([u, B]}) = S([a + ¢, b + ]} it follows that S is
an exit cocycle.

It should be noted that in this example if £bi:< the generator of {T;}

and A is in the domain of £ then S{[a. b)) = T —L£{A})ds reduces to

Example 3.4, If B € .4, is harmonic and ;1 denotes the Lebesgue measure
in B then Sp{E} = p{E)R which is a special case of Example 3 4.

Example 37, — If we replace the von Neumann algebra A by a O
algebra the definitions given in the preceding discussions are meaningful.
For exampie let A denote the C* algebra of bounded continuous functions
on R, and let {7;} be the semigroup of translation operators defined by

{Tif)iz)=fle+1), 20, feA
Define the Radon measure S5 by
S{la. b))z} = b+ )" - (a + )%, D <o

for some fixed &0 < & < 1. Then
L e 3
L;_x;qg[a: W) =68((b+2)7 — (at 2)°"1) <0

and hence supS(fa, b]}(x) = b* - o’ < ~c. Clearly 8([a, b]){z) = 0. The
T h
cocycle property is obvious. This cocycle if expressed as -[ Plr + #)ds

then ¢(x) = 8z is unbounded and ¢ & A. On the other band if
Sila. b)) = Top — Tped then () = ¢ — 2° for some constant e, is
unbounded and does not belong to A.

Example 38 — Let A be the € algebra of all bounded continuous
functions on the real line & and {1} be the semigroup defined by

(Tif)(z) = Efiz + B(t)), t>0, fed

Vol 3L n® 41595
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where B(t) denotes the stundard Brownian motion process on B, Define S by
S([0,8)(x) = Elz 4+ Bt} — |=|, zel, t>=0
From Tanaka's formula {page 137 in [CW]) we know that
diz + Bit)| = sgn(z + B(#))dB(t) + dL{t, z)

where Lt x) is the local ime at —x. L(#,x) is jointly continuous in
the variables { and & and L{{,:) iz nondecreasing in ¢ for fixed x. Thus
S([0,#])(x) is increasing in ¢ and continuous in (t,x). Since B({) has a
symmetric distribution it follows that §{[0, ]){z) = S{[L£])(—z}). When
# = 0 we have

(00, 8)(a)
= f (jz + pv't — |2 (27) Pe i dy

B 2 —pt T . g
= (2w f . y»&e—"Tdy—f (2 +yvthe™ T dy

—at T F
, e o] —1'!-_& o
< (2m) 73 / QYT ﬁ’-y—/ ye” T dy
—d —ru
1 af
=m F \@ﬂ_?

which shows that

supS({0.#)(z) < 2.
The cocycle property is now immediate from the standard properties of
Browman motion.

We now go back to the semigroup {7;} on the von Neumann algebra A
and associate a permurbation series with a pair {&,w) where 5 is an exit
cocycle for {71;) and w is a state on 4. To this end we introduce the Radon
measure g defined by

plFo) = w(S(E}). T € Fy(R ] (3.4)
and some notation, For any ¢ = O.n = 0,1,2, .. define the hocar maps
7™ on A by
™ (x)

T,_E_X] if =1,
S(dt (T s, (X)) if n=1, (3.5)

f o Sttt} ot )Tt (X)) I 122
PLL e ]
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for all X £ A, where
Aty ={{t1, b0y ) ity = 0foreach a8 + -+ 4+ 8, < t}.

For0 <5<t <ocundD <€ m < n define

Trl. TL{Y
(X fm=n=10
- S{dty pa(dtz). el ,) @)
B e 1,
KTy g (X)) otherwise

for all X £ A, where

&m.?t(& t:'

{{th tﬂr mrey t,.} : fi] G FRe t:r.re_ =8 E'I. +- t'rrl.—l:
= t + - +tn<_-'.t,1_‘-,-gﬂl'::reveryii}, if m < m,
-&11;{3]‘ if m = it

Prorosimion 3.9, — For each X € A the infinite series

Fol X = Z’I;{“:’{X]l (3.7)

re=ll
corverges in operaior norm. The convergence iv uniforrm in t over bounded

mtervals,

Frogf. — It follows from Remark 3.3 and the definition of u in
(3.4) that 4+ is nopatomic. Hence liﬁl pi[0,51) = pif0}} = 0. Chooss
&

and fix & > 0 such that pu([0.#]) < 1. We shall now estimale
J"!'*.I[:[U:-t]} = #@q({[hr"".t?t} : ti +---+ fﬂ 5 fll',]l'* Let t] Firao t:re_ =4
andr = #{i: L <i<n b 2t} Thent > &y + - & t, > rfy and, in

i
particular, r < [E] +1 = j. say. Hence
0

w' {0, L]HZ( Yudto.ul)” ittty

< [0, ru?ll“‘jz ("?) 0, 0]y el [, 1))

"
= ([0 4]} 7 ([0, 0] )",

Vol 31, n® 4-1995.
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From (3.5) we have for n = 1

y i)

1T (X

< Joll XY IS0, it swp |L2l(10, ) (n — 1) ([0, o]y~

which implies the required result. =
In order to show that {7} is a semigroup we need the following lemma,

Lemva 3.10. — For any 5,8 € By and X € A the following holds:
Q) T (IX)) = XD for myn 2 0;
) Y TENT(X)) = TEMX) for k 2> 0,

mtn—k

Proof. — First we prove (i), Clearly (i) holds when m = n = 0. When
w7 = 1 we have

TE(T(X))
=f ¢ S(ds) Ju(dsa)...pldsm }‘-'-"['I:s—is.v---+s,.-_}'iTc(m[X]:':|
gy
= f S(etsy Ya{dag). pe{dsm )
B, (8]
P f D e L3R D TT - I
Aglt)
pefdtn oo (T pey gy (X0
Consider the change of varables
Syl =8 — (814 -+ Sm} + 11, 8nss = Loy ey g = I
Then the cocyele property of S and the definition of p imply
"""{Ta—{a.—---+am}{5(dtl)” = p{dsmr1]

and under the change of variables, the conditions 47 > Qand 814+ - +8, <t
become & < 81 + - -+ Spug 1 and 51 + -+ 84 = 5+t respectively. By

the nonatomicity of & we may as well write 5 << 51 + -+ + 84,41 50 that
Ts!:':m i [Tfl'ﬂ] {}{]}
= f S(dsy)p(dsaz) - - e ) (Tht sy 4o omsim 1 (X))
o S - & )
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and (3.6) shows that the right hand side is the same as 77,7, "( X'). When
m = Un = 1 we have

TT(x))
=T L “H(d!‘-ﬂmdfz}---#(dﬁn}wfi’} okl TED)

= /_;. . Ts[S("'Eflj}H[dti} m 'ﬁ-"{‘itn)w{ﬂ—ih+---'I'1‘,.:I(X:|}'

Changing the variables to 5, = 5 + 1,92 = lu, ..., 4, = #, yields the
required result as before. When m > 1,7 = 0 the semigroup property of
[T} implies

™= f S(dsyypldss) - pl{dsom ) ooyt { X))
S {6}

and completes the proof of (i),

Property (ii} is obvious for &£ = 0. When & > 1 propery (i)
together with the observation that Ay(s + ¢) is the disjoint union of
{Ama(s,s+ 4,0 < m < &} for all 5 and ¢ implies (ii) and completes
the proof of the lemma. W

Tueorem 311, — Let Ty : A — A be a positive strongly continuoriy
semigroup of linear maps. Suppose w is a state on A and S is an exit
cocyele for {T.}. Then the family {13} defined by (3.7) ix also a positive
strongly continuous semigroup of linear maps en A If {T,} is completely
positive so is [T}

Proof. — Clearly To{X) = Tp{X) = X forall X € A For0 < a,t < nc
and X € A we have from Lemma 3,10,

LX) = Y TENTH ()

Ll

2P0 STPUTEEY
k=0 mtn=k

=% TEUX) = (X))
k=0

Thus {73} is a semigroup. By (3.5), {T™} is strongly continuous-in £ and
linear on A for each n and Proposition 3.9 implies the same property for
{T,} If {T;} is positive or completely positive so is each {71} and hence
{Tf]- also shares the sume property. M

Vol 31, n® 41945
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The semigroup {ﬁ} occutring in Theorem 3.11 is called the Feller
perturbation of {1;} determined by the exit cocycle S and the state o,

Remark 3.12. — Theorem 3.11 holds good when A is a € algebra and
the proof remains the same.

Remark 3.13. — From the proof of Proposition 3.9 it follows that
r=dg+p+ ge-"2 + ... 15 a Rmlon measure on By where dg is the
Dirac measure at ¢ and p is defined by (3.4). This shows that the perturbed
semigroup {; can be expressed as

i
ﬂ[X}:i;[XHfD (S % w){ds)o( Ty (X))

when 5 + v is the positive operator-valued Radon measure defined by

§+u([0,4]) = /; S(ds ([0, ¢ ~ 3]).

If X iz in the domain of the generator £ of {T,}, u. v are elements of the
Hilbert space H (with .4 ¢ B(H)) and (w, 5 = [0, £]}2) is ditferentiable
at the origin then

f P . i
?:.Tt_ fuy Lo X Jvdi=o = (uy LK Juy + w(X]) ;{f {u, & = p({0, 1)) |1=0.
In particular, if S{E) = Sg{E) = / T.(B)ds, B c A, then
JE

d Ti( 3 P
i (o T X fpen = 0, 20X + w{ XD B ).

In order to compare the perturbed semigroup {f,} with Feller's
comstruction we shall compute its resolvenl. At this stage it is wseful fo
recollect the well known Hille-Yosida theorem which makes precise the one
to one correspondence berween a semigroup and its resclvent.

Thuorem 3.14 (Hille-Yosida [Y], [Dv]). — Ler &' be a Banach space.
Let {Ry anp be a famile of operators in X, with 3 = 0 a fixed scalar,
saiisfving the following:

(i) Hadi, = {p— }‘::'_l'[HJ\ — Ry) for dop > B A #

(i) || Ra|| < M{X - 3)77 for afl X > [ and some positive constant M ;

(i) ¥ — iim Ba(X) = Ru(X) forall p> 3 X € &;

{iv} Hange fnf Ity ix dense in & for some X > 5
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Then there exists a unique stromgly continwous semigroup {1} of
operators in X such that ||13]| < Me™ and Ry(X) = f e T X )t
foralt A > 3.X € X. .

Conversely, if T : X — Xt = 0 is « strongly continuous semigroup of
eperators then there exist constants M, 3 = 0 such that ||T,|| < Me for

e w)
alt t = 0 and By(X) = [ e MT(X It defines a family of operators
Jo
satisfying (1) - (iv). The semigroup {T,} is contractive if and only if M and
{* can be chosen to be | and O respectively.
Proof. — We ommt the proof (See page 30, Vol I, [Dy]). =

TueorEM 3.15. — Let the semigroup {1} in Theorem 311 satisfy the
inequalities ||T,|| < Me™ for M > 0.8 > 0 and all t > 0. Ler
{Rs A > 3} be its resolvent. Then there exists a 3 = 0 such that the
resolvent {R}l,}l. = ,ti} s given by

2 w{R; X0 .
where -
A =f e~M8(dt), A> 4. (3.9)
o

Progf. - Choose and fix a #p such that p([0,8]) = « < 1. Let
b = ||5([0. to])||. By the cocycle property

15 [t (1 + 1ta}l] = [|Tory (S0 2]))]| < BMe™™S, w3 0,

[ri—-1]ty
| f =M 5(dt)

tp

Hence

-**5{.:& H Z

v

< B+ Z&ﬂfc—f}.—,ﬂﬁflm

n=1

BMe -t
1 — g lA=fty
< o0 forall A= 4

Since p{E) = w{S(F)) we have

= bﬂ-’fﬁ_(}' —iFty
At
fu e ldt) < a+ T—

<b+

¥ol. 30, o™ 4-1995,
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Since n < 1 we conclode the existence of a constant ,"; = (1 such that

wii= [ e~ u(dt) < 1 forall A> 4.
S0

Thus, for X & A A > ,d we have
Bix)= f e T (X)

= R, X)+Zf

=l

* {LI - _q{dh)lrr,{dlg;l l:df,., Il £y +-- +¢“;|[}£']:]}{,it
= B\ (X)+ Zw(al[x})w(_mTl-l_ql

w(BA(X))

1—W{AJ’1

= Ha(X)+
Remark 3.16. — As a direct consequence of the coeyele property of &
it follows that
A
fl = —“—-ti—’f for Au=d AE
Using this relation we can verify that I, satisfies the resolvent identity. So
we could as well have defined R directly by {SASJ and (3.9, used the Hille-
Yosida theorem and recovered the semigroup T Indeed, Feller [Fe 2] had
taken this approach, W shall compare the formula for K with that of Feller.
Let A ¢ Ay be excessive for {1} and let 5 be defined as in Example
3.6 so that S(¢) = S{[0,2]) = A — Ty{A). Then

Ay = fm e MS(dt) = ""f: (A - T(A))dt,
0

fe, Ay = A — ARy(A). Hence (3.8) becomes
w(Hy (X

w(A) + Aw(Rs(A))

Now consider the special case A = qf for some g > U and w(X)} = tr pX

for some density matrix g describing the state. Then

Ba(X) = Ba(X) + 5 (A= ARy(4)).  (3.10)

(X
BaX) = Ba(X) + 1 qtfr‘ﬂqﬂ':r P-:'IHA': Fald = ARNT))
— tr pHy [ A] >
= Ra(X) + R (I = XRATH (3.11)

Anmader oo Ilevtioe Aenré Peincard - Probabilitts ot Statistiques
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1- s
where m = — 2 _ If {T:} is contractive and vn > 0 then {T,} is also

contractive. When 7n = 0 and {7;] is not conservative it follows that
AR(1) = [ and hence {T\} is conservative. When A4 = £, and {T.} is the

minimal semigroup of substochastic matrices associated with a Kolmogorov
equation, formula (3.11) coincides with the expression (8.1) in [Fe 2]. This
suggests that the density matnx p in {3.11) mediates the transition from a
“boundary point” back into the “state space” of the Markov flow and ; 1

15 the probability that it is stuck in the boundary. Of course, it is desir;nﬁlt W
have a clearer picture of the manner in which p mediates the transition,

We now proceed to a bref discussion oo entrance cocycles. Let A,
denote the predual of the von Neumann algebra A © B{H). Then A. is a
subalgebra of the algebra of all trace class operators on M.

Dermvrmion 3.17. - An A, -valued nonnegative Radon measure +f on B iy
called an enrrance cocyele for the semigroup {1} if

tr o EYTL(X)
—try(E+s)X forally>0,Fe (R, X e A (312)

Imitating Example 3.4 and 3.6 we can obtain examples of entrance cocycles
provided there exists a semigroup {7, } in A, satisfying

trm( X =trpT(X) forall X € A, pg A, L =0 {3.13)
In such a case we have the following examples.

Example 3.18. — Let p € A, be positive. Define the Radon measure 4, by

P [EY = f T (p)ds [ E € F(Ry). (3.14)
E
Then i, is an entrance cocycle for the semigroup {7}
Example 3.19. — Suppose py € A, is excessive for {7, }. Define ¢ by

P([a,B]) = ma(pa) — Tl po). (3.15)

Then + is an entrance cocycle.
Let ¢ be an entrance cocycle for the semigroup {Ti} and let Z be a fixed
positive element in A, Io analogy with {3.7) define

--—T¢ X} +Zf tl‘{'!,fj? I‘ﬂ'l t!‘ Tu(l'.!’-t;r ]'

izl
I‘l:'!lp' d-tn Z}Tﬁ—(h""*t..]{z} (:].lﬁ}

Wol, 31, 0¥ 4- 1945,
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for t > 0, X € A

TueoreM 3.20. - The series on the right hand side af {3.16) converges
i newm and {Ti} s a strongly comtinuous positive semigroup. If [Ti} is
completely positive so s {Ti

Proof. — This is exactly along the same lines of the proof of Theorem
311. =

Tueorem 3.21. — Let Ry and Ry be the resolvenis of {Ti} and {T,}
respectively for A = v for some 5 = 0. Then

s (X))
1— a2}

where vy, is the positive linear functional on A given by

anX) = ﬁ e tr ([ X)

B X)=RiX)+ Bi(Z)for X e A

Proof. - This is obtained by a direct computation. B

We conclude this section with some remarks on perturbations of direct
sums and tensor products of scmigronps. Suppuse A; 1 a von Neomann
algebra of operators in a Hilbert space H: and {T}" } is a posmw stromgly
continuons semigroup of hincar maps on 4; for each ¢ = 1,2 Let w;
be a state in .4; and let S; be an exit cocycle for each ¢ For the
semigronp T, = 1} (n EBTm S = 5. 6pS; is an exit cocycle and for
amy 0 < p < lw = pun Pl - plwp is a state on A = A P Az
Expressing any element of A as a column vector [ . X € A4V e Ay
we see that the perturbed semigroup {1:} associated with the pair {8, w)
has its resolvent B, given by

o Xy (EYX)
R*(r) =(H{“}m)
(1) Dy ()
i g}u;{l:R (XN+101 —P}wz{ﬂl (X)) (A-_’tm) (3.17)
1— {pwn (A7) + (1= phoaf A7)} AL

where ﬂl ) is the resolvent of {Tr‘] and Am I e~ 5;(dt). When
Ay = Cop = D,unie) = ¢ and Si([0.2]) = [~ TV, {TL”} being
contractive {3.17) reduces 0o

()= (410) e ()

Arnoles de Uinstitet Heari Poincaré - Probahilitds ot Statistigues
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This is the resolvent of a semigroup which is the guanmum probabilistic
analogue of a Markov chain with an absorbing boundury point a: described
after Theorem 2.13.

Just like direct sums we can also perturb tensor products of semigroops.
Tndeed, let T, = Tf” # Ti{z} in A = 4, & .4, Then there exists an
exit cocyele S for {7:} such that S([0,¢]) = 51{[0,¢]) @ S2([0,#]) for
all t. Tt should be noted that 5{[e, b)) £ 5{[a.b]) @ Sa([e. b} Tt is alzo
interesting to note that A; © A4z is excessive for {T,} if A; is excessive
for {709}, = 1,2, Indeed.

(T 9 )4 & 4p) = TV (4y) 2 T (42)
=48 T!r2,|[A2}
<A @A

If H is harmonic for {T2°'} then S(0.4]) = S,{[0.4]) @ F defines an
exit cocycle for {Ti} Tf T,."Z} = identity we can express the resolvent of
the perturbed semigroup {T;} associated with the exit cocyele § and any
state w on A as

w(HP X)) B Y)
1-wiAl @ H)

R(Xa¥)=RUX)eY + AV o H.

A gimilar analysis can be done with entrance cocyeles.

4. GLUING ADAPTED PROCESSES USING STOP TIMES

In Section 2 we saw how it is possible to construct weak Markoy Hows
out of one parameter semigroups of completely positive contractive linear
maps on a von Neumann algebra. Given such a semigroup {1%} and its
Feller perturbation {7} based on an exit cocycle 5 and a state w it is
natural to examine the relationship between the flows associated with {1}
and {1;}. If we follow the classical approach of Chung [Cl] it is not
difficult to see the possibility of obtaining the flow assoclated with {T}}
by appropriately “gluing™ independent copics of the flow associated with
{T:} at suitable stop times.

Just as a classical stochastic process is a4 family of raindom variables
{£(t1} a quantum stochastic process may be viewed as a family of operators
{X{t)} in some Hilbert space. Given two classical stochastic processes

Yol 31, n® 4-1993,
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{e{t}} and {#{t}} with t = 0 and a stop time  for {£(f)} we can glue them
at time 7 and obtain 4 new process {{{t]} by defining

C[en ift<n,
I:U:I_{-.‘r}[t—ﬂ i fr

Already from the papers of Hudson |H] and Parthasarathy and Sinha [PS]
the fruitfulness of looking upon stop time as an adapted spectral measure on
R is evident. Our aim in the present sectico is to outline a method of gluing
operator-valued processes in different Hilbert spaces by using appropriate
spectral measures and obtain the glued process in their tensor product. To this
end we begin with the definition of an integral of an operator-valued funetion
with respect to a spectral measure. Since this notion will be used extensively
in the sequel we present a list of its basic properties for ready reference.

Let (2, F, 1) be a totally finite standard measure space and lew P* denote
the canonical spectral measure on 2 so that P#(E) is the operator of
multiplication by the indicator function yz of £ € F in the Hilbert space
L*{ ). Suppose k is a Hilbert space and X : 2 — B(k) is a map satisfying
the following:

(i) the map o — {u, X{wlv) on 12 is measurable for every w, v € &

(i) sup || X0|e = 2.

o

Note that the Hilbert space £2(¢) @ k is isomorphic to the Hilbert space
L%, k) where

Emﬂ={ﬂﬁﬂ%hﬁwmwh@ﬂ€M}

with
mm=fwwwmeML
i

Fa.g, ... denoting equivalence classes modulo p-null sets. Making use of
this identification between L#{g) & &k and L*(p, k) we define the operator

[P”[dw}X{w} on L*(p) & k by
0
{LP“(M}X@H}[J) = X{w') flw), w €1, {4.2)
Then [ P*{dw) X (w) is a bounded operator on L?{) ® k with
!

| e < smonixoe (4.3)

Annales de UInstisut Henri Poincare - Probabdditds et Stansliques
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It is natural to denote the operator given by (4.2) ag f P dw) @ X{w) bue
12

we drop the symbol @ for notational convenience,

Now suppose that P is any spectral measure on the standard Borel
space (2,F) with values in the lattice of orthogonal projections io a
Hilbert space 'H. By a part of the Hahn-Hellinger theorem [P1] there
exist totally finite measures {g,. € S} on (0,F) and a unitary
operator £ H — @ L*(p,) such that [FPIF—1 = @P“", Let now

L ]

X 18 — Bik) be a weakly measurable map satisfying sup ||X ()||e < o
j.l
Then we define the integral of X[-] with respect to ° hy

b w)y =1 1! e () X (w) 2T ;
LI{&J)X[@_L {(—B[ﬂf {du) X ( }}r {4.4)

Then the left hand side vields an operator on 'H & k with
H [ 1’{ﬂfw}Xliw)H < sap {1 X ()] (4.5)
§iy B

ProrosiTioN 4.1, — Let (1), F) be a standard Borel space and let H, k be
Hilbert spaces. Suppose P is a speciral measure on F with values in the
lattice of orthogonad projections in N, Let N be the * anital algebra of alf
weakly measurable maps of the form X : Q0 — B(E) satisfying the condition
sup IX{]||x < ov. Then the following holds:

75

(i} the map X — f Fildw)X(w) s a * unital homomarphism from N

ik
inter B{H @ k) such that (4.3) holds;
(i) for any w.uw' € H,v.v" € k

(wow. [ PawX@w e V= [t Paaneye X,

Proof. — This is immediate when X = L*(p) and P = P*#, Rest follows
from (44) and (4.5 . N

DeFMiTioN 4.2, — By a bounded process X = {X({t},t = 0} in
a Hilbert space H we mean a family of bounded operators in H
satistying the following: () the map ¢ — X{f) is weakly measurable;
(i) sup ||X{s)|| < oo for every {. Such a process is called contructive,

e

tsgmetric of coisometric according as all the operators X (4], f > 0 possess

Yol 31, n” 41995
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the same property. If ¥ is a weak filration in M then X is said (o be
adapted to FOf

X(OF(#) = FOX(EF()  for every 1.

A stop time in M is a spectral measurc on the closed interval
0.2] = Ry U {oc} with values in the lattice of projections in H. A
stop time P is called a stop time for the bounded process X in M il
X(1P{[0.¢]) = P([0,2])X (£} for every t. F is called an F-adapted stop
time for the bounded process X if, in addition,

Pl0, )8y = F(#)P([0,11)  forevery f.

We shall now introduce a gquantum analogue for the construction in {4.1).
Let X; be a bounded process in the Hilbert space H,.4 = 1,2 and let [, be
a stop time for X,. Then the glued process X op, X; 14 defined by

Xiop X—;g(f] ZXl[t}{] — F1(f]]|+ Pﬂ{dﬁ]){z{t—fl} {4ﬂJ
0.2

where the first term is actually the ampliated operator X1(4){1 — P1{t}) &
I, P (t) = P{[0,¢]) and I, is the identity operator in Hz. By Proposition
4.1 it follows that X1 op, Xz is 4 bounded process in H; & M. When the
slop time [% is clear in a context we shall write X o Xo for &) o5y X,
The event that the process X is stopped at a time not exceeding t is
described by the projection Pi(t). Since X () and Pi(t) commute with
cach other we may express the first term on the right hand side of (4.6)
also as Py((t, =c]) X5 ()12 ((2, 00]).

Nomally P,({0}) = 0 so that X; o X2(0) = X (0)/4({0,<]} =
X,{0). ie., the glued process starts at X;(0). Otherwise X o Xu(0)) =
X (L0, 00]) + A({0})X2(0). This may be interpreted as an
instantzneous change from X1(0) to X5(0) (with some probability in a
given state).

ProposiTion 4.3. — Let P be a stop time in H;, 7 = 1,2, Then Pyop, I
is a stop time in Hy & Ha. If, in addition, P iy a stop time for the bounded
process Xi,i = 1,2 then Py oy Py s a stop time for the glued process
X]_ =rey Xa.
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Proaf. — We have from (4.6

Iyop Po(t) = P(L)Pi((2, <)) + Fi{dty ) Palt — 1)
J0,2]

- f Py(dt) Paldt)
0=ty +ly <t
=P @ P({{t1.ta) 1 0 <t + 12 < #1842 2 0}). (4.7)

This proves the first part. The second part is immediate from Proposition
4.1 and the definition of a stop time for a bounded process. W

We denote the stop time Fy op B by Py o Py and call it the cumuelative
stop time of P followed by 5. In other words we wait till the stop time M,
first and subsequently wait ll Po so that the total waiting lime is Fy c Fa.
Such a view is useful in gluing more than two processes.

Prorosmon 4.4, — Let X; be & bounded process in Hy ¢ = 1,2, 3 and [t
F; be a stop time for X;,1 = 1,2. Then

[{X; op, Xa) 0p,op, X3}t
= {X, cp, (X5 0p, Xa) 1)

= Xll:t}Pl{l:t-.’x:]:l +f PlLdflj.Pgl:{f -1, "‘-'C]}lex't —#)

Nty <t

+ f Pildty) Poldtz ) Xalt — 1 — t2) (4.8}
ety g2

forall t 2 0 im H, & H: & Ha.
Proof. — By repeated application of (4.6) we have

X1 op (Xyop, Xy)}()

~ KRt + | Atk on, Xale =)
X (P, 0])
+ f  Pi{dh){Xa(t — f1)Pa((E — #1,00])

.]

% f Pydta) Xt — £y — 1)}
[0 —ky]

%ol 31, n® 4-1995
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which agrees with the right hand side of (4.8) owing to the fact that P, is
a stop time for X,. Similardy by Proposition 4.1 we have

{(X1 op, X2} opy0r, Xy }(H)
= (Xyop Xa) ()T — Py o Bat)) + L ](PL o Fy)(dta) Xyt — 12)
= { X1 (B P1{{t, ]}

Pl sl il b Pt 1 Palt —
+flﬂ-ﬁl Ll ]}{ /[ll:t] {dtr) Pa(t n]}
= fﬂ{ ) _f-"ll:dfl}le:fﬁg}_X-}I:.f — E'I. _ t.g}
=XOR <D+ [ Al - P~ 0)Xolt — 1)
[th¢]

+ f P]_{I‘ﬂ-'l}Pz[rﬂ-g:lX;j[f - ]li] - f.z},
[ R e )

which once again agrees with the rfght hand side of (4.8). W

In view of Proposition 4.4 we can now take the liberry of denoting the
left hand side of (4.8) as X, o X7 o X; whenever the concerned stop times
P and P are unambiguously fixed.

Consider a sequence of trples M, X,.. £..n = L2, ... where H, is a
Hilbert space, X, 1% a bounded process and F, is 4 stop time for X, for each
n. Let H, = Hy @ Ha & - & H,. Define the operators X, | 1(2), X', (¢)
and X 0#) in H,.qq by

)En+1{ﬂ
= /. I]'j_[rfi]_} o Pn+1|:rii"+1 :IX,,_] [IF.- —. i"| +-- tn:|
Sy et T =g

= / Pj_(dtl:l---IJﬂ{dtﬂ}
S — g "_E

x KXo [ i) P feeerty gl (4.9)
for n = 1,
S,

KD sly= f Fifdty) - Buldt )Xot —H +--&a) (4.11)
s e

n—1

Xty = 3 X1 (8 + X2,4(8) (4.12)

ree=1}
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for » > 1, where the m-th term which looks like an operator in
Hmy1) is, indeed, amplisted to H,iy. It is to be emphasized that
Xty = A1 9 Xz 0. Xy, the glued process obtained from the sequence
X1, Xz, ALy through the stop times £3, %, ..., B, Define the spectral
measures £, in H,; hy

Py(E) = f+_r Py{dty)... Paldty), (4.13)

A,

for any Borel set B C [0,0c], and denote their ampliations by the same
symbaols. Then, for any fixed £, Fyj(#) = Poy{[0), #]) 15 a decreasing sequence
in # and
Xors(8) = (L2 (1) = P (XKt ()£ (1) = P (1)), (4.14)
Xrt:+1':t:| = PTL!{“XEH{”Rz]“} (4.15)

with the understanding that Fiy(#) = I. We have the estimates

X ()] € sup || Xnsr ()] (4.16)
)

| Xesni (8} = sup  sup ||X;(s)]]- (4.17)
1fsm | 1 DCadt

Let now ¢y be a unit vector in H,,.» = 1,2,... Consider the countable
==}

tensor product H = ®'H.n defined with respect to the stabilizing sequence

n=1

[#a}. Assume that

sup sup [|Xp(s)]| < oc forallt = 0. (4.18)

n 1<s<t

On ampliating )?,H_ L] to M we see from (4.14) and (4.16) thal the infinite
series

Xo)(th =Y X ia(f) (4.19)
=10
converges strongly and
1 X o (£)]] < sup s || Xa(8)]. (4.20)
n Q==

Roughly speaking, X is the glued process X, oXz0... Note that the infinitely
ghied process X depends on the stabilizing sequence {¢,, |. The next two

Yal, 31, o™ 4-1995
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propositions desctibe the basic properties of the operation of gluing a finite
or countable number of bounded processes.

ProposTTION 4.5, — Let X, Y, be bounded processes in the Hilbert space
H,, for eachn = 1,2, ... satisfying (.18} and let F,, be a stop time for both
X, and ¥, for each n. Then the following holds for afl 2 < n < s

() X + ¥ = (X + ¥lops
(i) X, ¥y = (X¥V)ap

{“ﬂ' {X.'i-]jl [.X .]u:

(iv) Xy is positive or contractive according as each X; is pasmva o
contractive.

Proof. — Immediatc from Proposition 4.1 and the defimition of glued
processes. M

ProrosiTion 4.6. — In Proposition 4.5 suppose that X, is the process I,
where I(t) = I in H, for each n. Then
Ijt)y=1 for 2<n <o

Define the probability measures {vn,} on [0,00] associated with the
stabilizing sequence {¢n} by

v E) = (¢, Pa(E)dy)  for cvery Borel set B C [0, 0],
Then

I;,;.]_{f.:l =1
if and onfy if

litn (1o = v # - - % 1, ){[0, 3]} = 0 (4.21)

fioo
foraft ) <t < 2

Proof. — The first part is immediate from the relations A

ﬂ] (£) — Payuy(t), Fo{t) = I and the fact that X2, ,(t)in (4.01) becomes

Frit). To pmw the sufficiency in the second part consider an element
= @y Rty @ Pryl B dreg @ - in H and observe that (4.11)
yields

X0, (Euli® = (Ar = - e Ap s g *viga £ % v }[0,2])  (4.22)

when Xi(t) = I for all i,n > k,A; being the measure defined by
M(E) = {ug, B{F)ni),i = 1,2,....k and E any Borel subset of [0, 2]
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Now (4.21) implies that the left hand side of (4.22) converges to O as . — oc.
Since vectors of the form v are total in H it follows that X0, (£) — 0
strongly as n — oo for every £ Now (4.12) and (4.19) together with the
tirst part imply that I, W](t} =1 forallt =

To prove the necessity of (4.21) observe that 1 + g = -« - % 1, ([0, 2])
decreases monotonically in n for every fized ¢ = 0.

Suppose that lnn N vy koo ok v([0,%]) = & > 0 for some tg > 0. Then

(4.12) imphes that for the unit vector # = ¢4 @ e & .- in M

-1

MEowiEadull® = Tim (1) Lucsa (to)uelf?
m=I|
=1=-48=<1,

In other words I {#y) is a proper projection. W

Remark 4.7. — From Proposition 4.5 and 4.6 it is clear that for 2 < n. < oo
the bounded process X, is isometric, coisometric or unitary according as
each X,,: = 1,2,... has the same property. If the measures {1, } defined in
Proposition 4.6 satisfy the condition (4.21) then X .| is isometric, coisometric
or unitary according as each X;, 4 = 1,2, ... has the sume property.

ProposiTioN 4.8. — Let M, X, Pyon = 1.2, ... be a5 in Proposition 4.5.
Suppose that the maps t — X, (L) are strongly right continuous for each
. Then X,,)(t) is strongly right continuons in t for every 2 < n < 0. ff
X (t) is strongly continuous in | and P, has no atoms in R, for every n
then X, (¢} is strongly continuous in i for every 2 < n £ o

Progf. — Consider an element « = wy % uy @ ... in A where each u,
is a unit vector and w,, = ¢, for all n exceeding some ng. From (4.14)
and (4.19) we have

X (0l = 3 Knes ()], (1.23)
1=l

Consider a fixed bounded interval [0, T] and vhserve that (4.14), {(4.16) and
(4.18) imply the existence of a positive constant &' depending on ¥ such that

X s (Ehul?
< C(Pylt) = Bupyy (802
=g %04 ) ({0 2]} — (py % oo % et 0. )} (4:24)
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forall0 < ¢ < T where p;{-) = {uy, I%( Juy ). Note that when re = 0 the right
hand side of the inequality above is to be interpreted as C{L — py ([0, 2]]). It
follows from (4.23) and (4.24) that the right hand side of {4.23) converges
uniformly in ¢ € [0,7]. Thus, in order fo prove the first part of the
propusition, it suffices to show that the map # — X.4 L(#)u 18 strongly right
continnous, We have

(Kot + 1) — Xop1(D)}u
i {f Poitida) X1 (t +h — 8Py it +h— s_.-:x:]}}-u
[, e+F]

- {f Pﬂ]l:rf-ﬂxaﬁl{f = "’}Pﬂ+1.(|:t -4, "-’C]:'}“'
(0,84

P f Pa(ds X g1 (t + 1 — 3} Py 1+ h— 8, 00])
[0,e]
— Xpia(t — 8)Paya ({1 — 8, 00]}w
+f Poy(ds) Xngn (£ + b — )P (8 4 — 5, 00] e
{rt b

Thus

w10t + B) = Ko (B3 ]0]?
< f < ). Py, = X ega (£ + F — 81 Pyt 4+ h — 5.0¢])
fi,2]

T 'r|.+ll:t £ S}Pﬂ+1|:|:t — & m;l]}.uﬂ_l”‘s
+ Gﬂw.nj, P"'l{{t,t + n]:"uﬂ]}'.

where (7 is the positive constant mentioned earlier, uy) = % & - -~ T
B> 0, t4h < T.Since Xnpr(f) and Poyi({f, 00]) are both right continuous
for every # the right continuity of fﬂ{t) in £ follows from the inequality
above. It is Lo be noted that we have used the fact that vectors of the form u
described at the beginming are total in . The second part of the proposition
is proved in the same manner. W

Now we proceed to define the glued filration which may be considered
as the natural filtration for glued processes. To this end we consider a
sequence (M, Fu),m = 1,2,... where Hn is a Hilbert space and F,
is 2 weak filtration in H. such that the map ¢ — [F,(t) is strongly

Asnmales de Plestioe Henvi Poincard - Probabilivés of Stotistigques
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with g in the range of F5(1) is a projection. For 0 < s < ¢ < o0 we have
Ey(£)Fy(s)
= Fi()(1 — B} — Pi{s))F1(s)|z) (2]
R0Y MIICATTRICH f[ Filds) B o)
0u

[t

+ | Pud)Falt —t1) Py(ds)Fi(s)|é2) {2

[th] [”:ml

£ Pr(dt ) Fa(t — t1) Pi(ds; ) Fa(s ~ 51)
0] [0.5]

= (1= Py F(s) o) (o] + 0+ fr R JACTER

+ f'p,.u] Py(ds1)Fa(s ~ 81)

= Fyfs)

which shows that ﬁz][t} is increasing in t. In other words Fz] is a filtration.
To prove the adaptedness of X5 with respect to £y observe that

Xz](f}ﬁz][f}
s =P f[ﬂ Pudt) Xt~ )} Pt

= X0 = OOl + [ Rl Xalt )Pt~ 1)
= |2} (2bF1 () Xi{E)( L — PL{E)) Fi(t)|dha){ehs]
+ f Py(dt)Fylt — )Xot — ) Fylt — 1)
= Fy(8) X (£) (1),
which proves the claim for i = 1. Now assume that the Proposition is true

for n < k. Then on ghiing F ) with £}, 5 using the cumulative stop time
PJ.;+1_] =lfolkho..o P;_-_,_l given h}r

Py (t) = f Pr{dty) - Peyr(ddteqa)
b SEETE o o SIS

we have a new filtration &7 given by
Gt} =Fipq) (80T — Popy)(£)) s (o]
+[[ lPk+l|{dt!¢+2:|Fk+2{t"'tk+2}
0t
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which is easily verified to be the same as ﬁﬁ_ z{t). Hence Fp. +7) 18 also a
filtration. Since X, 12 = Xy 1) o Xp 4 a repetition of the earlier argument
shows that Xi.q is }'Hz]—adapted

The strong right continuity of f'ﬂ]{t} in ¢ is proved exactly as in Proposition
4.8

Frorosmon 4,10, — [n Proposition 4.9 suppose that the sequence
of probability measures {v,} in the closed interval [0, 00| defined by
V() = (G Pul-)@ndt = 1,2, .. satisfies (4.21). Then F., defined by
(4.26) is a strongly right continuous weak filtration in H = H, @ Ha & .
If X, is an F,-adapted process and Py, ix an Fi,-adapted stop time for X,
for every n then X | is F-adapted.

Proof. — Proceeding along the lines of the proof of Proposition 4 6 we
conclude that Fm][t = 111'n Fﬂ (), X)) = s ?Jﬂr;cxﬂ.1 1(£). The

strong right continuity of le{tj in { is proved exactly as in Propositon 4.8,
Rest is immediate from Proposition 4.9. B

5. GLUING MARKOV FLOWS

In classical probability theory a Markov process governed by a
nonconservative of substochastic semigroup of transition probability
operators on a state space {) is interpreted as a Markov process whose
trajectories may get out of the space f1 {or hit the boundary) at an exit
time depending on the individual trajectory. Such an exit time provides a
natural stop time at which the trajectory may be stopped at the boundary
with probability p or continued with probability ¢ = 1 ~ p along a new
independent trajectory of the onginal flow stating from a point & € £}
chosen according to a suitable entrance probability law. Such a procedure
can be repeated ad infinitum. The aim of the present section is to quantize
this idea or, equivalently, express it in the language of operators in a Hilbert
space by adopting the gluing mechanism described in Section 4 with respect
to suitable exit times for a nooconservative Markov flow mediated by a
one parameter semigroup {7} } of completely positive and contractive linear
maps on a unital von Neumann algebra and thereby obtain a new Markoy
flow whose expectation semigroup {7} is a Feller perturbation of {T}}.

DeFINITION 5.1, — Let (M, F, 7,) be a wedk Markov flow on a unital von
MNermann algebra A of operators in a Hilbert space W, with expectation
semigroup {7T:}. A spectral measure P on the closed interval [0, oo] with

¥ol. 31, 0¥ 41995



642 B. V. BAJARAMA BHAT AND K. K. PARTHASARATHY

values in the lattice of orthogonal projections in 'H is called an exit time for
the flow (K, F, j) if the following conditions hold:

{i) FXI[0,2]) =0 forallt> 0,4 € A (5.1}
{ii) P} F(t) = F(OP([0,0])  forallt = 0

{iiiY If 8p denotes the positive operator-valued Radon measure defined
on Ry by

Sp({0}) = 0, 8p({u, 1)) = ERF ({2, blx, (5.2)
then Sp(F) € A and
I(Sp{E)} = EJP(E +s) [oralls>0E € Fu(ly). (5.3)

Condition (i) expresses the adaptedness of the stop time £ and for
any initial state A on A, A{Sp([0,#]})) is the probability that “hitting the
boundary™ oceurs at or before time £. Condition (i) can be interpreted as the
fact that if the system or flow goes out of .4 before time t the event j; (X}
for any projection X in .4 cannot oceur at time ¢, Condition (iii) emphasizes
the covariant pature of the exit time under the flow.

Prorosmion 3.2, — If H, F, 4, and P are as in Definition 5.1 then the
Radon measure Sp satisfving (5.2) and (5.3) is an exit cocycle for the
expectation semigroup {1} of the flow (H, F, 1;}.

Proof. — Taking conditional expectation E,f,’l' in {5.3) we have from the
Markov property of the flow

T.(Sp(£))F(0) = Efjj(Sp(E)) = ERELP(E + s)
=E{P(E+5) = Sp(E + 5}F(0). W

Let Ho. Fy,il™, Poyn = 1,2,... be copies of H, F, j;, P in Definition
5.1. Note that squation (5.1) together with its adjoint and condition {ii} of
Definition 5.1 imply that the exit time £ is also an F-adapted stop time
for the bounded process {j:(X). £ = 0} for every X £ A. Choose and fix
a unit vector ¢ m the range of F(0) in H. Let H = H, @ Hz ® ... where
the countably infinite tensor product is taken with respect to the stabilizing
sequence {dy, } with ¢, = ¢ in the n-th copy for each n. Using {F,} we
make an infinite gluing of the processes {ji™ (X }} for cach X € A as in
Section 4 to obtain the processes

X)) =3 X)P(F,2x])
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+Zf Py(dty)---
=l byt SES ) 4 b g

n+1fdfﬂ. I-J.JJEHE;:.L '-H-.;]{XII' {E,‘l}

By (5.1) we have 4 (X} P((t,0c]) = i X'} and (5.4) can be expressed as

X)=Yi"x) =Y T X)) fro<s<tXeA (55)

n=0 2 =0
where
Al JEI}{X] if m=10,
HALLS Pu{db)). Paldta)il i o y(X) 0 w21
Anit] i
and for ) < m < n
f:m Ry X}
{1}{ X it m=n=0,
5 L Py(ds ). Pu(ds 30T, (X otherwise
B m @t

where A, and A, {5, !} are ag in (3.5) - (3.7). 1L is useful 1o compare the
two expressions above with (3.5) and (3.6) and inlerpret j;‘nl as a description
of the glued process at time £ under the knowledge that exactly w exits
have occurred upto time £, Similarly }:}'“ describes the glued process under
the knowledge that exactly v exits upto time § and o exils upto time s
have been made.

THeoREM 5.3, — Let M, F, jo. T3, F, Sp be as in Definition 5.1 and let ¢
be a unit vector in the range of F(0). Define the maps FRER. B(H)
by {5 4) Let F = Fm] be the glied filtration in H defined by (4.26). Then
[H, F ,7e) is @ weak Markov flow with expectation semigroup {ﬁ} which is
the Feller perturbation of {T,} determined by the exit cocycle Sp and the
vector state w with density marrix ||

Proof. — It follows from Proposition 4.3 that for each ¢,  J is a
# hﬂmﬁmurphlsm from A into B(H A] From {5.4) and (5.1) we have
(X)) = gu”{X}{l — P (0)) = 789(X) which is jo(X) in the first copy
of M ampliated w H. Thus

F{0)70(X)F{(0) = F(0)jo( X)F(0) ® ${[2, 00))
= X F(0).

Wol. 3k, 0" 4-1995,
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Since the measure @ defined by pl-) = {&, P19} is oot degenerate ar 0 it

is clear that Lim p*" ([0,]) = O for every ¢ > 0. Hence by Proposition 4.10
N—x

the process {7,{X )} is adapted to the filtration F for every X € A,
Fixing 0 < & < ¢ and using (5.4), (5.5) and (4.26) we obtain

F(a)je(X)F(s)
= {3 Fopi()®{[k + 2,00))}
k=0
x{ 3 G OOMY Fen()®((k+ 2,000}
[ et k=
= 2. Fun (5.6)
Emencon

where

sz (m+1]
- f o B P

X (G (O Farsls - BF 7 FEJR(n + 2.00)) (5.7)

and for w2 < n

= e ]
Zr.ra.__n _[1—"'+*~m"_7-'J=-'\.'f-1+---+*m+1 Pl(dtj_} ITn(dtm}

tit ot

X Fug1(8 = 5L F + F ) Prnas(dbn) Eona (6 = 1 F - F T0)
X tldtmsa) - pldta} b Ty g (X)S)E{bm + 2,50)). (5.8)

From the Markov property of 7, it follows that {5.7) can be expressed as

= -[re41)
Znn = 'IE-I i Pyldty): - R;{d’t:ahs_m

= [TI—S[X}:I'EZLTI[S -4+ t"j(bﬁ'n- + 20'0]':' (‘SH:I

In (5.8} make the change of variables:

fl=hi+--Fimp -8 =gy dnom =1
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and wse (5.3) in the form

EiT::,_}..—__-r;mﬂPmH[me )} = Jim:f—_,_,_u{*gf‘(d-‘h}j-

Then we obtain

Py =[ Fildt)) - Fopldt)
ty 4+t a

A1
ol ([ seldsuds)-

% sdsn_n T, .mf_xm)
. -Ern.+l{5 T 31 i L t::-a,-,:"‘I)l:[m + 21 'x-]} [5“}]

Plugging the expressions (3.9 and (5.10) in (5.6), first summing over the
variable n. — +n from 0 to oo and then over the variable m from 0 to 2o
we obtain

Fla)n(X)F(s) = Ju(Ti- ol X)) F(8)

where {T,} is the Feller perturbation of {T;} based on the exit cocycle Sp
and the vector state ¢. W

Remark 54. — Theoremn 5.3 can be easily adapted to the case of
Feller perturbations based on S and a state determined by a density
matrix of the form p = ¥, Paldh){d| where {.} 18 an orthonormal
sequence in the range of F{0) and {p.} is a probability sequence,
ie, pn = 0 for sach »n and 3 p, = 1. We do this as follows. Put

= Hy @ Hop A = {Le XX € ALTIL® X) = I, @ T(X)
for all #0. X & A where fy is the identity operator in Hp. Let
H = Ho® W, t"{t) = L @ Flt)hjillo ® X) = Lo @ #(X). P! =
Iy® F 8. = I3 & Sp. Then (H',F'.51) i3 a weak Markov flow on
A" with exit time I and expectation semigroup {I}}. 5}.. is an exit cocycle
fcrr [T{}. Now consider the vector state on A’ determined by the unit vector

=i, VP, Pn @ g in Hp. We may view ¢ as an element in the range
Df F'{0) und construct the infinitely gloed flow {"H." F'.31) according to
Theorem 3.3. This glued flow is a weak Markov flow on A’ with expectation
semigroup {71} where T7(ly @ X} = Fy ® Ty{(X),{T,} being the Feller
perturbation of {T}} based on {Sp,p).

It is interesting to note that for any initial state w on A and projection
) € A the probabihity that according to the glued flow {'.H’ F, 31y exacily

Vol 3L, o™ 41595,
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T eXits pecur uplo time 5, 7 exits ocour upto time ¢ and the event ¢ occurs
at time ¢ is egual to

f (T o ptany (@)
Bt ot rae Tt | dgy 0

11wl ansl

X {w e Sp)ids)uldss). . ulds,)

where 0 <€ 8 < F < oo and g = trpdp.

Example 3.5, — Using isometric cocycles arising naturally from the theory
of quantum stochastic differential equations (.5.d.¢.) in the Fock spaces one
can construct many examples of nonconservative flows with an exit time.
Indeed, let H = Hy ® [(L*(R.) @ £} as in [Mo]. Consider an isometric
cocycle &7 = {U7(4,4).0 < 5 £ ¢ < oo} vbeying the g.s.de

Uls,a) =1,  dU(s.#) =U(s, )Y LidAl(t))

i.J

where {L1} is a family of operators in Hy. (See [Mo]). By the cocycle
property £7(0, s {5, ¢} = 7(0,#) forall 0 < & < t < 0. Define

P(X) = U(0,0XT{0,8)", X € B(Hy)

where we denote an operator and its ampliation by the same symbol. Then
i) = V{0, 5)07(0,4)" is a projection. Forany 0 € s € ¢ < 0,4 € H
we have

(o, e (D) = [JEF(0,8)* 4]
= ([T (s, )T (0, s} 202
< ||LF{0, s} |l
= {3, Fo{)u).

This shows that {4(7)} is a family of projections decreasing in ¢. Using
the strong continuity of #7{X )} in ¢ we conclude the existence of a spectral
measure P on {0,2c] such that P{[0,¢]) = 1 — j2(I) for all { whete
I and I denote the identity operators in M and Hy respectively. Let
{T;} be the semigroup of completely positive linear maps on B{Hp)
satisfying T:(X) = Eqj/(X) for all ¢ > 0,X € A where Ey is the
Fock vacuum conditional expectation. Let 5 be the positive operator-valued
Radon measure determined by S{[0,£]) = F — T;(I)} for all t > 0. Denating
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by E; the usual conditional expectation with respect to the Fock vacuum
vector ®p, in ['(L%([s,0¢) @ k) we have

ELP((o,t 4 o) = Eg(P(O.t 4 o) - P([0.1])
= Eq5; {I j?ﬂ'[ﬂ]

P2 - T(D)

7e(5([0,40))- (5.11})

Let F(t) denote the projection on to the subspace Hy & T{L2[0,¢] @
k) & @, € H. Define

(X —jt(X}F{L

Then (M, F,j) is a subordinate weak Markov flow on B{H;) with
expectation semigroup {7,]. Furthermore

MX)P(0,4) = F(X)F (O - 5)(D))
= F(OF(XN1 - 5(D)
=0

and (5.11) implies

3o(S{[0.8]}) = FS([0,¢])) F (=)
= {Eaq P((s,5 + t])} F(s)
= E5P((s,s + 1]).

In other words F is an exit time for (H, F, 7,).

Mnre generally, comgider 4 family of non-conservative Evans-Hudson
flows j7, ,s < t, on a unital von Neummn algebra Ay C B({H,), taking
values in Ak = Ay & B(I'(La([s, 00). k]}) with structure maps {6%} so that

dejpe(X) = L (F(X))N (), J0.(X) =X
for 5 < ¢. Exiend the domain of definition of jglw from .Ag to A, by putting
RX®2)=3,X)Z

for X € Ay and Z € B(1'(L,([s.0), %)}, where Z is the ampliation of Z
to an element of Ay = Ag & B(I'(L4([0, 5), k}}) @ B(T{ La([s, o), k).
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Then
JNX)=4pX), Xed

Ja(ﬂ?h(h,r[f‘f}), Xedy Uss5i
This shows, in particular, that

Ay =gy, o0<s<t,

Since j7, is a contractive * homomorphism it follows that {(7)} is a
family of projections which is decreasing and strongly continuous in . Thus
there exists a spectral measure F on [0, co] such that P{[0,4]) = L~ #(I), 1
being the identity operator in M. As before define j,(X) = jP{X)F(t).
Then (H, 7, j;) yields a weak Markov flow with exit time .

Example 5.6. — The simplest example of a nonconservative flow is
constructed from a given conservative How (M, F, j;) on 4 with expectation
serigroup {T:} as follows. Consider a classical Poisson process with
intensity Ay whose probability measure 4 in the path space yields the Hilbert
space Hy = L*(p).

Let I%([0.f]) be the projection in H, which is multiplication by the
indicator function of the event that the Poisson path undergoes a jump in
the interval [0,¢]. Let H = H % 'H; and let P be the spectral measure in
[0, 0] determined by

P([0.4]) = 1@ P{[0,t]) forallt >0

Define B
RX)=4X)e P((t.x]), t20, X €A
Note that P({oc}) = 0. If Fy{f} is the projection on to the subspace of

functions of the Poisson path upto time ¢ and F(£) = F(£)& Iy (1) it follows
from the fact that the Poisson process has independent increments, that

Fﬂfj.}c':x]ﬁ(s} = js{ﬂ_g{X]}f._’“:'(*‘”}

for all 0 < 5 < ¢ < 0o, In other words we have a weak Markov flow
{H, F, §,) with expectation semigroup {e~**T,}. It is easily verified that
P iz an exit ome for thiz flow.

Example 57, — If A is a unital von Neumann algebra of operators in
and {I;} is a uniformly continuous contraction semigroup of completely
positive linear maps on A then by the method outlined in [P1] it can be
shown that the infinitesimal generator £ of {7, has the form

LX) = Lo(X) — —(XB+HX] Xed
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where £, is the generator of a comservative and uniformly continucus
contraction semigroup of completely positive linear maps on .4 and B is
a positive element of 4.

As a special case when A = B{HN,) it follows that £ has the form

; ; 1
LX) =i[Ho, X] = 5 3 (L;L;X + XLjL; — 2L X L)
-

" %(BX +XB) (5.12)

where Hy, L; and B are bounded operators in Mg, Hy is selfadjoint, B
15 positive and EJ. £3L; is strongly converent. We shall now comstruct a
concrete Markov flow whose expectation semigroup has generator £, To this
end consider 8{H, &5 H,) and represent any element in it in the form of a

= (iu im) where X;; € B{H,) for each 7, 7. Define the operators
n KXo

L& b

; L. :
(i 3) (5 D) e

Consider the standard Evans-Hudson flow 3, induced by a unitary cocycle
in the Hilbert space

H = (Ho P Ho) & T{L*(R,) & £)

satisfying Eg]}t_gf} = Ea{ﬁ_s{‘f_)} for all X € BHy @ Hp), 0 £ 5 <
t < oo where T, has generator £ given by

E(%) = ilH, X - ,21, S(LOY LK 4 RLG L) - 2060 XL

2

and E; is Fock vacuum conditional expectation. When X = (‘ﬁ g) an

easy computation shows that

aﬁ:ff]m

%ol 31, n® 41995
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where £(X) iz given by (5.12). Let ¥(t) = Ly & |Pp} {Pp| where 14 is
the identity operator in [y @ Mo} ® T{L2[0, ] @ £2) and @[, is the vacuum
vector in T{L2[t, 00) & £2). Put

wn=i((5 §))re. xea

Then we get a weik Markoy flow I:ﬁ’., F, ;) with expectation semigroup
[Ty}, It is not clear whether the projection

SEE)

is increasing in . If it were so, it would determine an exit time for the
flow (M, F,j).
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