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If gt F, — L (K) is a representation of a finitely generated free group F,, and
pla)™ = I for each hasic element (i.e., element which occurs in some basis) a, then
we show that if p(F.) is triangularisable, it is finite. This can be thought of as a
generalisation of the Burnside problem for these linear groups. © 1993 Academic Pres

1. INTRODUCTION

A classical lemma of Burnside shows that finitely generated, torsion
groups that are linear over afield of characteristic 0 are actually finite. One
might ask whether finiteness of a matrix group can be enforced by assum-
ing only that a certain subset consists of elements of finite order. Clearly, it
is not enough to assume that a set of generators have finite orders as there
do exist infinite, linear groups like 5L{2, ) which are generated by finitely
many torsion elements. It is easily seen that there exist even triangularis-
able groups with the above property. If p: F, — GL (K)is a representation
of a finitely generated free group F,, and p(a)" = I for each basic element
(i.e, element which occurs in some basis) a, then a natural guestion is
whether p(F.) is necessarily finite. Now, by Tits's well-known dichotomy,
p(F,) must either contain a nonabelian free group or be virtually solvable,
and therefore, virtually triangularisable. But, a conjecture of Formanek as-
serts [F] that under a representation of Aut{F.) with » = 3, the image of
Inn(F,) = F, isvirtually solvable and hence virtually triangularisable. U n-
der our additional hypothesis that basic elements have finite order, it is
therefore even more likely (although we have not been able to prove it yet)
that a(F,) is virtually triangularisable. We prove the following finiteness
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result:

THeorEM. Let F, be a free group of rank r = 2, and let p: F, — GL,(K)
be a representation over an arbitrary field K. Assume that jor some m which
is not a multiple of the characteristic of K, and for each basic element a of
F,, pla) has order m.

Then p(F.) is tdangulasable if, and only iff it s abelian and finite of order
dividing m".

Since the automorphism group Aut(F,) acts transitively on the basic el-
ements of F,, we have:

CorovLrary 1. Let pr AUt(F) — GL,(K) be a representation. Assume
that for some basic element a of F,, the matrix p(Inn{a)) has finite order m
coprime to char(K). Then p{Inn(F.)) is triangularisable if, and only if, it is
abelian and finite.

CoroLLary 2. With notation as in the theorem, if m = n then p(F)) is
finite if, and only if, it is friangudarisable.

Remarks. i) A theorem of Formanek and Procesi [FP] shows that the
automorphism group of a free group of rank at least 3 does not have a
faithful linear representation. T heir proof actually shows that under any
representation of the automorphism group of a free group F, of rank r = 3,
the image of any free factor of F, of rank = » — 1 is virtually solvable and,
therefore, virtually triangularisable. Formanek conjectures [F] that under
a representation of Aut{F,) with r = 3, the image of F, itself is virtually
solvable.

Thus, our theorem has some implication about certain representations of
AUt(F,).

(ii) Bass and Lubotzky [BL] recently investigated some questions on
the groups Aut{F) and Out{F). In particular, they made comments on the
guestion as to whether any virtually solvable subgroup of Out(F) is virtually
abelian.

Proof of Corollary 2. From P121 of [W], a finite subgroup of GL,(K)
with exponent m = n is triangularisable.

The basic ingredient of the proof of the theorem is a description of basic
elements given by a result of Osborne and Zieschang:

THeorEM [OZ].  In the free group F3 = Fix1,x3) of rank 2, all basic
elements, uplo confugacy, are parameirized by pais m, n of coprime integers
and are given by words wim, n) defined as follows.

Letmon =0and (m, n)=1
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Define f, JkY=1ifl=k =m, [, (KV=2ifm <k = m+n, and

Jon, k) = [, oK) if k = k' mod(m + n). Then
m+n—1
wim, n) = ]_[{) Xp  (l4im)
=

For m = O, form the word w'(—m, n) in xl'l and x3 and define wim, n) =
w'(—mt, n). Similardy, forn < 0, w(m, n) is defined to be the word w'(m, —n)
in xy and x3%. If mg — np = L. then {w{m, n), w(p, q)) = (x, x3).

| f the image is abelian, it is obviously triangularisable and we will prove
the converse. Assuming that & := p(F,) is triangularisable, we will show

that the images in G of two arbitrary basic elementsof F, have to commute.
Let {a, b} be any two basic elements of F,. We write 4 = p(a) and B =

p(b). Then
(v 0

k : 0 . % )
0 oz 0 by

Lemma 1. For § = |, the basic word w = w(r,5) in a, b given by the
theorem of Oshorne and Zieschang is such that its image W = p(w) satisfies
Wy =1y,

Proof of Lemma 1 If either a; = a; or b; = b, there is nothing to
prove. We may assume that a; # a; and b; # b;. Let r,s be coprime in-
tegers. We notice that the diagonal entries of p(w) are {ajhi : 1 =i < n},
since r, s are respectively the total powers of &« and b occurring in w. 5o
we need to show that 3(r, s) = 1 such that a;b; = a}b]. Now, a;, b; are mth
roots of unity in K. Let us write a; = &% and b, = &%, where ¢ is a gen-
erator of the cyclic group {x € K : x™ = 1}. S0 a{bj = a}bj in coprime
integers r, s if, and only if,

5 Fy n )
( f JiJ_) (q) = ( D) for some integer D.

Let us look at the matrix
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If det(2) = D, we have

s;i—sy_ (D
ﬂ(!f_"j) B (D)
Note that 1, # 1, and s, # s,. Note further that if d = (s; —s,, ¢, — ;), then

£

d divides D anri therefore, we can divide by d to get coprime r, s such that
¥ Dyd ‘

Q(.) =, Hence the lemma is proved.

Lemma 2. Let g e GLL(K) be an upper iriangular mairix of finite onder.
If gii = g; for some i < j, then g;; is a linear combination of the products of
Lo with I — k = | — i with coefficients depending only on g;.

Pwof. If g* = I, then a simple computation shows
0=(g"); = keii g+

where § is a linear combination of the products of g, with I — &k < j—
with coefficients depending only on g,.

CoroLrary 3. For § = 1, let w be basic word (as in Lemma 1) with
Wiy = Wiy i1 Then Wi iy1= 0.

LemMa 3. Let s = 0 and assume that (AB); = (BA); for all j —i = 5.
Then, for a word w in A, B and an element i € w|(, G, we have wy =1y
forall j—i =s.

Proof.  We prove this by induction on j —i. The start of induction at
j—i=0Is trivial. Assume that { = j and that the assertion is true for
k. lwith ! —k <= j—i. First, it is proved easily by induction on u + v that
(A“B"); = (B"A"),; for all w,v = 0. As A, B have order m, this assertion
is true fnr all integers w,v. Mow, let w be any word in A, B say, w =
AR ... A%=B%. Once again, a routine proof by induction on ¥ |#] + |3
shows that w; = (A"B"},-H,- = (B"A");;, where u, v are, respectively, the
powers of 4, B occurring in w. This proves the lemma.

Prorosimion 1. Let w be a basic element of {a,b). Then there exist
21,89 € (A, B) such that:

(i} W :=plw)=gBAg,. and
(i) W is conjugate to g1 ABg: by an element of (A, B).

We first complete the proof of the theorem using the above proposition
and the lemmata.
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PROOF OF THE THEOREM

We shall prove by induction on j — i that (AB),; = (BA),;. T his is true for
j—i=0.Leti=1 ByLemma 1, we find a basic element w in {a, b) such
that W = p(w) satisfies wy = w4 ;1. By Corollary 3, w; ;,; = 0. Now,
the proposition gives elements g, g2 (A, B) such that W = g; ABg, and
W is conjugate to W := g;BAg,. Hence W™ = [. By applying Lemma 2,
we get @, ,.; =0. Thus,

w; i1 = (81 4Bg)i i1
= (&1)il&2)i, ir1(AB)y + (21)i iv1(82)iv1, i1 (AB)igy i1
+ (81 )i(82) i1, 141 (ABY; i1
=1y 1 = (8BA); i
= (21 )i(82); 11 (BA); + (21 )i 1182 i1, ii1(BA)i i

+ {Hl }ff{jﬁ }|'+1. i+l {BA }I'. i+1

evidently gives ( AB), ,, ; = (BA), ;.. Assumethat i < jand that (4B),, =
(BA), for all I — k = j—i. Once again, we can choose a basic element
w in (a,b) with w; = w; and elements g;. g, € (4, B) 50 that W =
plw) = g1 ABg, is conjugate to W := g BAg,. Hence W™ = [. By ap-
plying Lemma 2, we get 1, is a linear combination of the products of i,
with coefficients depending only on iy = w,. Hence, w; = iy;. Now, by
the induction hypothesis, we have (AR}, = (BA), forall 1 —k = j — i
This implies, by Lemma 3, that for all h € (4, B) and k € h[G, G], one
has hy; = hy,; for all I — k < j — i. Expanding wy; and iy, all terms match
except possibly the term corresponding to ( AB),; and (BA);. Thus, these
terms have to match too. Therefore, (g, ):(AB);(g2); = (g1)u(BA);(g2);-
This proves ( AB);; = (BA); and the theorem is proved.

PROOF OF THE PROPOSITION

We look more closely at the description of basic elements given by the
thearem of Osborne and Zieschang.

It is easily seen that for coprime s = 0, the corresponding basic word
is w = abfab® .. . ahd with

gr=[s=1/r, gi=[lis=D/r]-[({i-Ds=1)r] fori=>1
Without loss of generality, we may assume that r < s (for thecaser =5 =1,

the proposition is trivial). Let uswrite s = Ir+ &k with 1 = k < r. Then a
simple analysis shows that

w = ab™ ab Yrab™ Y ab"y" - . - ab™ Y ab"
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where

g, if r(i —1) = —1(k)
gi—2 ifri= —1(k)

and where g; = [(ir+ 1)/k] —[((i — 1)+ 1)/k]. Thus, f; = [#/k] -1, f, =
[#/k], and each J; is either [r/k] or [r/k] - L

If k = 1, then w = ab™(ab'y-1. Writing g, = I and g, = B/(AB'y",
we have W = p(w) = g, ABg,. Then g,BAg, = B(AB'Y = (AB')y" W (AB"),
which proves the proposition in the case s = 1modr.

50 we may assume that & = L We write r =uk +vwithl=v =k -1
T hen the above expression for the f;'s can be further rewritten as

Iu—l if wi = —1(k)
i if v(i —1)y= -1(k)
fi= w—1 if wi,v(i—1)% -1
L [(iv+1)/k] =[(
i if wi, v(i—1) % -1
| [(iv+1)/k] =[(

When v =1,
W = {AB“-I{AB‘I}“_I }K_IABI-'-I{A.B‘I}“ = EIBAEJ

where g, = {AB* Y AB'Y 11 4R and g, = B'( AB')"~L. Therefore, we
have

W = g1ABg; = {AB(AB'Y 1} 2 AB (AB' Y AB'YL(AB")“ L,

Noticing that W = ghg~! with g = { AB*1(AB")"~1}~1, the proposition
follows inthe case v =1
When v=k — 1, one has

W = AB"Y ABY T AB" Y ABY}* ! = g BAg;

where g, = AB"Y{ AB')" and g, = B/(AB)“1{AB*1(AB)"}*-2, As
g1ABg; = gWet with g = AB"{ AB")", the case v=k — 1 also follows.

50 we may assume that 1 <= v = k — 1. As usual, to prove the general
case, we require more information on the /s which is contained in the
following lemma. We let 1 = v~! < k — 1 denote the inverse of v modulo
k. Then:

gi—1  ifri,fi—1) 2 —1(k)
Jf-:. —

k),

i = L+ 1)/k] ()
k),

i~ 1o+ 1)/k] + 1.

— — — —

LemMma 4. f_a=u—-1 fi 1 =u, and

fi= i ifk =i= vl
S T iflc<i<vl
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I n other words, defining for each integer n, , to be f; where n =i mod
kand1l=i=k, the lemma asserts [; = f,_,.: for all i & 1, k. Write

-1 1

ﬁ. i—u if i = v
= o] if ;e el
kE+i—v if i < v,

The hypothesis of the lemma means that i £ k — v~ L &k +1—vL. Now,
v=iv—1%— land{;—l}u_{;—l}u—I;.é —1modulo k since i #£ 1, k.
Therefore, f; = u—1 or u accordingy as | [(fv+1)/k] = [((i = D + 1)/k]
or [(fv+ 1)/k]=[((i = Do+ 1)/k] +1.

Proof of Lemma 4 The assertions f,_,.=wu—1and f;.; ,. =u are
clear from the description in the expression (). Let i = k.
There are four cases:

Casel. iv=—1modkie, fi=u—1Now, (iv=iv—1=—2modulo
k.So [(fv+ 1)/k] =[(iv +2)/k — 1/k] = (fv+ 2)/k — 1, and [(({ — Dyv+
/k] = [(fv+ 2)/k — (v + 1)/k] = (iv + 2)/k — 1 since v < k — L. Thus,
we have, by (%), that f=u—-1= .

Case ll. (i—1jv=-1modk, ie, fi=wTheniv=iv—-1=v-2
modulo k. 5mce[{{;—1}u+1}ﬂc|—[({a—l}u+2}ﬁc k)= (i— 1w+
2/k =1, and [(fv + 1) /k] = [((F = Do+ 2)/k + (v = 1)/k] = (i = Lo+ 2/k,
weget fi = u.

Case IIl. v, (i —1)v # —1 mod k but f, = u— 1. Now, by (%), [(iv+
L/k]l = [((i — Iyw+ 1)/k] = d, say. Then (iv +1)/k = d + ¢ for some
D=8 <1 Fromd = [((i — L)v+ 1)/k] = [d + # — v/k], one concludes
that @ = v/k. T hen

. _[d+6-1/k s
[|[m+1}.-’f£|—ld+g_1l,xk+u if!'EU_l

=Id f i

since @ = v/k = 1/k.
Similarly,

r _|d+6—(v+ 1)k if i > v

Hfe T L] = Id+ﬁl—|[u+1}ﬂc+u if i < vl

As kd = vand is an integer, we have ké = v+ 1, which immediately gives
[(fv+ D/k] =[((i— v+ 1)/k] ie, f=u—1=f.
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Case IV. v, (i — 1w # —1 mod k but f; = w. By (%), [(iv+ 1)/k] =
[((i—1)v+1)/k]+ 1= d, say. Writing (iv+ 1)/k =d+ 6 with0 < 8 < 1,
the fact that d — 1 = [((i — Lyv + 1)/&] = [d + 8 —v/k] gives 8 = v/k.

Now,

: B d+ﬁ|_|:u+1}llnrk if!l.,"-'r" U_l
[I:I:i—].}l?-l-].}.l'rlﬁ'-l—Id+6|_|:u+]_}l,-fk+u |fIE vl
_[d-1 if i = vt
_Id—1+u if i <o

since @ = v/k = (v+ 1)/k.
0O n the other hand,

. d+6—1/k ifi>v
[tw+1}f*’£|=|d+a—1ﬂc+v ifi=v
_|d ifi=uv

d+v iff'fl?l

since k¢, being a non-zero positive integer, is at least 1. H ence, again we
have [(iv+ 1)/k] =[((i — v+ 1)/k]+ 1, ie, fi=u=f.

This completes the proof of the lemma in all cases.

The proof of the proposition is now completed in the following way.

W = ABTYHABY AB" Y AB"Y: ... ABTY ABY: = g BAg,

where
g = AB"(AB'Y" ... AB"Y( AB)Y - 4B
and
g1 = B{AB" Y i AR ABYs iz ... ABYY ABYS.
H ence

W= g ABgy = AR AB Y2 AB Y ABY" ... AR AR )™

where h,=f for i#k—vik—vi+1 h_,.=f_,++1=u and
By 11 = fo_p 1=u—1 Hence, W= gWg‘l with g= AB‘”{AB’}“‘

--,iiB"fl{AB"}“x----'- This completes the proof of the proposition.
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2. CONCLUDING REMARKS

When one of the basic elements, say a, maps to a diagonal matrix, then
the proof of the fact that 4 = p(a) commutes with B = p(k), for every
basic element b is somewhat easier and we present it below.

Suppose, if possible, that AB # BA. Let (AB), ; # (BA), ; with j —i
least possible. Now, (AB); ; # (BA); ; meansthat a;b; ; 5 a;b; ;. 50, b; ; +#
0.Leti =k, <--- < j beanychain of positive integers. By the mir'nimaiityr
of j — i with the property that (AB), ; # {BA},-_J-, it follows that if none
of by by 4,..... B ;iszero, then a; = a, = --- = a;, a contradiction.
Hence, the product b; ; ---b; ;=0 fnr any chain i < .fcl - = j. Hence,
we have, by Lemma 2, that b # b;. From the proof of Lemma 1, there are
r, 5 coprime integers such that the corresponding basic element w = wir, 5)
has the property that W, , = W, ;. Here, as before, W stands for p(w).
In fact, recall from the proof nf Ler‘nma 1 that the r, s respectively divide
5, —s; and ¢, — ;. Since we have a; # a; and b, # b, we have that {" £ 1
and & # 1 (we may assume that 0 = 1, = m). We have the following
proposition.

Prorosimion 2.

W

i

=W .
=W, ;

— Frtp pls—1 g pris— 1}+1'§ h
=L g 7—1
In particular, Wi; # 0.

Proof. Now, w = w(r, 5) = abPiab® ... abP for some non-negative in-
tegers 8, such that 3/_; 8, = s. An elementary calculation shows that for
positive integers s, I, we have

(b — B)(aibl’ — ajby)

i
”3[ o hj}{nl'h{ aj HI} T
Using this, and simplifying, we get

‘;-.ITJ g{.-.—l]r,,b.,
w;.j - ﬁhf.jﬁ' {‘}

((AB'Y),; =

where
= ‘;‘J‘.\+.'| _gj'{ﬁz+---+ﬁ,]+.-. - g:w{ﬁ1+---+ﬁ_.]+2.-. _ gr{_ﬁz+---+ﬁ,]+2.~

s g.l'ﬁ..hl'x risz gr.-.
= ‘;-.Ihl:‘r'u Bk 1}{14_ ‘l;;-.'u—.l]ﬂ-_ et g{"_'lﬁ'-]"'"""{"_":lgr-'.]}_
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Mow, from the theorem of Oshorne and Zieschang, it is not difficult to
show

Bi=g;+1, where s—1=gqr+, with0 =<1, <r,

Bui =1 where s+, =g qr+fforl=i<r
Feeding this into the expression for #, we get
i U V(6 e e e S
= -+ B+ ).

Mow, the expressions for [, show that [, = is — 1 mod r. Hence, Iy, .... 1,
are distinct and are different from » — 1 since r, s are coprime. Thus, they
are just the integers from 0 to » — 2. T herefore,

_ -y E - DET 1)
i—1
Putting this in (), we get the expression in the proposition.

The proof is completed by the following observation. For any k < [ it
is evident that W, , is a sum of terms of the form ¢;b, , ---b, ;. where
lisachaink = k; = .-- = k, = . Therefore, the hypothesis irﬁplies that
W,,=0forall k <! with!—k < j—i So, bylLemma 2, W, ; =0. This
contradicts the above proposition.

g = ‘l;;'.l{.'u—l]+1|::§‘n il 1}{1_’_ '.;;+ - ‘l;;'.l'—l}
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