Shape from symmetry: detecting and
exploiting symmetry in affine images

By DirTi Prasap MUKHERIEE, ANDREW ZISSERMAN AND
MICHAFE IRADY

Habotica Researeh Group, Department of Engincering Seience, Undversity of
Ozford, Oxford QX1 3PJ, UK

Contents
PAGE
1. Introduction TH
2, Maihemalical [ramework 51
(] Tmage trapsformation &1l
(b} Back-projection 82
3. Detecting symmel ries ]
{ a} Generating and malching alline invariants 15
(b} Determining the affine transformation 55
{e) Verifying subsct membership 56
(¢} Afline semi-local invariants eli]
(&) Tmplementation and results BE
{f1 Global symmel ries i)
4. Applications a1
{#) Back-projection 91
{b) Slant and tilt determination b
{c¢] Planarily lests 09
5. Discussion 100
Appendix A, Proof of theorem 2.1 Ll
Appendiz B, Symmetry under projective transformations 103
Hefercnees 105

We investigate the constraints placed on the image projection of a planar object
having local reflectional symmeiry. Under the affine approxdmation to projection.
we demonstrate an officient [low-complexity) algorithun lor detecting and verify-
ing sywmelries despite the distorting effects of image skewing, The symmetries
are utilized for three distinet tasks: frst, determining image back-projection ap
iy m similarity transformation ambignity; second, delermining the object plane
orientation {slant and 1ilu); and third, as a test for non-coplanarity amonyst &
collectiom of objeets, These results are Must rated thronghout with examples from
inages of real scenes.
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1. Introduction

The representalion and recognition of shapes by computer has numerons appli-
calions: as a step towards antomating processes sucll as inspection; acquisition of
obijects [rom a convevor belt or enntainer; reconnaissance: and, navigation by an
autonomons system. Also, such work can potentially contribute to understand-
ing one of the moat exquisite and effortless of human eompetences: the rapid
recognition of familiar shapes oven when they are partislly occluded by others,
when their surface colour or texturce is unfamiliar, and when they are viewed
from a wide range of vanlage points. From a very early age, we can learn new
classcs of shapes, learn to diseriminate subelasses, and then mobilize those new
representalions Lo ellect recognition.

Understanding how to represent and recognize shapes has, howeser, proved
to he a remarkably difficult task, both for computer visiom and for perceptual
pryechology. 5o much so, thal the current siale of the art is thal only limited
classes of shapes can be recognized reliably from a limdted range of poses. To
date, perceptual paychology has heen of limited nsefulness, for though theories
of shape abound (Beiderman 1987; Corballis 1988), they are too vaguely formu-
lated to be implemented in a computer recognition systen. On the other hand,
sl compuler vision approaches to shape have either emphasized gross shape
characteristics (for cxample, low-order moments or the first fow cocfficients of the
Fourier or other tranaform of the eontonr linction of the shape), or have velied on
highly Tocalined features, such as an estimate of points of high eurvature along the
bounding contour. (ross shape representations have insufficient discriminatory
power and are sensitive o occlusion, while very local representations are subjoct
to messurement noise that is unavoidable in practice.

The most advanced representation and recognition technigques developed (o
dale in compuier vision have explored representations intermediate between these
extremes. and have exploited one or more of: relational constraints between parts
of a shape, prior models, symmetry properties of the shape. or alline/projective
invariance. The relational conglraints approach relics upon precisely known al-
gchraic relationships between different parts of a shape and has only heen ex-
plored for the case of polyhedrs, albeil classes of polybedra defined parametrically
(Grimson 1990; Reid 1991). Model-based recognition, even for non-polyhedral
shapes, has enjoyed some suceess, but leaves aside the question of how recogni-
tion is effected when models are not available {Grimson 1990; Lowe 1983; Reid
1991}, The present paper is a contribution to the symmeiry and affine/projective
invariance approaches o shape representation.

Many imporlant classes of shapes, from faces and leaves through to manufac-
Lured items such as many stamped metal parts and profiles of aeroplanes and
buildings exhibit one or more symmetries. The cssential idea ol a symmelry is
a motion {Ficld & Golnbitsky 1992): ‘suppose you have an object and pick it
up. move it around and sel i1 dewn. TF it 3s impossible to distingnish between
the object in ils original and final positions, we say that it has a symmefry’.
Within the plane, syinnetry comprises reflections, rotations and franslalions, in
which latter case symmetry corresponds to pattern repetilion. The line of thinl-
ing encapsulated by the quotation leads inexorably to modelling symmetry using
the operations of group theory {Weyl 1952), o point to which we reiurn when
discussing affine/ projective invarlant representations of shape. However, reguir-
ing the transformed object to be ‘impossible Lo distinguisl® from the original is
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far too restrictive both for computer vision and for human perceplion. Teal ob-
jects auch ag laces, pears, wrenches and the oullines of fish (Strachan 1993) arc
only approcimalely symomettic and, more significantly, the shape only cxhibits
syvinmetrics locally between scgments of a shapoe or pattern.

Owver the paat thirty vears, researchers in computer vision have exploved a nom-
her of aspects of aymmetry o generate symbolic representalions of shape, cul-
mitating in the systems reported by Blum & Nagel (1978) and Connell & Brady
(1987} and, more reeently, by Rom & Medioni (19%3). The first cxploration of
local support for symmetry was by Blum (1973) in his study of representations
nf hiological shapes to effecl recognition, determine abnormalities and monitor
growth., The idea of local symunetry was pat on o more solid mathematical foot-
ing by Giblin & Brassctt (1985), who defined the symmetry set of a shape as
the locus of the centres of all circles bitangent to a shape’s hounding contour,
A number of algorithms have been developed lor compuling the loci of local
symnetries of shapes, particularly reflectional (Brady & Assada 1984; Scott ef
of. 19589} and rotational [Fleck 1985) symmetrics, and they have been demon-
sltraled to work reliably on a range of shapes, generating representations uselul
for recognition,

Howrever, all such algorithus and representations share o severe limitation:
svinmetry is not proserved under skew, corrcsponding to the shape being vicwed
other than in a fronto-parallel plane, Simply stated, symmetry axes compuated in
an image of a shape taken from a non-fronte-parallel vantage point are not in gen-
eral the transformed fronto-parallel symmelry axes. Despite this mathematical
inconvenicnce, ‘skewed symmetrics’ (that is, reflectional symmetries viewed from
a non-fronto-parallel vantage point) such as those shown in figure 1 strongly sug-
gesl achual symmeiries and constrain the plane in which thev are perceived to lie.
The mathemalical Gact that the skew symmetry may be an accident of projection
is evidently discounted. Tndeed, Wagemans (1993) has vecently provided evidence
that skewerd symmetry is a non-accidental property of o shape that the human
visual system exploits. Kanade {1981) was the first to analyse mathematically
symmmetries skewed by image projection, and proposed hewrisiics o interprel a
skew symmetry as o real gymmetry viewed [rom some (unknown) direction, which
he represented using gradient space. Van Gool ef ol {1992} proposed arc length
space (ALS) to extract affine symmetry information using semi-differential invari-
GRS

Notwithstanding the cogency of skewed symmetric shapes, and the inlorma-
tiom they seem to present about the pose (rotation and translation relative to
lhe camera) of the shape, the fact remains that symmetry is not invariant un-
der projection. This has recently persnaded a number of authors to abandon
temporarily such representations lo explove projective and affine invariants of
two-dimensional shapes (Mundy & Zisserman 1992: Rolhwell ef al. 1992q). Like
symmetTy, invariance 1= also normally formalized using the mathematios of gronp
thenry, particularly Lic group theory, Systems have been developed thal exploii
a variety of invariants to recognize overlapped shapes viewed from a variely ol
poses, This substantial progress has been bought at The cost of regressing shape
representationsg, now in a ‘cancnical frame’, to descriptions invarian of pose.

T egmence, the present paper is a stop towards reconciling syimmetry and invari-
ance. For the present, we concentrate on local reflectional symmetries of smoothly
curved planar objects, though the methods are equally applicable to polygonal ob-
jects, and in other work we have exiended Lhe ideas to certain three-dimensional
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Figure 1. Examples of skewed symmetey. The objects differ in the number and disposition of the
symmeiry axes: {2) each ohject has a single bilateral symmetry; (5] the object has two orthogonal
bilateral symmetries; and (¢} the object has three bilateral symmetries, but the symmetry axes
are not orthogonal. In each case the symmetry is global, and on the object linea between points
redated by the reflectional symmetry are erthogonal to the axis of reflection. However, in the
image these lines and the axis are not orthogonal, in general, but shewed.

shapes (Fawcett ef al 1993). Suppose then that a planar object has a bilat-
eral symmetry; how does this constrain its image projection? If the two ‘sides’
of the contour have a mirror symmetry, then one can be transformed onto the
other by a reflection. A reflection iz a particular type of affine transformation.
We assume that the projection between the object and image planes can also be
approximated by an affine transformation. It is easy to show, for example using a
Taylor-series expansion of the projection equations of a pinhole camera, that this
is a very good approximation provided the field of view is amall, and the range
of depths encompassing the object i3 at least an order of magnitude less than
the distance of the object from the camera. This is satisfied in many practical
cases. Extensions to (an exact) projective transformation for planar objects, and
to symmetries of three-dimensional objects arc discussed in § 5.

Conseruently, since affine transformations form a group, the transformation
between the two sides of the contour in the émege is affine. This immediately
provides an algorithm, albeit one that is computationally expensive, for detect-
ing possible symimetries: if two image contours can be mapped onto each other by
an affine transformation (six degrees of freedom), then the object could have had
a reflectional symmetry. A key result of the present paper is given in §2, where
it is shown that the image transformation is actually a subset of the affine trans-
formations with only three degrees of freedom. This, and the nse of affine index
functions, 1s used to develop an efficient algorithm for detecting and verifying
symirmetries (§3).

The mathematical framework is established in §2. It is shown that a single
symmetry is sufficient to unskew the back-projection, to give a one-parameter
family of symmetric shapes that could have given rise to the mmage. A second
coplanar symmetry is sufficient, in general, to uniquely determine the aspect
ratio of the plane. This determines the back projection up to a similarity trans-
formation (translation, rotation and isotropic scaling). This is achieved without
any knowledge of the intrinsic camera parameters, an important consideration in
practice since the automatic calibration of camera intrinsic parameters is a poorly
conditioned nonlinear problem (Tsai 1986). If, however, the camera aspect ratio
is known, the back projection determines the slant (up to a two-fold ambiguity,
often referred to as the Necker ambiguity} and tilt of the object plane. Finally, a
test for non-coplanarity is given for two symmetric objects from a single image.

Phil. Trans, R, Soc. Lond. A (1945)
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Figure 2. ~ and + are the allive images of o corresponding sides of a plapar ohject, 1M und 17 re-
spectively, with bilateral symmerry. Alline translormastions preserve parallelism, so lines joining
corresponding points in the image, for cxample Lhe lines oo’ and bhb', are parallel. Affine trans-
larmakiony alse preserve length ratios on parallel lines. In particular midpoints are preseeved,
so the imaged synimetry axis passes through the midpoints of aa’ and bl

Throughont the paper, resulis are shown from an implementation of the the-
ory oitlined in 542 and 3. The reader may care to pause al this point to view
figures 14, 15; fipures 16, 18; and fignres 19, 20, which show typical results using
the implemented program.

2. Mathematical framoework

In Lhis section we study the constraints on the transformation belwesn Lwo im-
age contours if they are the projections of corresponding sides of a planar object
with hilateral syrmetry. Figure 2 illustrates the situation under consideration:
the image contours v and " are the images, assumed to be affine, of lwo corre-
sponding sides, I' and I' respectively, of a planar object with a bilateral {mirror}
symimnetty. A key attribute of affine translormations is that they preserve paral-
lelism, so lines joining corresponding points in the image, for example the lines
aa’ and bb', are parallel, Affine transformations also preserve lenglh ratios on
parallel lines. In particular, midpoints are preserved. so the imaged symmetry
axis passes through the midpoint of aa’ and bh'

{a} Image transformation

The following theorem explores the image [ransforiuation between the affine
images + and «' in more detail. Tn particular, 1t fixes notation that will he used
subsequently to unskew images.

Theorcm 2.1. Suppose two curves v and ', as in figure 2, are the images
of two corresponding sides of a planar ohjecl with hilsieral syumetry, Supposc
further that image projection can be represented by an affine trangformation.

Then the transformation bebween v and ' has the lollowing properties.

Froperty 1.~ and v are related by an offine transformation. That is, if @ is
a point on v then there is a point &' on ' such that

' =Az+ b, {2.1)

where A is a non-singular 2 = 2 matrix, and b is a iwo vector.

Properiy 2. The affine transformation {A, b} satisfies ihe following con-
straints:

{i) A% = ;

FPhal, Trane. R, fFoo. Lowd, A (1493)
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i) |A + 1| = 0; and

(i) |A — f] =1,

FProperty 5. The matrix A has eigenveciors @ and b (b as above) with cigen-
values —1 and —1, respectively. Vectar @ iz parallel to the syurnetry axis, vector
b iz parallcl to &' - @,

Praperly 4. The transfnrmation has three deerees of frecdomn, It can be
paramectrized br a, b, b, where

. if —hg(1 — r]'.::ll.f"b:J o = b
5 psayy, 0 e HESATC [ %2
Property 5. With thiz notavion, the image (skewed) symmetry line fs
(1 —adfne + (1 4+ ey -— bbby, =11 {2.3)

The prool is wiven in appendis AL Note: the alline {fransformation has only
three degrees of reedom {given by o, b, 4, o the statement of the theorern); and,
the theorem also applies i the original object has alline skewead svimmetry, since
an alline image of an afline trandlormead object with bilateral symmelry has the
same propertied.

(b1 Back projection

Tn vhis section we congider Lhe exlent 1o which we can unskew images such ax
those shown in figure 1. Tvidenlly, some ol The shewed symimelries in figure 1
have only a single symmelry, in which case the besy one can hope Tor in gen-
eral [Lhal is, withoul mobilizing further knowledge) i 1o unskew The image Lo
i omingle-parameler Tamily of symemelvie shapes chal corresponds wo Lilling the
svinmnelric shape ackwards while preserving the direction of Lhe syminetry axis,
1, on Lhe ovher hand, vhere s more than one syinmetry axis, then one might hope
Lo combing the information from two or more sach axes to uniguely unskew the
shuape. This ingight s emwbedded in the following theorem.

Theorem 2.2, Supposc we have an (nncalibrated ) image of one or more copla-
nar symmelric ohjecta,

Chue syenanebry. I there is only one syrmnetry prosent, the image can be bacl-
projecied, madilo a similarily, to form a oneparameter family of svinmetere
shapos that could have given rise to the image,

Two symmetrics.  In the case that iwo symmeiries are present in the image,
Lhe frosge cun be back-projocted uniguely, moduelo o similarity, provided that the
two symmetry axes arc neither parallel nor orihogonal {either in the image or in
space, since the camera is assimed affine).

Froof, First we give some notation for back-projections. Supposs the alline
Lranslormation relating the objeet and image plancs is given by

X=Uz | B, (2.4)

where @ is Lhe two-dimensional image point, X is the corresponding point in the

hack-projecied planar scene, 73 1s o two-vector translation and U is the 2 x 2 linear

translormalion matrix with det U 2 0 responsible for back-projection. It can be
shown (Blake & Marinos 1990) vhat the transformation U can be decomposed as

U ARIDPIA T, (2.5)

Sl Tegms, T Soo, Lovid A (LY
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where R(#) 1s a rotation by #, and P{A, +) is a symmetric matriz:

A D

PiT) =R o 1] R, (2.6)

with

Rir} = [c?ﬁ’r - si.n’r] ‘

. ginT  COsT
This particular decomposition of U makes its four degrecs of freedom explicit in
a way that corresponds to the processes of projection: the linear Lranslormalion U
consists of an isotropic scaling by A). a rotalion about the optic axis by R(#), and
an expansion by A in the direction 7 = (cos 7, sin 7} {the clgenvector of P4, 7).
The cigenvectors of A, say a and b, back-project to veclors parallel Lo and
orthogrmal to the svmmelry axis, respeclively, T the object plane, therefore, the

sealar product {Ua) - (UB) = 0 and, consequently,

6 U'Ub=0. (2.7)

The matrix V = U U is symmetric and positive definite. Let the components
of V' be given hy

o 3
V= [_.-":'r - (2.8)
Lhen we have from egualion (2.7)
ik
(b, a.b, +ab, a,b,)|3] =0 (2.9)
il

This i a lincar constraint on ¢, 3, v. Two such constraints determine the ratin
o 2 0 The sign g (ixed by the requirement thal V is posilive definile, so that
trV = @ + v = 0. This is sufficicnt to determine A and 7, as is shown in the
following lemma.

Lemma 2.3. The ratio o2 7 v, with sign chosen so that a4+ > ), deicrmines
Aup ooy fiwp=fold grnbigoity, amd 7 ap tooa bwo-fold gmbigoity.

Note that A? is the ratio of the cigenvalucs of V, and 7 is the rotation angle to
the eigendirections. From equations (2.5] and (2.6),

VA, R(Ee) (2.10)
The trace and determinant of V give two equalions Tor A%
V= o+ v — M1+ M),
det V=ay 5 =A%
Eliminating A7 gives
(V) (a+y)?  (L+ NP
fdet Vi oy — 32 e

Solving this wives A* {2 1/42) where M2 = 2p — 1 4 24/p{p—1).
Or, cquivalently, A = £,/ £+ /¢ — 1, which are fowr solulions of the form
fACTIN =N, =N with X = i — 3 /u— 1

PR Trarna. B Soc. Lonad, A (1995
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The rotalion angle = is obtained from equations (2.6) and {2.10):

[‘; f] =J.fﬁm[':f ?]R{ 7). (2.12)

Berarranging gives

CoE T #inT
—ginT  oosT

2 e . 2
ik .J’] [c.u‘:’r =11 ]=Af[}t ﬂ]

S | | sinr cosT 1
From the off-diagonal clements we obtain
—sin®rd —cosTsint{e— ) +eosrd 0,

from which
24 i
lan 27 = ———. (2.13)
SR

This gives four solutions for = If 77 = Jarctan {23)/{a — =], then the four
solutions are {7 | nw/2} for n = 0,1,2, 4. Two of the solutions arce simply due
to a clockwise rotation, as opposcd to counter-clockwise, so may be disregarded.
It is unly necessary to determine whether 7 is in the first or second quacrant.
From {2.12],

4 =X (N =TcosTeinT = 1A7(A" — 1) sin27,
so that sgn{3/(A% — 11 sgnisin27), and il sen(3/0A° = 1)) = 0 then 0 =

T £ w/2, otherwise /2 < v £ 7. Consequently, there are two solutions for
corresponding Lo the two solutions {A%, 1/ 4%} above for A% [ |

This proves the lemma. Now we can return to the proof of the theorom. In
the following we take A = /i | /¢ 1. The other solutions differ only by sim-

ilaricy transformalions. TT A = e + 4/ — 1, then for real solutions g 2 1, and,
consequently, A 2 1. Hence, sgni(#)  sgnisin 27) and this uniguely determines 7.

(ine syrmometry. Equation (2.9) has a one-parameter family of solutions for
the ratio o - 3 0 5 Correspondingly, Lthere is a one-parameter family of solutions
for A and .

Tiea syrionetvies. Two symmetries penerate two constraint cquations (2.9

1%
M3 =10

-
i

where

alby albl+albl albl

aykl  alby | efbd albt |
Provided the matrix M is of rank two, this uniquely determines the ratio {m :
3¢~} (and, consequencly, rom ithe lemma, A and 7). It can be shown that M
drops rank if any of the vectors {a!, &', a?, b*} are parallel, henee the clause in
the theorem. The optimal solution when Lhere are more than two constraints is
discussed in §4. |

(2.14)

Fidl, Wrans, AL Soc. foval, A(LB03)
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3. Detecting syminctrics

Ag shown in §2, correaponding sides T and T7 of a symmetric planar ohject
project to image curves v and ', respectively, Even though the projection (T —
anc I" — +"] is by a general affine transformation, the image curves + and " are
related by a three-dimensional subset of the (six degrees of freedom) planar affine
group. In this section woe describe how these results can be utilized to deiect such
image pairs efficiently.

Totra-image curve matching has much in common with the inter-image cnrve
matching necessary for model-bascd vision, and approaches developed [or that
area can be used Lo advaniage here, Tn parlicular, and this introduces the sceond
theme of invariants foreshadowed in the introduction, the use of invariants as
index functions avolds the cost of a six-dimensional search over Lransformation
parameters (Lamdan ef ol 198%; Rothwell ef al. 1992¢). The three stages of an
implemented algorithm are describecl in the following sections.

{a} Cencrating end matching affine invariants

Two curves thal are relaled by an alline transformation have 1he same affine
invariants. The comverse is not necessarily true, but invariants can usefully be
usecl to generate hypotheses for matching, which can subseqguently he tested,
Briefiv, o function (T} of a curve T is an dnvariond il T{7) = |U*T(T), where
~ is the image of I (refer to fisure 2) under the affine transformation as defined
in equation (2.4). The exponent w is the weight of the invariant. If . = (0 then
the invariant 1= absolute, otherwize 1115 relalive. Nole that in order Lo delermine
focal svmmetrics, the invariant must not depend on global propertics of the curve,
Fxamples of {semi-local) affine invariants for smooth curves are given below,

Unlike model-baged vision, where absolute nvariants are needed, relotive in-
variants suffice in this case. To sce this, consider two symmetry-related curves in
the obiject plane, These are related by an affine cransformation with determinant

1 {since the transformation s a reflection). Consequently, affine invariants of
each side of the shape are equal modulo a sign. In the image, invariants arc mul-
tiplied by |[U]¥, which is unknown, but which is the same for both sides. Thus,
relative affine invariants of cach side have the same magnitude.

Matching on invariants can be implemented as an G{n} complexity process by
the use of hashing (where nis the number of curves) (Rothwell e al. 19924, ). We
have implemented the simpler G{n®) algorithm, since n s sinall in the cases we
have experitnenied with. It i8 srralghtforward to implement the more complicated
algorithm.

(b Determaning the affine bronsformation

Tlaving lound two curves with matching invariant(z}, the next stage is to de-
terming if the curves are alline related. 'This is achicved by cxtracting o namber
of distinguished poinls on each curve, and determining an affine transformation
hetween these point sets. Three points are required to defermine a general affine
transformation. Distinguished points are curve ‘'markers’ thal can he defermined
belore and after a transformation. A number of cxamples are shown in figures 3-5.
They inchile poinls preserved by projectivities {such as infleetions, bitangenl
comtact points, ‘east’ tangents) as well as those exclusively preserved by affinities
{guch as points defined by parallel lines). Nole, points are ordered by the eurve,
ao Lhe correspondence problem is greatly simplified.

Phil. Trome. R, Soc. Lond, A (1005)
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Figure 3. Examples of distinguished points for a non-convex curve under affine transformations.
Poinus cn and ox mark the entrance and exit of the concavity determined by the bitangent
line. Further distingnished points are constructed from these points: Ten is the point on the
curve which is tangent to & ray based at en (similarly for Tex and cx); b is determined by the
line parallel and furthest from the bitangent. Apart from h, these distinguished points are also
preservid by projective transformations, Examples of these points on an image curve are shown
i figure 4.

Figure 4. Affine view of spanner.

(e} Verifying subset membership

As noted in 52, the image curves are related not by a general affine transfor-
mation {with six degrees of freedom), but by a three-parameter subspace. If the
affine transformation does not lie in this subspace, then the two curves cannoi
be syminetry related. Note that if two curves ere symmetry related then two
points are sufficient to determine the transformation of equation (2.2). When
more points are available, the form of the transformation is used as a constraint
(via a Lagrange multiplier) in a least-squares estimator. Details are given in §3 e.
If the curves are affine related then one can be superimposed onto the other by
applying the computed affine transformation. An example is shown in figure 10.

{(d) Affine semi-local invariants

For a non-convex curve, following Lamdan et al. {1988), we exploit concavi-
tics, by constructing a bitangent across the concavity and determining the interior
point on the concavity curve with tangent parallel to the bitangent. See figure 3.
This generates three distinguished points. This particular choice of points has the
advantage that it does not depend globally on the curve. Consequently, if part

Ehil Trans, £, Soc. Lond. & {1995)
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Figure 5. Distinguished points for edge curves extracted from the image of figure 4. The
notation for the curves P and () is defined in figure 3.

Figure &. Image of four objects with hilateral syminetries.

of the curve is occluded or missed because of segmentation problems, local sym-
metries can still be detected. Affine invariants are gencrated from the concavity
curve.

Avrea in the #mage space.  This is a relative invariant. The area used is that of
the triangle defined by the three concavity distinguished points {en, ex and h).

Moments in the canonical frame. Significant concavities are mapped to a
canonical frame {Lamdan et al. 1988) consisting of an equilateral triangle with
vertices at (—1,0), (1,0) and (0, +/3) by using the affine-basis triplet points of the
concavities. The x and y moments of the concavity in the canonical frame are
used] ag invariant indexes.

Table 1 lists the invariant valnes for the objects in figure 6. These differ; in
general, by less than 2% for symmetry-related concavities, Figurc 7 shows the
matched coneavity pair extracted from figure 6. For the pliers, invariant values

Fhil, Trows. B Soe, Lowd, A {1905}
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Figure 7. Matched concavities {al, a2), {bl, b2}, (c1, c2} and (dl, d2) are extracted from the
symmetric objects of figure 6.

Table 1. Affire nveriant values for objects in figure &

invariant Apanner Spon hex spanner pliers

area (image space) 1064 1056 3694 3855 271G 2723 43098 3814
moment about r-axis
{canonical frame) 10.85 1133 3213 3144 1861 1713 257  2.03

moment about y-axis
{canomical frame) 102,15  80.71 8617 8441 9272 0383 BIH0  TEEZ

are not consistent because of the thickness of the handles. The handles cause two
problems: first, they are rounded so that (as in the case of an extremal boundary},
in general, the surface curves prajecting to the cutline will be space curves and
not mirror pairs; and second, and more important in this case, the handles and
jaw are not in the same plane

For a convex curve segment, distinguished points can be obtained from the
anti-symmetry set (Blake & Taylor 1993).

{e) Fmplementation end resulfs

Feature extraction. Image contours are extracted using a local lmplementat.mn
of the Canny (1986) edge detector. Significant concavities are extracted for each
closed contour after computing a convex hull and setting a threshold on concavity

Phil. Trans. K. Soe. Lond. A {1995)
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Figure 8. Affine view of symmetric spanner.
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Figure 9. Matched concavities extracted from symmetric spanner of figure 8,

height and width. Bitangents are found via a dual space construction (Rothwell
et al. 1992a) and determine the concavity entrance (en) and exit points {ex).

Concavity matching. For each closed contour in the scene, matched concav-
ities are detected using affine invariant indexes as described in §3a. Examples
of the three points, en, ex and h, used as an affinc basis are shown in figure 9.
Corresponding points in the matched concavity pair are determined from the
tracing order (clockwise or anti-clockwise) of the image contour from which con-
cavities are extracted. These point correspondences are used to determine the
affine transformation between corresponding curves.

Affine transform. The next step is to determine if the affine transformation
arises from a reflectional symmetry of the object curves, i.e. whether it lies in the
three-degrees-of-freedom subspace defined by the constraints of equation (2.2). In

Phil. Trona. K. Soc. Lond. A (1995)
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Table 2. As Lhe accwrecy of the aofiee Drengfovmetion & enproved i more closely sotisfies the
constraints of souation (204)

{Fhe table gives the computed A and b clements when they are calenlated either: (1) directly

from three points; or () via & pzendo inverse from five points, The transformation s for the

points obtained from figure 213

number of affine elements solving elements caleulated
points equations (2.1) and (3.2} as equation [2.2)
Qe T 2y T
a1 [V aW b i [ b;.. —bh., |:l + ﬂ:|l."lb_.. —b_._.'rl = ﬂ-:l.-".b_u
3 .84 (Ltis TEIG (L4 (LT 1GH.AT 1LEE (h24
1] 077 0497 HT.TH O 10.43 (b7 1G7T.10 (b (4]

practice, the affine |ransformation deterinined rom the three alline basis poiots
iz not auliciently accurale, so exira correspondences are incliuded via a pseodo-
inverse, 'Two additional points, marked Ten, Tex in figures 3 and 5, arc the points
ol tangency o Lhe extracted curve drawn through vhe cavity entrance and exit
points (these are determined from the convex hull). In stralghtforward notlation,
equation (2.1] is rewritten as

PX =g, (3.1]

where X iz a veclor formed [rom the elemenia of A and b, Thia is solved using a
T d 1T T t 1 . _ .

pscudo-inverse to give X =pT(PP ). {3.2)

Table 2 demonstrates (hiat as Lhe number of poinls increases, the aceurately detor-
mined affine transformation does indeed satisly 1he conslrainta of equation [2.2).

Having determined the affine transformation, the symmetry axis is given by
(2.3). Since midpoinia are preserved by afline transformations, the midpoints of
lincs joining corresponcding distingnished poinig lie on Lhe symomeley axis, and
L hig provides o gquick, though not as accurate, method for determining the line,

An alternative method lor improving the acouracy of the affine trunsformation
is to minimize differences between the curve on one side and the olher affine-
Lranslormed side (so il should be identical). For example, differences of area or
the distance between corresponding points of Lhe malehed curve could be wsed
f o measure. This has not been implemented, but the aconracy of the afline
Lranslormation computed romn the pseudo-inverse is demonstrated in fisure 10,
where one side @ is ‘reflected’ onto the olher side T

(f1 Globul symrmelries

Clearly, u local symmetry between two concavities does not imply a wlobml
reflectional symmetry lor the whole object. For example, while the symmetric
spanner shown in Agoare 8 has a global reflectional symmetry, Lhe spanner shown
in figure 4 does not. Lo test for global symonetry, the local symmetry line is
exlended in both directions, while there is evidence 1that a symmelry with thiz
axds cxists. This is the case il for each point on one side there is a corresponding
pauint on the other #ide in the direction of B (as delined in equalion (2.2)] at the
same distance [rom the symmelry ling,

gl Trung, M. Sve, Lovd, A (19595)
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Mex
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Men
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Figure 10. Qr is the image ‘reflection’ of Q) onto P using an affine transformation computed
from five point correspondences for the hex spanner shown in figure 21.

Figure 11 is an affine scene containing globally, partially symmetric and non-
symmetric objects. Globally symmetric contours are correctly determined as
shown in figure 12.

4. Applications

{a) Back-projection

Here we determine the affine back-projection to the object plane using the
results of § 2. Note, back-projection does not require camers aspect ratio (or any
of the intrinsic parameters). We first give an intuitive and simple construction
for determining the back-projection and its unigueness, which is applicable for
up to two symmetries.

Consider an image consisting of two coplanar objects with single bilateral sym-
metries. Determine the skewed symmetry axes of each object (say, by joining the
midpoints of corresponding distinguished points), and choose an origin on one of
the symmetry axes, with vector a on the axis, and b parallel to the lines join-
ing corresponding points. See figure 13. The back-projection is achieved in two
stages.

Stage one. Unskew the first object by determining the transformation that
maps @ and b to the points (0,1} and {v,0) {(unskewing frame). This determines

Pril, Trans. R, Soe. Lend. A (1995)
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-

Figure 11. Affine scens of globally, partially and non-symmetric objects.

Figure 12. Outline curves, concavity entrance and exit point for the objects in figure 11.
Symmetry lines are only drawn where the object is determined to be globally symmetric.

three of the degrees of freedom of U/, including the arbitrary rotation and isotropic
scaling, but does not determine the object-plane aspect ratio. Explicitly,

i) Tz ﬂ-i b}; _ 0 v
Uy T ﬂ; b;l' - 1 D ’

0 v]fal 877"
o=[3 o]l 4]
vielding the expected one-parameter (») family of solutions.

So,

Phil. Trans, B, Svc. Lond, A (1995)
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0. 1)

,m 400

Figure 13, Mapping of guiding vectors a and b to unskewing frame.

Figure 14. Affine view of two ohjects with superimposed guiding vectors. The vectors are
clearly not. perpendicular.

Stage two. Now, v is determined by enforcing that the second object should
also be unskewed. We have:
a®yTub? = 0. (4.1)
Multiplying out gives:

gfal BL1I°TL 07[al 871" _

ol u] [o B][a & »=o #2)
which is a linear equation for . Note that if & is parallel to b* (and consequently
a'! is parallel to a?) then the quadratic form in (4.2) is identically zero and there
is no constraint on r. Similarly, there is no constraint if ¢’ is parallel to * (and
consequently b! is parallel to a®). This occurs if the symmetry axes of both
objects are parallel or orthogonal. In this case both objects are unskewed by the
first stage.

This formulation is, of course, equivalent to § 2 b, and either can be used if there

Phil, Trans, R. Soc. Lond. A {1905}
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Figure 15. Unskewed image of the spanner and hex spanner of figure 14.

are two gymmeiries present. If there are more than two symmetries, where a least-
squared solution is required, then the above method is not easily generalizable.
However, the formulation of §25 is not restricted. Tts application in a least-
squared solution is described below.

Figures 14 and 15 show examples of object puirs before and after back-
projection. The angle between the vectors a® and b* before and after are given in
table 3. Accurate back-projection requires accurate determination of these vectors
(which are the eigenvectors of the matrix A}). In practice, we find that five point
correspondences and use of a pseudo-inverse, as described in §3 e, are sufficient
to determine A to a satisfactory accuracy.

Up to this point it has been assumed that each object only contributes a single
local symmetry. However, should an object contain several local symmetries then
this object alone is sufficient to determine the back-projection (provided the usual
conditions are satisfied). An example is shown in figure 16. We have taken two
local symimetries enforcing the constraint that they cannot be mutually parallel
or perpendicular. Local symmetries with guiding vectors and the matching con-
cavities are shown in figure 17. Figure 18 shows the unskewed image of the object
and table 4 demonstrates the back-projection. Slant and tilt are also determined
in this case. This is described in §4 b,

Least-squares solution. If there are more than two coplanar objects, then the
transformation is estimated using a least-squares technique. Specifically, equa-
tion (2.9) is a linear constraint on the kernel vector {a,3,7v). If there are n

FPhal. Trans. R, Soc. Lond, A [1995)
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Figure 17. Local symmetries and matching concavities extracted from figure 16. Note that
local symmetries considered are neither parallel nor perpendicular.

Table 3. Angles between quiding-point triplet before and affer unskewng for oljects in figure 14

ubjecty ppanner  hex spanner
initial angle 7.4 219
final angle 90.0 839

objects, we seek the minimum of ||Mz||? subject to ||2|| =1, where M isan x 3
matrix with each row given by equation (2.9). This is a standard problem in
linear algebra. The solution is the eigenvector of MTM with least eigenvalue. It
is also possible to determine a covariance matrix for A and g in a similar man-
ner to Blake & Marinos (1990). A more complete treatment of image noise and
segmentation errors would weight each row of M according to a measure of its
uncertainty.

Results of applying this least-squares estimator to the affine scene in figure 19

FPhil. Trans. R, Soc. Lond, A (1995)
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Figure 18, Unskewed image of the object In figure 16,

’!i)\(

Figure 19. Affine scene of multiple vhjects.

are given in table 5 and figurc 20. Note that the angle between the guiding vectors
for the pliers is not as good as the others due to the handle limitation discussed
in §34.

Back-projection is generally formulated as masxdmizing a function — in this
case one sensitive to the angle between back-projected guiding vectors, but un-
affected by similarity transformations. Instead of the linear constraint given in
equation (2.9}, back-projection could be eomputed by minimizing the nonlinear

Fhil, Trens, K. Soc. Lond, A [1995)
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Figure 20, Unskewed image of multiple objects of figure 19,

Tahle 4. drgles between guiditg vectors before and affer unskewtng the object in figure 16

abjects first symametry  second svminetry
initial angle 95,4 4.3
final angle 9.0 g0.0

function f{z) = Y cos®#; {where 6, is the skew angle between a' and b*), and
the sum includes all svmmetric objects in the scene.

{‘ombinatien with other constrmints, If there is only one symmetry in the
image, this is only sufficient to determine the back-projection {modulo similarity)
up to a one-parameter family. Howewver, other scone-specific information can be
incorporated to resolve the ambiguity.

A pumber of constraints can be put forward in the case of the hex spanner
(figure 21). For example, after unskewing, all the sides of the hexagonal head
should have equal length and the conic surrounding the hexagonal head should
be circular.

More generally, for & regular isotropic shape, like a hexagon in this case, com-
pactness, {((area)/{perimeter)?) as proposed by Brady & Yauille (1984} and Horaud

Fhil. Trone. B, Sar. Lond. A [19H5]
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Table 5. Angles between guiding point triplet before end after unskewing for mulfiple objects in
figure 19

ohjects spanner spoon  hex spanner  pliers

initial angle 7.4 97.2 81.5 84.3
final angle 89.7 &g.1 89.6 B8.8

Figure 21. Skewed image of hex spanner with superimposed guiding vectors.

& Brady (1988), is maximized in the object frame. The result of removing the
ambiguity by imposing equality of the hexagonal sides is shown in figure 22.

(b) Slant and tilt determination

If the camera aspect ratio is known, so that camera projection is scaled or-
thography rather than affine, then the slant and tilt of the object plane can be
determined from the ratio {a : 8 : «v}. Quite straightforwardly, the variables
A and = which appear in back-projection operator {2.6) are, respectively, sec o,
where o is the slant of the object plane, and tilt (with A? = A” so that |A| = 1).
See figure 23 and Blake & Marinos (1990).

The ratio {a : 3 : 7} determines A up to sign, corresponding to a reflection
of the plane. Thus, slant is recovered up to the usual two-fold ambiguity under
scaled orthographic projection, i.e. 7 and 7 — a.

Calculated slant and tilts are given in table 6. The results are compared to: (i}
glant and tilt obtained by a method which back-projects a circle under perspec-
tive (Rothwell et al. 1992b); and (i) approximate measurements from the camera
position. Two camera orientations are compared. Three results are given for each
orientation corresponding to different arrangements of the coplanar objects. One
representative image for each orientation is shown in figure 24.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 22, Unskewed image of hex spanner of fizure 21,

y’ surface

i

Figure 23, Sland, (o] and 10 (75 angle.

{c] Planarity tests
Suppose two svinmetric planar objects are not coplanar; can this be detected

from the image? If the objeets are not coplanar then equations {2.11) or (4.1)
may not have a solition. This provides a simple test for non-coplanarity which

will always be passed if the objects are coplanar (subject Lo image noise), but

which non-coplanar objects may fail.
The fest is derived from equation {2.11) as follows. We have
1 }LT 2 2
(L 1A%) _ et 1 (4.3)

A? ay — [#
Clonsidering the A equality first, a number of constraints may be evaluated as

follows:
Phal. Trans, B Soc, Lemed, A (1905)
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Figure 24. Examples of images used to calculate o and + for cach of the camera orientations.
For each orientation slant and tilt is recovered for three different object arrangements. Besults
are given i table 6.

Table 6. Slant and tilt values calculoted from symmetry beck projection, circular back-profection
and (appromimale) camert posiiion

arientation symumetry circle measured
- T o T o)
figure 24 left S0+ 3 HBE+2 53 90 Hd
figure 24 right 41+ 3 106+4 47 115 44
figure 16 44 111 47 118 44

(i) for A% to be real and positive, p = 0 (from g 2 0, it follows that ay 2 3°
or det V = 0, where V is defined in equation (2.8}); and

(ii) multiplying out gives A* £ 2,/uA +1 = 0. This only has real roots if the
discriminant g —1 = 0, i.e. for A real, p = 1.

This defines a region for acceptable {1 3 : v} solutions. If solutions do not lie
in this region then the image cannot have arisen from coplanar objects.

An example is shown in figure 25, where the hex spanner is in a different
plane from the other spanner. The calculated values of {@ : 3 : 54} and u are
{-0.793 : —0.0920 : 1} and —0.013, respectively. The above planarity-test condi-
tion demonstrates that the objects are not in the same plane.

5. Discussion

We have demonstrated that the object relation of bilateral symmetry gives rise
to image constraints that can be utilized in real applications. In particular, bilat-
eral symmetry restricts the affine transformation between corresponding image
contours to a three-dimensional subset of the planar affine group. This constraint
allows these contours to be discriminated from other affinity-related image curves.
Similar constraints can be derived for other object relations. For example, a pla-
nar object with two-fold rotational symmetry induces the following constraints
on the affinity relating corresponding image curves:

(i) A% =1,
(i) |4 + /| = 0; and
(iif) [A — 1] #0.

Phil. Truns, R, Soc. Lond. A (1995)
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Figure 25. Affine image of two non-coplanar objects.

and similarly for n-fold rotational symmetry (with A™ = 1).

As well as extending to other relations, the approach can be extended to the
most general planar object in image transformation  a projective transformation.
This is described in appendix B. Unlike the affine case, lines joining correspond-
ing image points are not, in general, parallel. However, the symmetry restricts
the transformation between corresponding image curves to a subset of the full
group — here to a four-dimensional subset of the plane projective group (an invo-
lution). This has an application in the recognition of objects which are surfaces
of revolution, since the two ‘sides’ of the apparent contour of these objects are
projectively equivalent to curves with bilateral symmetry. Semi-local invariants
can again be used to indicate matches, although absolute, not relative, invariants
must be used in the projective case.

Another extension is to affine images of threc-dimensional ohjects with bilateral
symmetry. Exploiting this constraint facilitates the recovery of three-dimensional
structure and pose from single images. It can be shown that structure can be re-
covered, modulo a Euclidean transformation, to a four-parameter family of sym-
metric objects that could have given rise to the image {Fawcett et af. 1993). If the
object has two orthogonal bilateral symmetries, the shape can be reconstructed
modulo similarity.

We are very grateful for helpful comments from Andrew Blake, Ron Daniel, David Forsyth,
. Dutta Majumder, Joe Mundy and particularly Charlie Rothwell and the anonymous refer-
ees. DLP.M. acknowledges the support of the United Nations Development Project fellowship
awarded to the KBCS Project, Indian Statistical Inetitute, Caleutta, India. Financial support

was provided by ESPRIT Project 6448 “VIVA®, and by the Science and Engineering Research
Council.

Appendix A. Proof of theorem 2.1

Suppose two image curves v and «" are images of two sides of a planar object
with bilatersl symmetry, and image projection can be represented by an affine
transformation. Then the transformation between v and + has the following

properties.

Plal, Trons. A, Soe. Lend, A (1905)
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Property 1. = and ~" are related by an affine transformation. That is, il 2 is

# point on v Lhen there i3 a point 2" on =" such chat
x — Ax—h,
where A 08 a non-gingular 2 x 2 matrix, and b ig a two veclor.

Proof, The fivst starement is o stralghtforward consequence of the groap-
closure property for affine transformations. Sinee the two sides [ and IV of che
obiject are related by a reflection (which is affine}, and since Imaging is assumed
Ly be alline, the two imaged sides « and " are also relaled by an alline transfor-
mation.

In more detadl, and to fix notation, object curves T and I are related by a
reflection, i, if X is a point on 17 then there is a point X7 on 1Y sauch that

X'=5X B:, (A L)
where § 1s a reflection matrix (|5 = —1). Under image transformation (2.4)
X=VUzx+B X' =Uz"+DB
Comnbining these with equation (A 1) wives
»  Arxr—h
where
A ul'sy, b UTYSB+DB;- B
|

Property 2. 'Lhe affine wransformation {A, &} oheys the following constraints:
(i) A% =/
(A +¢ - 0; and

(i) |a—1 = 0.
Proof. The first part is straighcforward:
A=l
A = yTgEY
=t
=

The image correspundence & <+ @ relates poings transformed according to the
first part of the theorem. S0, 2' = Az + b and also 2 = Az’ | b, Consequenily,
applying this transformation to a point 2 on < maps it o a point 2" on ~', and
applying the translormation again maps it back to a:

&=A(Az 1 b) b
=A%z + (A —1}b.
Since thig is true for all @ we have the following.
(i) Again 4% £ From thiz it follows that A has eigenvalues +1.
(i) (A —1b 0 Fence, |4 - f] = 0 since & is non-trivial, aud b is an cigen-
veclor of 4 with cigenvalue —1.
(iii) If @ 15 on the {imaged) symmetry axis then 2’ = Az | b = @ and hence
(f—Alw = b. (A 2]

FPhal, Tranz, B, Sac. Lond, A& J1095)]
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This is true for all peints on the axis. Consequently, [A — 1] must be of rank
one (Le |[A — | = 0) with the kernel of 4 — f defining the axis direction a, ie.
{A —a — (0. which means 1hat a is an elgenveclor of A with cigenvalue 1. W
Property 3. The matrix 4 has elgenveclors & and & with cigenvalues -1 1 and
L, respectively, Yector a is parallel to the svimmetry axis, vector b is parallel
to 2" — @,

Proof. All that remaing to be shown s that b ois parallel to 2" - & Note,
corresponding image poines are joined by parallel lines since these lines are Tinages
of parallel lines on the object. Recall that the cigenvectors of A are a and & with
cigenvalues +1 and —1, respectively, ¢ and b span the image, so that for some
i, /7,

' — > = a4+ db.
Applving A to both sides, and reversing the order gives
aa— b Ax’— Ax
=3 —a
= —qer — Sh,
(tomm which it follows that oo = (0, so that & — &' is parallel to & as required. W

Property 4. The transformation has three degrees of freedom. It can be
parametrized by a, by by, where

_ 2 —f (14l iy i
o=l Joefl

alfb, —a

Proof. Solving the egqualions |4 + (| = 0 and |A - /| =0 lor A gives

. it b
A= [(1 —uz}f'b —i |t

where a and & are two paramelers. This also salisfies A2 = {. The requirement.

that ADb = —b delermines b in terms of a, b, and b,
The three paramcters represent the symmelry line (lwo degrees of Mreedom)
and the correspondence direciion (one degree of freedom). [ |

Property 5. With this notalion, the image {skewed) symmetry line is (1 —a )b,z
1-(1 + )b,y — byb, = 0.

Proof. This is Lhe pariicular solution of equation (A 2).

Appendix B. Symmetry under projective transformations

In the most general case there is o projective (rather than affine) transtormation
between object and image planes. As in the affine case, symmetry in the object
plane constraing the transformation belween image curves.

Theorem B.1. Suppose two curves v and +', as in figure 2, are the images
of two corresponding sides of a planar object with bilateral symetry. Supposc
further that image projeciion can be represented by a projoctive transtormation.
Then the transformation hetween v and ' bhas the following properties.

1hif, Teene K. Soc. Lond, A (1995)
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Property 1. =~ and " are related by o projective bransformation, That s, i e
is a poind on ~ then thers is a poing @' on ~' such that

T, (131}

where T is a non-singular 3 » 3 matrix, and & and &' are homogencous throe
TRCTOTS,

Property £ The projective transformation T satisfics the following con-
straints;

{ii T¢ - kI, where k iz a scalar; and

(ii) the fixed points of T are: a line of fived points; and a fixed point not on
the line (ihrough which there is a pencil ol lixed lines).
A projection with these propertics is a collincation of period two, also known as
a two cvolic homography, and a planar harmonic homology (Springer 1964,

Property 3. The matrix T has cigetivectors | e., €s, eq}. Two of the eigenval-
ucs, corresponding to e; and e, suy, are equal. The thind, corresponding to e
is disiinet and non-zero. The symmeiry axis is given hy the line e, % e Cor-
responding points, & and &, are collipear with &, The line @, & intorsccts the
syinmelry axiz at a point ®, say, and the four collinear poinis =, 2, 2" and g
have a harmonic cross-ratio,

Property 4. The wransformation has Tour degrees ol freedom. Ti can be detor-
minecd from two correspondenees,

Proaf. Property 1. Thiz (ollows rom gronp closure under projective transfor-
mations. If the object reflection s the projective transformation X' = 5 X, and
the object to Image projoction is

r=UX =X
then the transformation botween v and +' is given by the conjugale projectivity:
Tl ]

Property 2.0i).  Ye have Lthe image correspondence & — &', so that 2 = Ta
and also & = Tw'. Conseguently, applying this transformation to a poinl & on
maps it to a peint &' on ', and applying the tranaformalion awain maps it back
o

e=T(Te)= Tz
Since this is true for all 2, T2 = &/.

{ie).  Thia can be proved analytically but is seen most simply by considering
the projection pecmetry in fimure 26. On the object, points on the ayminetry axis
are mapped by the reflection to themselves - so this is A line of fixed points.
Correspondingly. the imaged symmetry line is a line of fixed points, The only
other fixed point (not on this line) is the point al infinity {(where parallel lines

Joining corresponding pointa intersect). To the image, this is transformed o the
vanishing point ol the lines joining corresponding points. B

FProperty 5. For a line ! of fixed points, two degenerale elgenvectors must lie
on the line. To see this, represent a poind on Lhe line as & = ue; | re,. Then

e = Tlpe, + vey) = Ape + ves),
(where & and e; are cigenvectors of T with eigenvalue A) whicli is the same point.,

PRal Teana, B Ao, Lowd. A (1995
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Figure 26, Tneer a projective leanslormations pacallel objecl correspondences converge 1o a
warishing poinr,

Thus, the syinmnetry line is given by eg % ez, The vanishing point corvesponds to e,
the other fixed point. A similar argument to the above shows that any line passing
Lhrough this poind iz a lixed line under 7. On Lhe objecl, corresponding points are
collinear with this point at infinity {since the lines joining corresponding points
are all parallel) s0 in the image. &' and = are collinear with .

On Lhe abject, the four pointz, X X, the intersection of their common line
with the symmetry axis and the poiot at infinity, have a harmonic cross-ratio,
This is preserved by projectivities. Hence. Lthe lour image poinls, @', 2. e and
the intersection of their common line with the svinmetry axis, hoave o harmonic
CTOSS-Tatlo, |

Property 4. The transformation bas four degrees of freccdom. These correspondd
lo the svimmelry axis (lwo degrees of lreedom) and vhe vanishing poinl [Lwo
degrees of freedom). Two point correspondences, @ < » @ and 2 < » 2), give four
constraints:

r

o FEig wy Fmn o TEE mp=Tal

which is sufficient to determine T. |

Projecied syrmyeebry asts. The above results provide an foptinal algorithem for
extracting the projected symmetry axis - namely determine a T which best maps
one side ol The conlour Lo Lhe olher, and compuie the axis from the slgenvectonrs.
An alternative simple method arises by noting that any projoctively covariant
conslruction on the object which generates poinis on Lthe symmelry axis, can
ke umed to determine poinls on Lhe symoetry axis in the image. For example,
find corresponcding pairs of distinguished points on each side of the outline, say a
corresponding Lo a’, b corresponding o b'. Then line pairs {al’, a’b} and {al. 2’b'}
both intersect on the symmetry axis. These two interseotions determineg the line,
In the ahsence of measurement noisc both the ‘optimal’ and simple method will
produce the same line.
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