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In this paper, the model of Chattopadhyay and Bairagi! has been modified by consid-
ering the horizontal incidence as standard incidence in lieu of mass action incidence.
Our observations indicate that the modified system around the positive equilibrium is
stable for a wider range of force of infection. Numerical experiments are performed to
observe the effect of disease transmission on different types of functional responses. We
finally conclude that the mechanistic nature of disease transmission should be known
for predicting the dynamics of such systems.
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1. Introduction

Mathematical models have become important tools to analyze the spread and con-
trol of infectious diseases. Most models for the transmission of infectious diseases
descend from the classical SIR model of Kermack and McKendrick. Susceptible
become infectious by contact with infectious individuals. In the natural world,
however, species does not exist alone. While species spreads the disease, it also
competes with the other species for space or food, or is predated by other species.
This type of model has been termed an eco-epidemiological model (see Chattopad-
hyay and Arino?). In eco-epidemiological models, the horizontal incidence (the
infection rate of susceptible individuals through their contacts with infectives) is
usually of the type A(N) = A (mass action incidence) or A(N) = 4 (standard
incidence).
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Ebert et al.3 formulated the following plausible epidemiological microparasite
model with horizontal transmission.

%—? = az + Oy)(1 — ez +y)) —dz — bxy

-2 —bzy—(d+a)y (L1)
z(0) = 0 >0, ¥(0)=% >0,

where z(t), y(t) represent the densities of susceptible and infected hosts at time ¢,
reswctively. A careful examination of the above deterministic model reveals an often
misinterpreted and misunderstood model assumption. Namely, b, if understood as
an infection rate, it is the maximum number of infections that an infective host
can cause in a unit time. This shows that the infection term dzy (the simple mass
action law bzy, with b as a mass action coefficient. has sometimes been used for
the horizontal incidence) should be replaced by ;’:—j—;% (standard incidence). When
the total population is constant, a fact if the disease is not fatal and the model
does not address vital dynamics (the normal birth and death dynamics), then the
infection term bzy may be justified (since -:E-?-_y is now a constant) but the meaning of
b becomes the encounter infection rate. For large populations, individuals finite and
often slow movement prevents it to make contact to a large number of individuals in
a unit time. Such a mechanism is better described by ;’—j_yg than bzy. Consequently,
encounter infection rate makes sense only when the total population is small and
steady. For more information about the difference in models using these forms of
horizontal incidence, see Gao and Hethcote,? Gao et al.,> Gao et al..5 Hethcote,’
Hethcote and Van Ark,® and Mena-Lorca and Hethcote®).

Using an incidence of the form ﬂ%, data for five human diseases in commu-
nities with population sizes ranging from 1000 to 400,000 [see Anderson and May™®
(p. 157), and Anderson and May!! (p. 306)] imply that v is between 0.03 and 0.07.
This strongly suggests that the standard mass action incidence corresponding to
v = 0 is more realistic for human diseases than the simple mass action incidence
corresponding to v = 1. It is also noticed that the standard incidence is also a
better formulation than the simple mass action law for animal populations such
as mice in a mouse-room or animals in a herd (see De Jong et al.!?), and disease
transmission primarily occurs locally from nearby animals. So ultimately one can
say that in a large population system where force of infection plays a vital role,
standard incidence should be taken as horizontal incidence to get an appropriate
and correct result.

Keeping the above observations in mind, we modify the model of Chattopadhyay
and Bairagi' by considering horizontal incidence as standard incidence. Qur obser-
vations indicate that the modified system around the positive interior equilibrium is
stable for a wider range of force of infection. Moreover in eco-epidemiological situs-
tions, the use of different functional form may lead to different dynamical behavior
of the system. Numerical experiments have been performed to observe the effect of
horizontal incidence on different types of functional responses.
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2. Basic Mathematical Model

To study an eco-epidemiological model of the Salton Sea, Chattopadhyay and
Bairagi! considered the following assumptions:

(1) There are two populations in the Salton Sea: The fishes, Tilapia, whose
population is denoted by N([N]), number of Tilapia per unit designated area,
and the birds, whose population is denoted by p([p}), number of birds per unit
designated area.

(2) In the presence of bacterial infection, total fish population N is divided into
two classes, namely susceptible fish population, denoted by s, and infected fish
population, denoted by i.

(3) The susceptible fish population, s, is capable of reproducing with logistic law
and the infective fish population, i, dies before having the capability of repro-
ducing. However the infective fish, i, still contributes with s to population
growth towards the carrying capacity.

(4) The mode of disease transmission follows the simple law of mass action.

(5) The disease is only spread amongst the prey population and the disease is
not genetically inherited. The infected population does not recover or become
immune.

(6) The predator (bird) population preys only on the infected fish population. The
reason behind this assumption is that the infected Tilapia population is present
in the Salton Sea in a considerable number.

Based on the above assumptions, their model equations become

dt k

di ) mip

—_— - — 2.1
dt Ais a+i m (2.1)
c_ig_ fip B

dt  a+i

Here s = s(t) = concentration of the susceptible prey population at time ¢; i =
i(t) = concentration of the infected prey population at time ¢; p = p(t) concentration
of the predator population at time ¢; r is the logistic growth rate; m is the search rate
of infected prey population; a is the half saturation coefficient; ux is the natural death
rate of infected prey population; d is the natural death rate of predator population;
and ) is the force of infection between susceptible and infected prey populations.

In this paper, we assume that horizontal incidence follows standard incidence
and with this assumption, the model (2.1) takes the following form

ds s+1 Ais .
_— rs(l - ———) i i Fi(s,i,p)

— et ——— ——n o~ g} = ) 2.2
di Py at+i He 2(31313’) ( )
dp _ fip

= = —dp = F3(s,i,p).
9t ati P 3(3,1,p)
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System (2.2) needs to be analyzed with the following initial conditions:
8(0) 20, i0)20, p(0)20. (2.3)

3. Boundedness of the System
Lemma 3.1. All the solutions which initiate in R are uniformly bounded.

Note: The proof is obvious.

3.1. Egquilibria and existence

Remark 3.1. The system Eq. (2.2) has four equilibria, namely, Ey(0.0,0),
E;(k,0,0), Eg(LkSr—,,"'{;’Q, kA r"+ —A ,0) and E*(s*,i*,p*) where s* is the real

positive root of the quadratic equation f(s) = rs? + Bs+ C = 0 and is given by

8t = -"—Bﬂ%'ga, where B = (224 — rk); C = 7 (r2 + Ak — rk), i* and p*

are given by i* = 24 and p* = ﬁm(-(,—f‘i—,:j — p), respectively.

Remark 38.2. It is easy to see that equilibria Fy and E; exists for all parameter
values. The plannar equilibria E; exists if the condition p < A < 7+ u is satisfied.

Remark 3.3. If the condition & > Tr——_f% is satisfied then there exists a unique
positive real root s* of the equation f(s) = 0. In order to have p* > 0 we must have
8% > o ‘:_ . Moreover i* > 0 implies 8 > d. Therefore the interior equilibrium
E*(s*,i*,p*) exists if the conditions

() & > =fi=ay» (i) s* > =iy and (iii) 8 > d are satisfied.

4. Dynamical Behavior of the System Around the Biological
Feasible Equilibria

The main interest of this section to observe the dynamical behavior around the
positive interior equilibrium when horizontal incidence has been taken as mass
action incidence and standard incidence, respectively. The stability analysis of the
system around the trivial equilibrium Eo(0,0,0) may be obtained following the
approach of Jost et al.l3 or Arino et al.l*

Theorem 4.1. The azial equilibrium E;(k,0.0) is unstable saddle along the s-axis
if A > p (ezistence condition of Es). If the condition k > (a_d)uf‘_‘m)(‘r N 18

satisfied then Ep(Erte—d) MA-w(rtud g) 45 seddle in nature.

Note. Using variational matrix method one can easily prove the theorem.

Next we assume that the interior equilibrium exists and study its local stability.
This will yield some analytic and computational conditions for stable co-existence
of all three species.
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Theorem 4.2. If the condition (’E’j—, < G)'%%’ < ﬁ;’{- then the interior equilib-

a+i*

rium E* is locally asymptotically stable.

Note. By applying Routh-Hurwitz criterion the theorem can be proved easily.

Example. We have taken the hypothetical set of parameter values, r = 15
day~t, ¥ = 45 individuals ha=!, m = 14.5 day~?, @ = 14 individuals ha™!,
A = 0.006 day~t, u = 0.0019 day™%, & = 11.1 day™!, d = 6 day~! which
were considered by Chattopadhyay and Bairagi.! Substituting these parameter
values in the equation f(s) = 0 and solving we get s* = 28.5228. We also get
i* = 16.4706. Again substituting the value of s* and ¢* in the expression of
p* we observe that system Eq. (2.2) possesses one positive interior equilibrium
E*(s* = 28.5228,1* = 16.4706,p* = 0.0040). Using these set of parametric values
and the values of s*, ¢* and p*, we observe that condition for local asymptotic sta-
bility of the interior equilibrium (as stated in Theorem 4.2) is satisfied. Moreover
the eigenvalues associated with the variational matrix of the system Eq. (2.2) at
E* is (—9.505, —0.0006 + 0.724i, —0.0006 — 0.724i). So from the above observation
we can say that E* is locally asymptotically stable.

5. Numerical Simulation

The aim of the section is to observe the role of force of infection on different hori-
zontal incidence as well as on different functional response. Numerical simulations
have been carried out with the help of MATLAB software.

5.1. Role of force of infection on different horizontal incidence

We start this section with numerical experiments to confirm our analytical findings.
The dynamics of system Eq. (2.2) around the positive interior equilibrium has been
numerically simulated for the hypothetical set of parametric values which we have
used in the previous example. The existence and stability conditions have been
satisfied for these set of parametric values. Keeping all other parameter values
fixed, varying the parameter A and taking 30 susceptible individuals ha—!, five
infective individuals ha—1, 15 predator individuals ha~! as our initial populations,
we observe the following dynamical behavior of the two systems. System (2.1) is
stable for a small range of ) (see Fig. 1} whereas system (2.2) is stable for a wider
range of \ (see Fig. 2). These observations indicate that standard incidence is a
better formulation than the simple mass action incidence.
To visualize the above dynamics more transparently we present the Table 1.
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Fig. 1. Stable co-existence of three populations for r = 15, k = 45, m = 14.5, a = 14, p = 0.0019,
9 =111, d = 6, and for A = 0.0026 and A = 0.4 when horizontal incidence follows mass action

incidence.
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Fig. 2. Stable co-existence of three populations for A = 0.065 and for A = 9.1, when horizontal

incidence follows standard incidence, keeping all other parameters fixed as described in Fig. 1.
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Table 1. Simulation experiment of model system (2.1) and (2.2) by taking horizontal inci-
dence as mass action incidence and standard incidence, respectively with fixed parameter values
r =15k =45, m = 14.5,a = 14, A == 0.006, u = 0.0019,6 = 11.1,d = 6.

Horizontal Horizontal
incidence incidence
follows mass follows standard

Variation in action incidence incidence

Greater than 0.0025 Stable Unstable
Greater than 0.0064 Stable Stable
Less than 0.5 Stable Stable
Less than 9.2 Unstable Stable

5.2. Role of force of infection on different horizontal incidence as
well as on different functional responses

Apart from the force of infection, the impact of functional response on ecological
system cannot be ignored. The dynamic stability of ecological system depends on
the type of functional response used (for example, see Williams and Martinez!5).
Recently Fussmann and Blasius!® observed that the use of several nearly indistin-
guishable functions can serve as phenomenological descriptors of resource uptake
and may lead to alarmingly different dynamical behaviors in a simple community
model. It is well established that force of infection in epidemiological models and
functional response in ecological systems have remarkable influence on the dynamics
of the system behavior. It is quite intitutive that joint variation of these two factors
in eco-epidemiological systems may describe some interesting dynamics. To observe
this role, we shall consider different functional responses in the following model.

i:_rs(ps:') h(s,i) — f()

% (o)~ 9o~ i (5.1)

& fl( )p (i) — bp

Here r is the growth rate of the susceptible prey and k is the carrying capacity.
The predator, p, consumes the prey s and i and grows according to the functional
responses f (%) and g¢(7), respectively. Here h(s,i) = Asi when horizontal incidence

Asi

is mass action incidence and h(s,i) = 7% when horizontal incidence is standard

incidence, f(%) = ap+a, g(t) =mt, fi(s) = H_a 22¢ and g;(i) = mei where 6; and m,
are the search rates for susceptible prey population and infected prey population
respectively, a is the half saturation coefficient, 2 and mg are the conversion factors
due to predation of susceptible prey and infected prey, respectively. If we consider
= 1 in the functional response then it will be considered as prey-dependent
functional response, otherwise it is called ratio-dependent functional response.
Considering the parametric values as r = 3 day~2, K = 45 individuals ha™1,
a = 15 day !, my = 0.05ha per individuals day ~?, 6; = 0.5 day ~%, 2 = 0.2ha
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per individuals day !, mg = 0.04, g = 0.24day ~1, § = 0.09 day ~!,

only parameter )\, the above model has been simulated for different horizonta)
incidence on different type of functional responses. In the case of standard incidence,
we note that when functional response due to predation of susceptible prey is of
Holling type II or ratio-dependent and functional response due to predation of
infected prey is of type I, we get infected prey-free region and at the same time
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Fig. 3. Stable population distribution of three species in the case of mass action incidence and
extinction of i and p population in the case of standard incidence respectively for r» = 3, K = 45,
a =15, m; = 0.05, 61 = 0.5, #2 = 0.2, ma = 0.04, p = 0.24, § = 0.09 and for A = 0.1.
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Fig. 4. Keeping all other parameters fixed as described in Fig. 3, and for A = 0.29 stable popu-
lation distribution of three species in the case of mass action incidence, and standard incidence,

respectively.
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predator population goes to extinction. In these cases, A lies between 0.006 to
0.24 (see Fig. 3). If the value of ) is increased from 0.24 to 3.1 we observe the
stable population distribution of three species (see Figs. 4-6). This reflects that
if susceptible prey becomes more infected, then in the case of standard incidence
stable co-existence of three population is possible. Arino et al.** described in their
paper that infection in prey population may act as a biological control in ratio-
dependent predator-prey models. In our paper, we can also say that when horizontal
incidence has been taken as standard incidence then infection in prey population
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Fig. 5. Keeping all other parameters fixed as described in Fig. 3, and for A = 2 susceptible pop-

ulation goes to extinction in the case of mass action incidence and stable population distribution
of three species in the case of standard incidence, respectively.
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Fig. 6. Keeping all other parameters fixed as described in Fig. 3, and for A = 0.35 s goes to
extinction in the case of mass action incidence and stable population distribution of three species
in the case of standard incidence, respectively.
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may act as a biological control. This situation is also true when both functiona)
responses have been taken as ratio-dependent (see Fig. 6). But the remark is noy
true when horizontal incidence has been taken as mass action incidence, In thqt
case if we increase ), then the population distribution has been shifted from stabje
to unstable region.

The Table 2 shows the dynamical stability around the positive equilibrium of
the model system (5.1) with different functional responses by varying only A.

From the table it is clear that the dynamic stability of the modified modej
depends on horizontal incidence (i.e. mass action incidence and standard incidence,
respectively). Our goal was to investigate the effect of A on different functiona]
responses when horizontal incidence has been taken as mass action incidence and
standard incidence, respectively. We observed that two types of horizontal inci-
dences, give completely different outcomes in terms of model dynamics. Using the
standard incidence on different functional responses, we observe that predator and
prey abundance are always far from zero and therefore the population has a high
expectation of persistence for large values of A (here three species co-exist for )
greater than 2.85). In contrast, with mass action incidence there is an extinction
risk for higher values of A. We observed that when the value of A is greater than
1.6, there is no chance of co-existence of three species.

6. Conclusion

A three species eco-epidemiological model in which horizontal incidence follows
standard incidence is proposed by means of three ordinary differential equations.
Our analysis shows that if the force of infection is high, the possibility of the extinc-
tion of the species is increased in the case of mass action incidence than that of
standard incidence. As in eco-epidemiological situations, the different functional
forms may lead to different dynamical behaviors, we used different functional forms
and varied the force of infection. In such cases we also observed that the risk of
extinction is much less in the case of standard incidence. It has also been seen
that when horizontal incidence follows standard incidence, the three populations
persist for a wider range of A whereas in the case of mass action incidence, co-
existence of three populations occur for small range of \. Hence, we finally con-
clude that unless the exact mechanistic nature of disease transmission between

susceptible prey and infected prey is known, caution should be used for predicting
dynamics.
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