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Pearson’s chi-square (Pe). likelihood ratio (LR), and Fisher (Fi)-Freeman—Halton test statistics are
commonly used to test the association of an unordered r x ¢ contingency table. Asymptotically, these
test statistics follow a chi-square distribution. For small sample cases, the asymptotic chi-square
approximations are unreliable. Therefore, the exact p-value is frequently computed conditional on
the row- and column-sums. One drawback of the exact p-value is that it is conservative. Different
adjustments have been suggested, such as Lancaster's mid-p version and randomized tests. In this
paper, we have considered 3 x 2, 2 < 3, and 3 x 3 tables and compared the exact power and signifi-
cance level of these test’s standard, mid- p, and randomized versions. The mid- p and randomized test
versions have approximately the same power and higher power than that of the standard test versions.
The mid- p type-I error probability seldom exceeds the nominal level. For a given set of parameters,
the power of Pe, LR, and Fi differs approximately the same way for standard, mid- p, and randomized
test versions. Although there is no general ranking of these tests, in some situation$, especially when
averaged over the parameter space, Pe and Fi have the same power and slightly higher power than LR.
When the sample sizes (i.e., the row sums) are equal, the differences are small, otherwise the observed
differences can be 10% or more. In some cases, perhaps characterized by poorly balanced designs,
LR has the highest power.
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1. Imtroduction

The three usual test statistics for association in r x ¢ contingency tables are Pearson’s
chi-square (Pe), likelihood ratio (LR), and Fisher's (Fi) exact tests [1,2]. These tests are
asymptotically equivalent. For small sample situations, exact tests have been developed and
are available in commercial software. For a given set of observations, the p-values can be
different, and the tests can lead to different conclusions. But which test is preferable in small
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samples? The research to answer this question is scant. It has focused primarily on the question
of which of the three asymptotic tests matches its exact counterpart best; see StatXact 6 User
Manual [3] and references therein.

When appropriately scaled, these test statistics asymptotically follow a chi-square distribu-
tion. In small sample situations, the chi-square approximation is not reliable and, usually, exact
p-values are used. Exact tests use the distribution of the test statistics conditional on the row
and column sums of the observed data. For 2 x 2 tables with equal row (or column) sums, Pe,
LR, and Fi tests always give the same p-values and conclusions [4]. Otherwise, they may give
different p-values leading to different conclusions. Lydersen and Laake (5] have computed the
exact power of these tests for different situations in 2 x 2 tables. They concluded that these
three tests may have different power, but there is no general ranking among these tests. In
many cases, Pe chi-square and Fi exact tests have almost equal power and higher power than
LR. In a few cases, perhaps characterized by poorly balanced designs, LR performs best.

The present paper deals with 3 x 2, 2 x 3, and 3 x 3 tables. The rows and columns are
unordered. In the case of ordered categories, one should use more powerful tests like Kruskal—
Wallis test or a score test.

Consider two factors with r and ¢ levels, respectively. For example, r = 3 treatments may
be compared with cure or no cure as the ¢ = 2 possible outcomes. In general, the observations
form an r x ¢ table:

1 cee o C Sum
L tan - ne | Mg
r Ny rrr Rpe nry
Sum | nyy -+ ny. | N
We consider independent, multinomially distributed rows. The counts in row number i are
multinomially distributed with parameters n;., ;. .. ., T, Where 7y + - - - + m;. = 1, The
null hypothesis is that each row has the same set of probability parameters ;4. .. .. ;..
We want to test:
Hymj=myj=:-=m; forallj=12,...,c
versus

Hy: mij # myj  for atleastoned, j, k.

Alternative sampling schemes are table counts that follow a multinomial distribution with
parameters (N, my1, ..., Tye|myy + - -+ + m,. = 1) or a Poisson distribution with expectations
(A1, ... Are). In each of these sampling schemes, the distribution of the test statistics, con-
ditional on the row sums, will be the same as for independent multinomially distributed rows.
With these alternative schemes, the power of a test may be computed using the law of total
probability and the power for independent multinomial sampling; see Lydersen and Laake [5].

The situation in the case of an » x ¢ table is more complex than that of a 2 x 2 table and
the results from 2 x 2 tables may not be generalized:

- Even if the row sums are equal, the three tests often give different results.

— The test power is a function of r x ¢ parameters, and substantially more difficult to study
than for a 2 x 2 table with only four parameters.

— The number of possible outcomes explodes. For example, if the row sums are 20, then the
number of possible outcomesina2 x 2,3 x 2, and 3 x 3 table are 441, 9261, and 53361,
respectively. For this reason, we used Monte Carlo simulations in the present study, while
Lydersen and Laake [5] could perform exact calculations for 2 x 2 tables.
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In a standard version of a test, the null hypothesis is rejected if the p-value does not exceed
the significance level «r. This guarantees that the type-I error probability does not exceed .
However, it is often much lower than «, and this fact causes much of the ongoing controversy
about exact test [6]. In a mid-p test version, only half the probability of the observed value
is included in the mid- p-value. In a randomized test, the decision is based on the p-value
supplemented by a randomization procedure to ensure that the probability of type-I error
equals a.

The purpose of the present paper is to compare the standard, mid- p, and randomized versions
of Pe, LR, and Fi exact tests for » x ¢ tables with r or ¢ values up to 3. Test power and type-I
error probability are compared. The objectives are to compare the three test versions and to
identify areas of the parameter space where one test statistic is superior to another.

2. Test statistics

Let
(11 nyc |
n=|: : )
E ST P9y
be an observed r x c table. Let
(X1 0 X |
x=|: : (2)
X1 e Xre

be a possible r x ¢ table with the given marginals (n14,..., %4, 041, ..., 4e). In our
notation, n denotes the actually observed r x ¢ table and x denotes a possible 7 x ¢ table
with the same marginals as n. Conditional on the marginals, x has a multiple hypergeometric
distribution under Hy {2, p. 971

(ITiz1 7+ (Hj-=1 n.j !)

Px) = = = 3
N'TiL, Hj=l x5!
The exact distribution of a test statistic T (n) conditional on the marginals is given by
PTx)=Tm)= Y,  Pw) @

x€8:T{x)=T(n)

where S is the set of possible x with the non-negative integer counts and the given marginals.
In the present paper, we define the test statistics T'(n) such that high values provide evidence
against Hy. The p-values are thus defined as

PTx)2Tm)= Y P )
xe8:T(x)=T(n)

Conditional on the row and column sums, the expected count in cell #, j under Hp is m;; =
niin4;/N.Rows or columns with zero sums are deleted from the table before calculating the
test statistics. If this results in r < 2 or ¢ < 2, we do not compute any test statistic, and define
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the p-value to be 1 regardless of the other observed cell counts. Else, Pe chi-square test, LR
test, and Fi exact test have the following test statistics:

e )2
Tpe(n) = Z S’.'Ll_m_’fl_ (6)
i Mij
Tir(n) =2 Zn,-j log (:—;—’—) ., whereatermis Qif n;; = 0, (M)
ij i
and
Tri(n) = —2log(y P(n)), (8)
where

1/2
r ¢
y = [(2”)(r—1)(c—l)N-(rc-l) I_I(nH_)(c-—l) l—[(n-i-j)(r_l)]

i=l1 j=1

is a normalizing constant to make T;(n) asymptotically chi-square distributed, like Pe chi-
square and LR statistics. Of course, any strictly decreasing transformation of P(n), such as
Tg (n) = — P(n), could be used as an equivalent test statistic for Fi exact test. The extension of

Fi exact test to r x c tables was first proposed by Freeman and Halton [7] and is often named
Fisher-Freeman—Halton's test.

The test versions are defined as follows. First, decide on a significance level a, for example,
a = 0.05. Then, compute the test statistic T(n) for the observed data set. In a standard test

version, reject Hy if p-value < «, where

p-value = P(T(x) > T(n)). 9

In a mid-p test version [8), reject Hp if mid-p-value < «, where
1
mid-p-value = P(T(x) > T(n)) + EP(T(JC) =T(n))

1
= P(T(x)=T(n)) - EP(T(x) = T{(n)). (10)

In a randomized test version, compute the next possibly lower p-value than what was actually
observed:

p-next = P(T(x) > T(n))

an
= P(T(x) = T(n)) — P(T(x) = T(n)).
Reject Hy with probability
] o — p-next
— 12
P(Reject Holn) = g ( p-value — p-next)’ (12
where
0 ift<O
g =14t if0<t<l (13)

1 ift > 1.
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Figure 1. The decision rule in randomized test version,

In other words, reject Hp if p-value < a, accept Hy if p-next > «, and reject Hy with the
above probability if p-next < a < p-value. This is illustrated in figure 1.

In order to compute the sums in equations (4) and (5), we could, in principle, compute T (x)
for all possible r x c tables x given the marginals. This may be quite computer time intensive
unless efficient algorithms are used. We used the SAS procedure StatXact PROCs to compute
P(T(x) = T(n)) and P(T (x) = T (n)) for given n, from which the p-value, mid-p-value and
p-next are readily obtained from equations (9) to (11).

For a randomized test, the type-I error probability always equals the nominal significance
level «. In practice, randomized tests are hardly ever used. One does not want to ‘throw a
dice’ to decide on whether to reject a hypothesis. However, we believe that a randomized test
version is a valuable tool in assessing the performance of different tests. If we only looked
at the standard or mid-p version, we could risk unfair comparisons due to different obtained
significance levels.

Some further remarks and references on the test versions are given in Lydersen and Laake [5].

3. Method for calculating power and type-I error probability

We consider independent, multinomially distributed rows where the parameters may be
listed as

iy, 11 - Mie
g=1] : : : (14)
Ny Tl 0 Tpe

The probability of the r x ¢ table n (1) is given by a product of » multinomial densities:

P(n:9) =[] (—cn—‘*—n—-) [1=7 A5s)
L)

i=1 Jj=1 j=1
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The probability P(Reject Hpl6) is the power or type-I error probability when the parameter
0 belongs to H; or Hy, respectively. In principle, these may be computed as

B(@) = P(Reject Hy|f) = Z P(Reject Hyjn) P(n:6), (16)

where P(Reject Hy|n) is O or 1 in standard or mid-p test version and may be between 0
and 1 in randomized test version. This was done for 2 x 2 tables by Lydersen and Laake [5].
However, the number of possible r x ¢ tables is much larger than the number of possible 2 x 2
tables. Even with an efficient algorithm, we were confined to estimate 8(8) by Monte Carlo
simulations. In the present paper, we did this by SAS and StatXact PROCs, For each given
set of parameters 0, a total of M simulations were performed. Except where otherwise noted,
M = 100,000. The SAS code using StatXact PROCs implementing the algorithm is available
from the authors.

In simulation number m, draw an r x c table n,, from the probability distribution (15).
The probabilities P(T(x) = T'(n,,)) (5) and P(T (x) = T(ny,)) (4) are found by StatXact
PROCs. Next, compute p-value, mid-p-value, and p-next. In the standard or mid-p test ver-
sions, set P(Reject Hpln,) = 1 (0) if p-value or mid-p-value is < @ (> «). In a randomized
test, P(Reject Hy|n,,) is given by equation (12). Finally, compute the estimate

, . I & .
B(®) = P(Reject Hol6) = -~ > P(Reject Holn). (17)

m=1

For the cases where we compute obtained significance level, we know that the true answer
is Pma(0) = a for the randomized test versions. In these cases, we used the method of control
variates [see ref. 9] to adjust the estimated values for the standard and the mid-p versions:

Bai(8) = B(0) — (Bma(8) — a0). (18)

4. Results

We have performed simulations for 3 x 2, 2 x 3, and 3 x 3 tables. An overview of the per-
formed simulation studies is given in table 1. In the table, we have also indicated the ranking
of the powers of Pe, LR, and Fi tests. We have, to some extent, emphasized on 3 x 2 tables,
since they occur more often, in practice, than 2 x 3 and 3 x 3 tables.

In all the simulations performed, we observed that the mid-p and the randomized test
versions have approximately equal power. It follows from its definition that the standard
version has lower power. In some cases, the power is notably lower, as shown fora 3 x 2 table
in figure 2. In 3 x 3 tables, the three test versions have approximately the same power. This
is understandable, since the number of outcomes is much larger in 3 x 3 tables, making the
test statistic closer to a continuous stochastic variable.

The obtained significance level of the standard test is sometimes substantially less than a.
The mid-p test version obtains a significance level closer to o, and seldom exceeds «. By
definition, the obtained significance level of the randomized test equals «. This is illustrated
in figure 3.

Figure 4 shows a comparison of the mid- p versions of Pe, LR, and Fi tests. In this particular
case, Pe and Fi tests have approximately the same power and LR has somewhat lower power.
Comparisons of the standard versions and comparisons of the randomized versions show
approximately the same power differences (figures not included here). In fact, we have
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Table 1.

Summary of performed Monte Carlo simulations.

453

niy

Test power

3 x 2 Tables

04 06
01 09
01 09

Ry =n =nmy =k, k{5, 10,..., 100}

Pe>LR~Fi

04 06
01 09
01 09

niy =3k nyy =n3y =k, k€ (5,10,...,100)

LR>PexFi

04 06
01 09
01 09

niy =k npy =n3p =3k, k €5, 10, ..., 100)

Pe~Fi>LR

01 09
04 06
04 06

niy =nyy =n3. =k ke{510,...,100}

LR~Fi>Pe

0.1 09
04 06
04 06

Py =3k, nyy =n3y =k, k € (5,10,..., 100}

Pe ~Fi > LR

0r 09
04 06
04 06

nyy =k,n2+=n3+=3k,ke{5. lO....,lOO}

LR > Pe = Fi

025 0.75
025 0.75
025 075

nyy =nzp =n3 =k, k{5 10,...,100)

m € {0.01,0.02,...,0.5)

T3 =m =My

Al =n2y =n3y =20

04 06
01 09
025 0.75

n+ =n2y =n34 =k, k€{5,10,...,100)

Pe ~Fi> LR

0.7 07
0.2 08
01 09

nl+ =nyp =n3, =k, k €{5,10,...,25)

Pe> LR =~Fi

07 03
0.2 08
7y 11—y

where 3, € {0.05,0.10, ..

., 0.95}

ni4 =n24 =n3; = 10

Mainly Pe > LR ~ Fi

but for mid-p and

3 near 0.5:
LR=~Fi> Pe

0.7 03

02 038

Ty -y

where w3, ~ R(0,0.3)

R4+ =Ry =N34 = k.ke {5,10,.
M = 10,000

.., 100}

Pe 2 LR # Fi

03 07

08 0.2

i 1—my

where m3; ~ R(0,0.3)

ri+ =nm =n3e =k, k €(5,10,.,.,30}
M =10,000

Per 1R~ Fi

03 07

08 02

T l-my

where n3; ~ R(0,0.7)

Niy =Ny = N34+ =k ke {5. 10....,75}
M = 10,000

PexxLR~F

(éontinitad)
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Table 1. Continued.

n

ni+

Test power

(m11, 721, m3)) consists of
all triplets from
{0.1,0.2,...,0.9)

ni+ =Ny =n34 =25

Small differences

(711, 721, 7a3) consists of

niy =45,n4 =151, =15

Pe ~ Fi. LR is

all triplets from larger or lower

{0.1,0.2,...,0.9)

2 x 3 Tables

04 03 03 n =ny=n3 =k ke(510,..., 110 Almost equal

0.1 045 045

025 0375 0375 niy=n3 =n3, =k, ke(510,...,110)

025 0375 0375

01 02 07 ne=my=nq4 =k kel510,...,25) For k = 10:

05 03 02 Pe~Fi>LR
Fork = 5;
LR >Pe=Fi

01 02 07 ri+ =n3y =n34 =15 For 3; near O or 1:

l—m3y 1-—my .

31 3 2 LR > Pe x Fi

where 73; € {0.05,0.10,...,0.95) else:
Pe=Fi>LR

3 x 3 Tables

04 03 03 nyy =ny =n3y =k, ke{510,...,45) Pe>LR~Fi

0.1 045 045

0.1 045 045

0.1 045 045 ni =nq4 =n34 =k, k€{5,10,..., 45} LR = Fi > Pe

04 03 03

04 03 03

w1 € {6.01,0.02,...,0.5) Ry =N =n3y =20

w3 =" =AY

T2 = M3

04 03 03 Ry =nze =my =k ke{510,....45) Pe> LR =H

01 045 045

0.25 0375 0375

observed that for almost any fixed set of parameters the power differences among Pe, LR,
and Fi are approximately the same whether we look at the standard, mid- p, or randomized
test versions. The exceptions are the cases where the randomized versions have approximately
equal power and the standard versions have different power. However, in these cases, the
standard versions with lowest power also had lowest obtained significance level. As the ran-
domized versions always meet the target significance level, we mainly look at randomized
versions for comparisons of Pe, LR, and Fi.

We have observed that in general the ranking among Pe, LR, and Fi does not depend on
the row sum, as long as the ;; and the ratio between the row sums are kept fixed. The only
exception we have seen from this observation was for a certain 2 x 3 table in which LR has
highest power for row sum less than 7, when the power was less than 0.45 and the test has

limited practical application.
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Figure 2. Power for standard test version, 3 x 2 table, equal row sums, (71, 721, m3;) = (0.4, 0.1, 0.1).

Since the ranking among Pe, LR, and Fi hardly depends on the sample size, it is of interest
to study the power of these tests when the probability parameters 7 vary. This was done
by estimating the power for all 9° = 729 triplets (7], 721, r3;) from {0.1,0.2,...,0.9) ina
3 x 2 table. We did this for two cases, when ny = na, = n3; = 25 and when n;, = 45 and
nay+ = n3¢ = 15. Out of these 729, there are 720 triplets where at least two x;; differ. For the

0,06

0,05

0,04

0.01

0 20 40 60 80 100 120

Figure 3. Obtained significance levels, 3 x 2 table, equal row sums, 71y; = 712) = 731 = 0.25.
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Figure 4. Power, 3 x 2 table, row sums nj = 3 naq == 3n3y, (7111, 721, T31) = (0.4, 0.1, 0.1).

case with equal row sums, the average power for these 720 triplets for Pe, LR, and Fi are
shown in table 2. In this case, the ranges of power differences for the randomized version are
found to be between Pe and LR (—0.0215, 0.0266), between Pe and Fi (—0.0208, 0.0224), and
between LR and Fi (—0.0046, 0.0032). For the case row sums 45, 15, and 15, these ranges are
between Pe and LR (—0.0711, 0.1019), between Pe and Fi (—0.0285, 0.0219), and between
LR and Fi (—0.1159, 0.0842).

The power differences are larger for the case with unequal row sizes, and we explore these
further. A point of interest would be to try to identify areas of the (7, 721, 73;) space where
a certain test is better than another. For the randomized test version (and the mid-p version),
Pe and Fi have approximately the same power for all values of (y;, 721, 731). In a closer
investigation (not included here), we see that for my; from 0.4 to 0.6, LR is most powerful
and for my; below 0.3 or above 0.7, Pe (and hence Fi) are most powerful. The areas where
the test has a power closer to 1 than to 0 is of most practical interest. Figure 5 shows the
power difference between Pe and LR as a function of the power of Pe. The figure shows that
Pe, and hence also Fi, are most powerful mainly where the power is higher. Another point of
interest is the area where there is an important difference between at least two ;). Table 3
shows the average test power for the 588 triplets where two of (71, 72, m3;) differ by at
least 0.3, when all row sums equai 25, and when n;; = 45 and n3, = n3, = 15. The average

Table 2. Average power fora 3 x 2 table for the 720 triplets (11, 73, 7731} from {0.1, 0.2, . ... 0.9} where at
least two ;) differ.

ni+ =Ny =n3y =125 ni+ =43, n4 = 15,34 =15
Standard Mid-p Randomized Standard Mid-p Randomized
Pe 0.749 0.760 0.762 0.706 0.712 0.721
LR 0.751 0.760 0.762 0.710 0.714 0.715

Fi 0.751 0.760 0.762 0.716 0.721 0.721
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Figure 5. Difference in power for a 3 x 2 table, for r14 = 45, nay = 15, n34 = 15, for the randomized versions
of Pe and LR, as a function of the power of Pearson’s test.

Table 3. Average power for a 3 x 2 table for the 588 triplets (711, 21, 73t) from {0.1, 0.2, . .., 0.9} where two
;) differ by at least 0.3.

nyy =Ny =n3p =25 ni=45n43=15,n3, =15
Standard Mid-p Randomized Standard Mid-p Randomized
Pe 0.869 0.878 0.879 0.823 0.835 0.836
LR 0.871 0.878 0.879 0.825 0.829 0.829
Fi 0.871 0.878 0.879 0.831 0.835 0.836

obtained significance levels are given in table 4. For equal row sums, there are practically no
differences between the average test powers. For nj; = 45 and ny4 = n3,. = 15, Pe and Fi
are slightly better than LR for the mid-p and randomized version. For the standard version,
Pe has lowest power and lowest obtained significance level, whereas Fi has highest power and
highest obtained significance level.

Table 4. Average significance level obtained for a 3 x 2 table for the nine triplets (711, 721, 713;) from
{0.1,0.2,...,0.9} with equal ;.

RBle =Ny = N34 =25 iy =45, n24 =13, n34. =15
Standard Mid-p Randomized Standard Mid-p Randomized
Pe 0.038 0.046 0.050 0.039 0.049 0.050
LR 0.039 0.046 0.050 0.043 0.051 0.050

Fi 0.040 0.045 0.050 0.044 0.051 0.050
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5. Conclusions and discussion

The mid- p and randomized versions have approximately the same power. The standard version
has lower power, especially in smaller tables (small N or small r x ¢). The obtained signifi-
cance level is, of course, smallest for the standard test versions. The mid-p and randomized
test versions have nearly the same obtained significance level. The obtained significance level
of the mid-p version seldom exceeds that of the randomized version, and never much.

There are cases where the power differences among Pe, LR, and Fi are of practical impor-
tance, with power differences up to about 0.10. If there is a certain ranking of the tests for a
given set of parameter values, this ranking tends to be the same if the row sums are multiplied
by the same constant. Further, for any given set of parameter values, the ranking among Pe,
IR, and Fi tends to be the same for the standard, mid- p, and randomized versions.

If the row sums are equal, the power does not differ much. This is in accordance with the
2 x 2 tables, where the power is equal for equal row sums [4]. For the cases with unequal row
sums, the ‘winner’ depends on the parameter values. There is no uniformly best test among
the three. For the cases we have studied, averaged over the H; values of (m;;, 721, m31), the
power of Pe and Fi are approximately equal and is slightly higher than LR. For some particular
parameter values, we have seen power differences of about 0.10 in favor of Pe and Fi. In a few
cases, perhaps characterized by poorly balanced designs, LR performs slightly better than the
other. From the trends we have seen, this conclusion ought to be valid also for r x ¢ tables
with r or ¢ greater than 3.

We have only carried out simulations for ¢ = 0.05. Forthe 2 x 2 tables studied by Lydersen
and Laake [5], the mutual ranking of the tests did not depend on the significance level. We
found no reason to believe this fact to be different for r x ¢ tables.
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