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SUMMARY. Lot T, dendte the unbissed mi variance eeti of a .

obtained by sampling until r succossos tumn up. Then
V(T.) = p B4+ X, )

ahore X,., denotea tho number of trials nacessary for (r— 1) successes in & soquonce of Barnoulli
trials with probability of succees p. ¢ = I-p. An important advantage of this formuls is that it
permits the power sories oxpansion :
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V(T)) = 59 l El -1y

P gl rmpee
] —2

i Lr-k—)

Ek, r—&) ]

whore E(k, r—k} = pt g~ ! y~' {(1—g)"t dy. This expansion allows us to derive sharper bounds
for V(7) aad oan be used to svsluats P(T,) to sny desired dogree of scourscy.

1. STATEMENT OF THE PROBLBM

Lot U = (uy, 4, ...) donote & sequenco of Bernoulli trials with an unknown
probability of succoss p, i.0., P(u = 1) = p and considor the problom of estimating
the parameter p by inverse sampling. i.o., the outcomes u’s are observed sequentially
until r successes turn up for tho first time. Let X, denote tho number of trials
required. Then Ty = (r—1)f(X,—1) is the ouat ry unbissed mini Variance
estimator of p. There is, howeser, no simple tractable oxpression for V(T') which
can bo usod to evaluate V(Ty) accurntely (cf. Best, 1974 and Mikulski and Smith,
1976 in this connection). The object of this note is to dovelop an cxact oxprossion
for 7(T;) which admits a simplo power sories oxpansion in p. It is shown that thia
power soriea can also bo used to derive eimple and sharper bounds for V(Ty).

2. DERIVATION OF TEF FORMULA

Lat V, denoto the variance of Ty = (r—~1){(X,—1) and E{s, m) = E{(X,+m)-1],
where X, denotes the number of trisls 'y for in & seq of
Bornoulli trials with probability of succoss p. The following lomma plays & central
role in the derivation of a simple formula for P,.
T AM3 (1970) subjecs dasriflcasion : Primary 62D08 ; Soondary 80C05,
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Lomma 2.1: For each positive integer 2 3 1,
(m-a)E(e, m) = p+{m+1)gE(s, m+1), . 21)
and for each posilive snteger 8 > 1,
(s—1)E(s, m) = p—(m+D)pE(s—1, m+1). . (22)
Proof: s cloar that
1—(m+8)E(s, m) = E[(Xy—2){(X,+m)]

_ (j—2 -1 N
=L o [101] o

- . ;o
I L, P
= QE[X. (X, +m41)]
= g{l —(m+1)E(s, m+1)]. . (23)
Formula (2.1) easily follows from (2.3). Formula (2.2) can be established on similar

linoa.
This lemma allows us to ostablish the following theorem :

Thoorem 2.1: Let r > 1. Then

¥, = pgE(r—1,1). v (24)
Proof : 1t ia cagily scen that
Ve = (r—1)pE(r—1,0)—p". . (2.6}

Lotting 8 = (r—1) and m =0 in (2.1) and then replacing E(r—1,0) in terma of
E(r—1,1) from (2.1) eatablishes (2.4).
Corollury 1: For r> 2 and for each k31, 1 Lk r—1,

vV, = =Tyt -‘:—:f’— p"“'E(l‘,r—k)]
r—k-1 o (26)
uhwre Etk,r=k) =t | g (1—p) ¥ dy. . 2
o

Tho corollary is based on the repeatod uso of the recurrenco relation given by
(2.2) and the casily vorifiablo identity (2.7).

Tho corollary furnishes a simple power sories expansion for Vyin increasing
powers of p and can bo ensily used to compute ¥V, to any preassignod degreo of
accuracy., To got a rough idea of tho remainder term in (2.6), noto that

Etk, r—k) = E{(Xetr—E)) > [E(Xe+r-B]
=pllr—(r—k)q). . (28)
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3. SBARPER BOUNDS FOR Vy
Mikulald and Smith (1978), 8ahai (1080) and Sathe (1977) bave furnished upper
and lower bounda for V,. Their i ig show that agymptotically V, 2= pig/r.
We now proceed to d te how our techniques can be used in a unified way
to derive sharper bounds for V,.
For examplo, letting k = (r—1) and & = (r—2) in (2.8) and (2.8) yields the
following bounds

<

Bal 2
=) =) ah
These bounds are bettor than the Mikulski-Smith bounds, but worse than Sathe’s
bounds.
To obtain bounds which sre sharper than those of (3.1}, let us note that by
the Cauchy-Schwarz inoquality
E(k,r—k—1)E(k, r—k+1) > EYr k). . (39

So, on evsluating E(k,r—k£1) in terms of E(k,r—k) from (2.1) and simplifying,

we got
qU—1)EMk, k)~ plrp+ k) Etk, r—E)+p* < 0. . B3
Henco

Bk, r—k) 3 2p[lr—(r—k)g+ V{lr—(r—k+2)g) +4pg(r—E+ D)) ... (34)
Now letting k = (r—1) and (r—2) in (3.4) and (2.8) leads to the following

bounds for r > 2:

oY < 2L [1_4”-*
[r—@) + v{(r—3q)* +8pg}] "N -2 (r—29)+ V{(r—4g)*+12pq}
(3.5)
It is interesting to note thut the lowor bound to V, in (3.5) is the same as that
of 8athe (1977). His upper bound is

2p%g
V . .. (38
S RV N @e
A diroot comparigon of tho upper bound in {3.5) with that of (3.8) showa that for
r =3, Sathe's bound is sharper, while for r > 4, the upper bound in (3.5) is sharper.

Next letting k = (r—3) and &k =(r—4) in (3.4) and (2.68), we obtain the
following bounds :

Forr > 4.

g 12p*
7> 2 - P e viesEn 67
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and for r > 5,

Voo B o B a8
(=) r=8) " (r=3)r—4) (r—8)r—d)lr—dq+ \/{(r—eq)’-{—%pq)]l
(3.8)

A numerical comparison of the lower bound in (3.5) with that of (3.7) shows that
for r = 4, (3.5) is sharper; for r = 5, (3.65) is sharpor for p > -202; while for r » 6,
(3.7) is sharper than (3.5). A similar numerical comparison of the upper bound in
(8.8) with that of (3.5) shows that for r = 6, (3.5) ia sharper; for r = 8, (3.5) is sharper
for p » -183; for r =7, (3.6) ia sharper for p > -565; whilo for r > 8, (3.8) is
sharper than (3.5).

1t is intoresting to note that a simplo integration by parts of the formula in
(2.7) yields the following reourronce relation

rVy = pg—(r—)g/p) Vrey- . {39)
This equation can be usad to obtain yet anather system of bounds from the existing
bounds. For example, using the lowor bound for Vy,, from (3.5), we find thet
(-1) 2pq*
r 1 r+1 =@+ vilr+1—39) +8pg}l.
Numorigs! cornparisons of (3.10) with othor upper bounds of this paper shows
that (3.10) is sharper than (3.6), for r = 3 and 4, (3.10) i sharper than (3.6); while

for each r > 4, thoro is a p(r) > 0 such that (3.5) is sharpor than (3.10) for » < »(r)
with p(r) approaching one in the limit.

et

(3.10)

From (3.7) and (3.9), one can also derive the follawing upper bound

v, < P2 [1+ o 12p9 a7 )
v (r=2)  (r=2)(r+1=3)+ V/{(r+1—69)*+18pg}.)

In our numerical invostigation this bound has performed remarkably well. It is
sharper than (3.5) for all » > 3. It is sharpor than (3.6) for r > 4; whilo for r = 3,
it is sharpor than (3.8) for p > -266. For large values of r, the bound given by
(3.8), ia, howsveor, sharper than (3.11). We have not included Sahai's upper bounde
(Sahsi, 1980) into this investigation since the derivation of his upper bounds is
erroneous.

Likewise from (3.9) and (3.11), one geta the following lower bound

(3.11)

V> P4 {1y M 1243 .
R R e e G ee = 7

This lower bound has aleo performed quite well in our numerical inveatigation. It
is sharper than (3.5). It is also sharper than Sahai’s (1980) lower bound. It is

sharpor. than (3.7) for p > p{r), where p(r) depends on v and increages to 48 for
r > 2

. (312
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