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Abstract

This paper concerns with the analysis of item response data, which are usually measured on a rating
scale and are therefore ordinal. These study items tended to be highly inter-correlated. Rasch models,
which convert ordinal categorical scales into linear measurements, are widely used in ordinal data
analysis. In this paper, we improve the current methodology in order to incorporate inter-item correla-
tions. We have advocated the latent variable approach for this purpose, in combination with generalized
estimating equations to estimate the Rasch model parameters. The data on a study of families of lung
cancer patients demonstrate the utility of our methods.
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1. Introduction

Consider the following situation, where I multiple-choice questions are given to N
subjects. For question i (i=1,...,I) and subject j (j=1,...,N), we obtain a
response X;;, which takes a value k (k =0, ...,m;); there are m; + 1 possible val-
ues (categories) for question i. Rasch models (RAscH, 1960), which convert ordi-
nal categorical scales into linear measurements, are widely used in ordinal data
analysis. The dichotomous Rasch model was designed to measure separate latent
traits for each response category. Over the past four decades, several generaliza-
tions of the model have been developed. In the threshold approach, the dichoto-
mous Rasch model is assumed to hold with a certain probability of passing the
thresholds between two neighboring response categories (ANDRICH, 1978). The
least restrictive of these generalizations is given by the partial credit model
(WRIGHT and MASTERS, 1982), often referred to as the polytomous Rasch model
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because of its generality. The probability that subject j (j = 1,...,N) responds to
category k+1 (k=0,...,m;) for item i (i =1,...,]), ie. P(Xj = k) = my, is
defined as

k
exp > (B—dw) e o
T = k'=0 - ?p(kf’j Otk) 7 (1)

m; k — om
> exp > (B — diw) > exp (kf; — oy)

where ﬁj is the ability parameter for subject j, 0y is the difficulty parameter of

k
item 7, and oy is the cumulative threshold parameter defined as oy = »_ Ou. As
k=0
an example, ﬁj can be seen as student’s ability to solve the questions in a certain
math test, while d; describes how difficult these questions are.

We note that these questionnaire items are inter-correlated. For example, in a
study using items that measure symptom distress on a scale, many of the items are
closely correlated. If one complains about frequency of chest pains, he/she will
most likely also complain about their intensity. However, in the current Rasch
method, the item difficulty parameters are assumed conditionally independent gi-
ven subject ability parameters. As shown in the literature (for example, LIANG and
ZEGER, 1986), ignoring the presence of significant correlations can lead to serious
bias in the study conclusions and a loss of efficiency.

In this paper, we develop a method of accounting for inter-item correlation
(OLssoN, 1979), known as the polychoric correlation, in item response data. We
formulate the polychoric correlation coefficient using the concept of latent vari-
ables, variables that are usually continuous, although unobservable, and that are
the source of the apparent complexity of the data (MILLER et al. 1962). We use the
generalized estimating equations approach (GEE, LIANG and ZEGER, 1986) to ob-
tain consistent estimates of the parameters of the Rasch model.

2. Correlation for Ordinal Random Variables and the Rasch Models

When considering dependency among ordinal categorical data, OLSSON (1979)
showed that the Pearson correlation leads to biased estimates. Instead, one should
use the polychoric correlation, i.e. the correlation among the underlying latent
random variables. This is different from the traditional latent trait model ap-
proaches (for example, ANDERSON, 1977, and FISCHER, 1983), where the latent
trait is related to the person ability parameter 3, and the correlation is that for p as
well.

PooN and Lee (1987) developed the most general model for estimating the
polychoric correlation. The full maximum likelihood estimators of the polychoric
correlation coefficient and threshold parameters were obtained via the Fletcher-
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Powell algorithm. A computationally more efficient approach, called “the partition
maximum likelihood method,” was also proposed by PooN and LEE (1987). PooN,
LEE, and BENTLER (1990) used a pseudo maximum likelihood approach, which is
computationally more efficient than the full maximum likelihood approach. RON-
NING and KUKUK (1996) compared the efficiency of the estimates from a joint
likelihood against those of a conditional likelihood for measuring the association
of two ordinal variables. The maximum likelihood estimates of the correlation and
threshold parameters are consistent in both approaches; however, estimates from
the conditional model are less efficient.

We now show that polytomous Rasch model (1) can also be derived from the
concept of a latent variable approach, if the cut-off threshold parameters are cho-
sen appropriately. Corresponding to the ordinal data X;; and m; = m for all i, we
assume the existence of a continuous random variable W;; such that X;; = k if and
only if W;; € (¢jjx—1,cjk] where k=0,...,m with ¢; | = —oco and ¢, = 0.
Fork=0,....m—1, let

k
> exp (K'f; — ow)
-1 | ¥=0
e =" = ()
> exp (K'B; — o)
K'=0

where W' (a) is the upper 100(1 — )% point of an assumed distribution. Imme-
diately, we get
exp (kB; — oi)

m

S exp (KB, — ow)

k'=0

i = Wcyx) — Pleju-1) =

This is the Rasch model (1) from a latent variables point of view. If we assume
a normal distribution for Wj;, we take c;j r = ®~'(.) in (2), where @ !(a) is the
upper 100(1 — )% point of the standard normal distribution.

We can extend this idea to a multi-item case, where there can be more than one
item. Suppose W; = (Wy;,.. ., W,j)’ is the latent response vector corresponding to
the jth individual. We assume that W; follows a multivariate distribution with a
joint c.d.f. W; such that each Wj; has the marginal c.d.f. W;;. Again, take c;j x to be

We see that the Rasch model (1) holds for each component X;;. Moreover they
now have dependency according to the specification of W;.

Intuitively, we treat the correlation between any two items as if it is same for all
individuals. Thus one immediate choice of the joint distribution is @, the /-dimen-
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sional multivariate normal distribution with mean 0 and a variance matrix with
compound symmetry structure and an equal correlation p among items:
X = (1—p)I+ pll" where I is the I-dimensional identity matrix and 1 is a vec-
tor of 1’s. Then, the joint probability that the jth individual has the response k; on
the ith item (i = 1,...,1), is

ma, k)= (=D X D (e Cl—ir) -
ity ey i=(0, 1)

For any two items (i # i') within a multi-item framework, we have
7,0, j(k, k') =@ (i k, cijwr) — Pcyj ks Coj k1)
— D(cjj k-1, crji) + Plcij k-1, Ciji—1) - (3)

3. Estimation and Inference Method

The parameters to be estimated are f (consisting Im — 1 distinct values of [3 ’s), O
(Im item difficulty parameters), and p. Denote 0 = (B, &')" and 0, = (0', p)'.

3.1 Estimation of the polychoric correlation coefficient

Given any two correlated items x; and x;, (i,7') € {1,...,I}, the full likelihood
for p given 0 is:

ik, k'
,Cp(ﬂ) = H k];{[ (J'E(i" il):j(k’ kl))I(J )
] : !

where I(j,k,k’) is an indicator function of whether the jth subject responds to
categories k and k' to the respective two items, and m(; s ;(k, k') is given as in (3).
Note that the likelihood function is not shown as a dlrect function of p, but
through the expression of m(; sy j(k,k’). Therefore, the log-likelihood can be ob-
tained as

lP(ﬂ) = lOg ‘CP(O) = Z Z I(/" kv k/) lOg (n(i,i’),j(k’kl)) )

J kK
and the estimating equation for p is given by

ol,(0 I(j, k, k'

8[) j kK ﬂ:(l,l),j(k7k)

where J'IS( 0. (k, k) =[P(cjrs cijw) — Olcjr cijw—1) — cijr—1, Ccrjr)

+ ¢(cj k-1, cij—1)] and ¢(.) is the density function of a bivariate standard nor-
mal distribution with correlation coefficient p.

We can plug in an initial estimator of @ into (4) to get an estimate of p through

an iterative Newton-Raphson method. The second-order derivative of the log-like-

x W (k,K) =0, (4)
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lihood function with respect to p is:

2
ThO) _ 5 15,1,4) x i K K) ()06 K)
op? Jok K Tl?(i,i/),j(k, k') W(i,i'),j(k k')

where ntf; ) i(k, K) = [¢'(cik cijw) — &(cijn cjw—1) — ¢lciju-1, ey "2')
+$((Cu)k 1 crjp—1)] and ¢'(x,y) = (p/(1 = p?) + (x—py) (y — px)/(1 — p?)?)
X G(x,y

Therefore, the iterative equation gives

o= (][]

, t=1,...,T (5)

ple=1)

at some 7.

This is how the polychoric correlation coefficient p; ; between any two items
i,i’ is estimated. Based on the estimators of p, , for all (I(I—1)/2) item pairs,
the common p for all / items can be estimated by taking the average of these p; ;
as follows: /

25 b
f): [ L 4 )
-1

It follows from the general results of the maximum likelihood estimates that if the
initial estimate of 0 is consistent given the true value of p, then p, ;, and therefore p
is consistent and asymptotically normal with mean p and variance estimated by

-1
—4 8219 (9)
IS(T)

Vo o =y

3.2 Estimation of the Rasch parameters

Since the correlation among the items is modelled implicitly through the polychoric
correlation, it is difficult to write the likelihood function in the usual way. We use the
GEE approach to obtain consistent estimates of the parameters of the Rasch model.

First, let us define some mathematical characteristics of the response variable. For

(i,i’)e{l,...,I},deﬁneulj:E(Xij):];)knl-jk,c@ ), = Var (X;) = Zkﬁyk M%ﬁ

and

OG,1),j = = Cov (XIJ7XIJ) k%:O kk/ (i,1) (k7k/) = Myl -
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The estimating equation for @ is given as
N
Uue) = Zl D@ (xj — ) =0, (6)
=

where x; = (Xy;,....Xp), w=E(x), @ = (0,7, /)1y is the variance-covar-
iance matrix of x;, and D; = Ow;/90 is an I X p matrix.
Let us re-write the estimating equation (6) in the following way:

U(8,p(8)) =>_Uj(0,p(8)) =0, (7)

where p(0) is a consistent estimator given 0. As shown in ANDERSON (1973),
when the test length is fixed, the estimates of the “structural” parameters & (NEY-
MAN SCOTT, 1948) are not necessarily consistent. According to HABERMAN (1977),
a sufficient condition for consistency of the estimates is that the number of items
also gets large fast enough so that (log N)/I — 0. Similarly, we obtain the follow-
ing asymptotic properties of 0, solutions to (7).

Theorem 1: Under mild regularity conditions, when N(log N)*/I* — 0, and
that p is consistent for p given true parameter 6, N2(0 — 0) is asymptotically
normally distributed with covariance matrix given by

> DQ'D;
Var (N*(0 — 0)) = lim |~ i

as N — oo. O
We omit the proof, as it follows along the similar lines as those in LIANG and
ZEGER (1986).
The solution to (6) may also be obtained iteratively:
~1
00 —@U-b 4

N
Z] D;sz,—'D,-
j:

N

Zle{gj_l(xj - Hj)] )

J= .
G

t=1,...,T (8)

at some 7.

3.3 Two-step iteration method

To estimate parameters, we start with some initial estimates obtainable using the
Spearman’s correlation coefficient for ordered categorical data for p and the esti-
mates from the traditional Rasch model for 0. Given these initial values, we use
(5) and (8) alternatively to get the estimates of @ and p. That is, at each step of
the iteration, we solve for (5) to obtain an estimator of p, and then given the
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updated value of p, solve for (8) to obtain an estimator of 0. We repeat this proce-
dure until we reach convergence. Since, given any initial consistent estimators, the
estimates obtained from (5) or (8) are consistent after the first step (LEHMANN and
CASELLA, 1998), the final estimates from this two-step iteration method after the
last step T are also consistent and asymptotically normal (OLssON, 1979). This
method also allows us to compute a consistent estimate of its asymptotic variance
matrix. The fact that in each of the two steps a portion of the parameters 0, is
replaced by its consistent estimator implies some loss of efficiency. However, this
loss is minor and negligible (OLSSON, 1979).

Therefore, the estimate ;SLTI., obtained from (5) after the last iteration at step 7T is
asymptotically normal with mean p and variance Var (p, ), which can be esti-
mated by '

— 0%1,(0)\
Var <p,~,,~/>=—< a‘;fz )>

~(T
o)

ii

where the right-hand side is evaluated at pl( ,,) after the last iteration step 7. Also

0" obtained from (8) after the last iteration at step 7 is asymptotically normal
with mean @ and variance matrix Var (0) which can be estimated by

@T) <ZD’ _ID)

when the right hand side is evaluated at 0" after the last iteration step 7.

o)

4. Efficiency Considerations

We now show the performance of our strategy through a computer simulation. We
replicated the simulation 1000 times to obtain the empirical distribution of the
estimates. We generated the latent variable for N = 100 subjects for I = 4 items
from a multivariate normal distribution. The correlation parameter p is chosen to
be 0, 0.3, and 0.7 respectively. Then the ordinal response data are obtained accord-
ing to the latent traits as generated, with a given distinct set of parameters. For the
dichotomous case, we used

B’ = (0,0.25,0.5,0.75,1)

for the ability of persons parameters and

0 —-03
0 -0.1
0 0.1
0 03
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Table 1

Summary of estimates of p in the dichotomous (I =4, m =1, N = 100) and polytomous
models (I =4, m =2, N = 100)

Dichotomous Polytomous
—_— i —_— P
p b Var () MSE(p) p Var(p)  MSE(p)
0.0 0.0289 0.0096 0.0104 0.0203 0.0397 0.0402
0.3 0.2516 0.0178 0.0201 0.3242 0.0740 0.0746
0.7 0.7511 0.0301 0.0327 0.7309 0.1185 0.1195

Note: The entries show the average, variance, and MSE of the estimated p in 1000 simulations.

for the difficulty of items, while for the polytomous case, they are
B’ = (0,0.25,0.5,0.75,1,1.25,1.5,1.75,2)
and

0 —-0.2962 0.2185
0 —-0.4270 04717
0 —0.3885 0.6263
0 —0.3852 0.1803

with 1’81 = 0 for identifiability (see WRIGHT and MASTERS, 1982).
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Fig. 1. Q-Q plots of p vs. standard normal quantiles
Note: Shown are standard normal quantiles against estimates of p for (a) p=0.3, (b)
p = 0.7 for the dichotomous model (/ =4, m =1, N =100), (c) p=10.3, and (d) p=10.7
for the polytomous model (/ =4, m =2, N = 100)
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Figure 1 gives the Q-Q plots of p when the true polychoric correlation coeffi-
cient is 0.3, and 0.7 respectively. We can see that the estimates closely follow a
normal distribution in both cases. Table 1 reports the performance of our estimates
of p in simulation. Both bias and variance increase with increasing values of p.
The bias in estimation is significantly reduced in the polytomous model, but the
variance is fourfold as compared to that in the dichotomous model.

Table 2 shows the relative efficiencies of the estimates for § with inter-item cor-
relation over those assuming independence between items, based on both empirical
and asymptotic distributions. When the true correlation is moderate, for example
p = 0.3, there is little improvement in efficiency between the estimates obtained by
recognizing the correlation among the items and those obtained under the indepen-
dence assumption. The relative efficiencies are very close to 1. However, when the
correlation is high, for example, p = 0.7, estimates based on recognizing the corre-
lation gain a significant efficiency as compared to the traditional Rasch model,
which assumes independence. The relative efficiencies could be as low as 0.73, and
at most 0.84. The result of the estimation of & also gives a similar conclusion.
Therefore, for the sake of brevity we have omitted the presentation of results on 9.

Table 2

Relative efficiencies of the estimators for f in the dichotomous (I =4, m =1, N = 100)
and polytomous (I =4, m =2, N = 100) models

§ p=0 p=03 p=07
Empirical Asymptotic Empirical Asymptotic

Dichotomous

0.25 1.000 9763 9814 .8250 .8403
0.50 1.000 .9847 .9896 7502 7338
0.75 1.000 9755 9783 7958 .8058
overall  1.000 9794 9839 7994 7841
Polytomous

0.25 1.000 9459 .9245 7455 7393
0.50 1.000 9635 9566 7196 71234
0.75 1.000 .9545 9630 .8259 .8404
1.00 1.000 .9293 9302 7403 7582
1.25 1.000 9771 9694 7993 .8037
1.50 1.000 9329 .9445 7587 7459
1.75 1.000 9798 9632 .8149 7904
overall  1.000 9687 9639 7769 7848

Note: The entries are relative efficiencies of the estimators for f, based on both empirical
and asymptotic distributions, and adjusted by the inter-item correlation compared to models
assuming the independence of items. The row labelled ‘overall’ corresponds to those of the
trace of the variance matrix. Ratios of less than 1 indicate improvement produced by taking
inter-item correlation into consideration. The first half are for the dichotomous model and
the second half for the polytomous model.
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Table 3
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Significant coefficients of reduced regression models of family care satisfaction scores in the
lung cancer study

Average Score

Traditional Rasch

Rasch With Correlation

intercept

1.402(0.312)

Family member:

1.303(0.175)

1.397(0.154)

Age

51-65 **_—().346(0.106) #%%_().210(0.058) *—(0.149(0.058)
65+ —0.026(0.098) —0.041(0.061) —0.048(0.059)
Ethnicity

European  N/S #3#(),112(0.048) *0.101(0.047)
FAD *#*—(.346(0.101) #%%_(),254(0.051) #*%_().268(0.052)
DIS —0.114(0.074) #%% (), 140(0.020) #*%_().121(0.019)
DIS2 #4%(),033(0.009) *#%%(),035(0.004) *#%%(),033(0.004)
Patient:

Age

51-65 N/S #%(),273(0.105) N/S

65+ N/S 0.070(0.103) N/S

Education

HighSch  N/S —0.106(0.078) —0.045(0.078)
College N/S *0.149(0.065) *0.166(0.066)
SDS *##().211(0.071) *(0.109(0.042) #0.099(0.042)

Note: Shown are the estimates (standard errors) of coefficients with p < 0.1 from regression
models using the simple average scoring method, the traditional Rasch method, and the
simultaneous Rasch analysis with polychoric correlation; the level of significance is as indi-

cated (*: p < 0.05; **: p < 0.01; ***: p < 0.001; N/S: non-significant).

5. Numerical Example: Family Health of Lung Cancer Patients

In this section, we illustrate the methods described in the previous sections by
using data from a study of lung cancer patients (KRISTJANSON et al., 1997). This
study was undertaken to examine family care characteristics (family care expecta-
tions, perceptions, care satisfaction) and family health status across the illness
trajectory. The objective was to understand the level of “family care satisfaction”
in association with other family health and care measures.

The study involved 117 patients. Information on each patient and his/her family
members was collected at the time of entry to a health care facility. Other family
health and care variables were measured at various times and on as many as
twelve occasions by means of questionnaire.

Demographic information was collected and following family health variables
assessment tools were used: SDS (symptom distress scale with 13 items; 1 — nor-
mal, 2 — occasional distress, 3 — frequent distress, 4 — usual distress, 5 — constant
distress), FAMCAR (family care satisfaction with 20 items; 1 = very satisfied,
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2 = satisfied, 3 = undecided, 4 = dissatisfied, 5 = very dissatisfied), SOS (symp-
tom of stress scale with 94 items; 0 = never, 1 = infrequently, 2 = sometimes,
3 = often, 4 = very frequently), and FAD (family assessment device with
12 items; 1 = strongly agree, 2 = agree, 3 = disagree, 4 = strongly disagree).
The family care variables include: FEXP (family expectations scale with 16 items,
ranging from 0 = not at all important to me to 10 = very important to me) and
FPER (family perceptions scale with 21 items; 1 = strongly agree, 2 = agree, 3 =
uncertain, 4 = disagree, 5 = strongly disagree).

For each of the above family health and care variables measured by a rating
scale, we used the two-step iteration method (5) and (8) for the Rasch model to
obtain its polychoric correlation and an “ability of persons” parameter for each
family member adjusted for the polychoric correlation among items.

The polychoric correlations are quite high to be ignorable, with over .85 among
the family expectation items, nearly .5 among the family assessment device items,
and about .3 for other items.

The “ability of persons” parameter can alternatively be obtained via the popular
average scoring approach taking a simple summary score for each family member
on a number of given items and the traditional Rasch model approach using the
CON procedure (WRIGHT and MASTERS, 1982), which assumes no dependency
among items or parameters. Our goal here is to compare the three approaches: (1)
the popular average scoring approach; (2) the traditional Rasch method; (3) the
proposed Rasch method incorporating polychoric correlation, an improvement over
SHENG and CARRIERE (2002). Traditionally, these scores are then subjected to re-
gression analyses to build a model, describing relationship between a score of a
dependent variable and scores for a set of regressors.

We now demonstrate the varying degree of conclusions possible from different
scoring methods in a regression model. The dependent variable is the family care
satisfaction level (FAMCAR), predictors are the demographic variables and other
family health and care variables, all estimated from each of the three approaches
described above. A new variable is created, named “discrepancy” (DIS) that de-
scribes the discrepancy between the family expectations scale and the family percep-
tions scale. Here, we note that the explanatory variables are estimated with error
from the Rasch model and that it may be appropriate to consider a measurement
error model instead. However, for the purpose of comparisons, we focus on the per-
formance of these scores in the traditional multiple regression model in this paper.

Table 3 displays the ordinary least squares estimates of all significant coeffi-
cients (p < 0.05) in the final model. The following variables are common in all
three models: the family member’s age, the family assessment device level, the
symptom distress scale, the discrepancy score, and the squared discrepancy score.
When the family members are between 51 and 65 years old and have a poor
family environment as measured by FAD, they are less satisfied with health care.
When the patients develop less symptom distress, the family care satisfaction level
tends to be higher.
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In contrast, the use of Rasch scores revealed a few more covariates as signifi-
cant, in addition to the above. The traditional Rasch method finds the patient’s age
and education level and the family member’s ethnic background to be significantly
related to the family care satisfaction level. The family care satisfaction level is
positively associated with patients who are middle-aged, from a European family
background, and have an education level beyond high school. On the other hand,
the Rasch method incorporating the polychoric correlation finds the patient’s edu-
cation and the family member’s ethnic background to have significant relation-
ships with the family care satisfaction level. The family care satisfaction level is
positively associated with patients who had an education beyond high school and
a European family background.

In summary, the directions and the levels of association between family health
and care variables remained consistent among different scoring methods. However,
the significance levels and the key variables identified were not the same, as dis-
cussed above. We conclude that the family’s ethnic background matters in deter-
mining family care satisfaction levels. Europeans tend to be happier with family
health care, and patients who have had some college education seem to manage
better, and these factors lead to generally positive attitudes among family members
about patient care. These additional significant factors provide important informa-
tion about managing better patient and family care. The analysis was done using
an Splus program. The program is available to readers upon request.

6. Concluding Remarks

We have proposed a latent variable approach to the Rasch model to incorporate
inter-item correlations. Currently, there are methods available to achieve this pur-
pose, such as the multivariate probit model. However, such models do not address
the properties of fundamental measurement. Using the generalized estimating
equations method, we developed an estimating method for the Rasch model param-
eters under item-to-item correlations. The simulation study has shown the relative
efficiency of the proposed estimation method. Generally, the efficiency gain of the
estimates increased, as the level of polychoric correlation becomes high.

As expected, choice of an estimation method makes a difference in how we
interpret the data. In the example we illustrated to describe the relationships be-
tween family care satisfaction and other family health and care measures, we
found that the significance levels and the key variables identified depended on the
approaches chosen.

Overall, using the Rasch methods produced more precise results than the simple
average scoring method. Clearly, the current approaches have some limitations.
They do not fulfill the properties of the fundamental measurement (the average
scoring method) or they assume conditional independence of difficulty parameters
given the ability parameters (the traditional Rasch method). The method based on
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GEE, incorporating the polychoric correlation rectifies all these limitations. An
alternate approach may be to first formulate the linear latent model and estimate
person’s parameters. Although it would not appear to lead to any more simplified
procedure, it is worth pursuing as a future work.

One limitation of the proposed estimation method is that it is computationally
quite intensive. It may take a long time for the iteration procedure to converge,
and sometimes it even diverges. Better numerical methods are needed to increase
the efficiency of estimates. Further, a more general correlation pattern between the
items might be desirable. Sufficiency and conditional likelihood inference in this
approach are not included in this paper. They might be done in a similar way as
that in ANDERSEN (1977).
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