


Abstract

We construct isospectral partner potentials of a complex PT -invariant potential, viz., V (x) =
−V1 sech

2 x − iV2 sech x tanh x using Darboux’s method. One set of isospectral potentials
are obtained which can be termed ’Satellite potentials’, in the sense that they are of the same
form as the original potential. In a particular case, the supersymmetric partner potential
has the same spectrum, including the zero energy ground state, a fact which cannot occur in
conventional supersymmetric quantum mechanics with real potential. An explicit example of
a non-trivial set of isospectral potential is also obtained.

———————————————————– ————————————-

Key words : PT - symmetry, non-Hermitian Hamiltonian, isospectral potential, Darboux’s
method, supersymmetry.
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I. Introduction

Quantum systems characterized by non-Hermitian Hamiltonians have been studied from time
to time, because of their applications in scattering problems [1]. For this reason, complex
potentials were also termed as optical or average nuclear potentials. The interest in this field
has been revived fairly recently after it was conjectured by Besis, Bender and Boettcher, and
others, that Hermiticity of the Hamiltonian is not essential for a real spectrum [2,3]. Several
non-Hermitian PT -invariant complex potentials have been found to possess a real spectrum,
though the corresponding Hamiltonians are non-Hermitian [4,5]. Moreover, PT -invariant mod-
els admit some of the properties of the usual Hermitian ones, viz., supersymmetry, potential
algebra, quasi-solvability, etc. [6-17]. Such non-Hermitian PT -invariant Hamiltonians have
found applications in many areas of theoretical physics — nuclear physics, field theories when
studying Lee-Yang zeros, localization-delocalization transitions in superconductors, theoretical
description of defraction of atoms by standing light waves, and also the study of solitons on a
complex Toda lattice [7].

In this study, our aim is to construct new complex potentials via the Darboux’s method
[7-10], for which the corresponding eigenvalue problem can be solved exactly. The constructed
potentials are not necessarily PT -invariant, but still give rise to a real and discrete spectrum,
provided the original potential admits real energies only.

The organization of the present note is as follows. To make it self-contained, we give a brief
review of PT -symmetry in Section II. In Section III, we give an outline of the Darboux’s method
for constructing isospectral partner potentials of a given known PT -symmetric potential. In
Section IV, we illustrate our approach with the help of an explicit example, viz., the one-
dimensional PT -invariant potential

V (x) = −V1 sech
2 x− iV2 sech x tanh x V1 > 0 (1)

Section V is kept for conclusions and discussions.

II. PT -symmetry

The Hamiltonian H for a particle of mass m, in a complex potential
V (x) = VR(x) + iVI(x) is given by

H = − 1

2m

d2

dx2
+ V (x) (2)

H is said to be PT -symmetric when

PT H = HPT (3)
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Here P is the Parity operator acting as spatial reflection, and T stands for Time Reversal, acting
as the complex conjugation operator. Their action on the position and momentum operators
are given by :

P : x→ −x, p→ −p
T : x→ x, p→ −p, i→ −i

Hence, in explicit form, the condition for a potential to be PT -symmetric is

V ∗(−x) = V (x) (4)

The commutation relation
[x, p] = ih̄ (5)

remains invariant under PT for both real as well as complex x and p.
It is worth mentioning here that though the Hermiticity of the Hamiltonian may be replaced

by the weaker condition of PT -symmetry, the latter is not sufficient for the reality of the
spectrum. Various authors have studied several one-dimensional non-Hermitian PT -symmetric
models and shown that such Hamiltonians exhibit 2 types of behaviour —
(i) In the unbroken PT -symmetry phase, the eigenfunctions of H are also eigenfunctions of
PT , and the energy spectrum is real and discrete.
(ii) In spontaneous breakdown of PT -symmetry, though the potential retains PT -symmetry,
the corresponding wavefunctions do not, and the energy eigenvalues exist as complex conjugate
pairs.

III. Darboux’s method

The Darboux’s method [7-10] relates the spectral properties of a pair of standard Schrödinger
Hamiltonians

H± = − h̄2

2m

d2

dx2
+ V±(x) (6)

We assume that the spectral properties of one of these Hamiltonians, say H+ , is exactly known.
Thus

H+φn(x) = Enφn(x) (7)

where the eigenvalues En and the corresponding eigenfunctions φn(x) are known explicitly. The
spectrum is assumed to be discrete such that E0 < E1 < E2 < · · ·.
Let there exist a linear operator A, such that it obeys an intertwining relationship

AH+ = H−A (8)

Hence the functions ψn = Aφn are eigenfunctions of H− with the same eigenvalues En

H−ψn(x) = Enψn(x) (9)
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A general form for an intertwining operator A obeying (3) may be given by [7,8]

A =
N
∑

k=0

fk(x)
dk

dxk
(10)

where fk(k = 0, 1, 2, ......N − 1)are at least twice differential functions and fN is an arbitrary
constant.
For simplicity of calculations, we work in units h̄ = 2m = 1.

We take the simplest non-trivial choice for A(N = 1)

A = − d

dx
+ f(x) (11)

Putting (6) in (3) yields

[V− − V+ + 2f ′]
d

dx
−
[

(V− − V+) f + V ′+ − f ′′
]

.1 = 0 (12)

where prime denotes differentiation with respect to x. This relationship (12) puts certain
restrictions on the functions V+(x), V−(x), and f(x), viz.,

V−(x) = V+(x)− 2f ′(x) (13)

[V−(x)− V+(x)] f(x) + V ′+(x)− f ′′(x) = 0 (14)

Substituting (14) in (13), and integrating, we obtain

f 2(x) + f ′(x)− V+(x) = −ε (15)

where ε is an arbitrary integration constant, in general complex.
Putting

f(x) =
u ′(x)

u(x)
(16)

(15) can be cast in the form of Schrödinger-like equation

− d2u(x)

dx2
+ V+u(x) = εu(x) (17)

ε is sometimes called the factorization energy. It is worth noting here that u(x) need not be
square-integrable. So we are not restricted to normalizable solutions of (17). However, for A to
be well defined, u must not have any zeroes on the real line. For this, it requires the condition
ε < E0.

In terms of the function f(x), the two potentials are expressed as

V±(x) = f 2(x)± f ′(x) + ε (18)
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At this point it is obvious that for ε = 0, the two potentials V±(x) are the supersymmetric
(SUSY) partner potentials, andH± are the SUSY partner Hamiltonians. From (18), the partner
Hamiltonians may be expressed in terms of the linear operator A as,

H+ = A+A+ ε (19)

H− = AA+ + ε (20)

We shall apply the above approach to construct a new complex potential V−(x), which is
isospectral with a known PT -symmetric potential V+(x) with real eigenvalues, obeying the
relationship

V−(x) = 2

{

u′(x)
u(x)

}2

− V+(x) + 2ε (21)

Though PT -symmetry may be either restored or broken in the new potential, the partner
Hamiltonian H− has the same eigenvalues as H+ (with the possible exception of the ground
state). The corresponding eigenfunctions are given by

ψn(x) = cn

{

−dφn(x)

dx
+
u′(x)
u(x)

φn(x)

}

(22)

Here cn is the normalization constant, given by

|cn|−2 = 〈Aφn|Aφn〉
= En − ε

(23)

We shall make our ideas clear with the help of an explicit example in the next section.

IV. Explicit example

As an explicit example, we shall consider the one-dimensional PT -invariant potential [10,18]

V (x) = −V1 sech
2 x− iV2 sech x tanh x V1 > 0 (24)

This non-Hermitian Hamiltonian has the interesting property of having both real and complex
discrete spectrum, depending on the relative magnitudes of its real and imaginary parts, viz.,
V1 and V2.
(i) For |V2| ≤ V1 + 1

4

PT -symmetry is unbroken and energies are real.
(ii) For |V2| > V1 + 1

4

PT -symmetry is spontaneously broken and energies are complex conjugate pairs.
We shall restrict our attention to the unbroken PT -symmetric phase, with real energies only.
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To solve the Schrödinger-like equation

−d
2u(x)

dx2
+ V (x)u(x) = εu(x)

with V (x) given by (24), we make the following substitutions :

z =
1− i sinh x

2
(25)

u(x) = z−p (1− z)−q χ(z) (26)

Then the differential equation satisfied by χ(z) is

z(1− z)χ ′′ +
[

−2p +
1

2
+ z (2p+ 2q − 1)

]

χ ′ −
[

(p+ q)2 − λ2
]

χ = 0 (27)

provided

p = −1

4
± s

2
(28)

q = −1

4
± t

2
(29)

t =

√

V1 − V2 +
1

4
(30)

s =

√

V1 + V2 +
1

4
(31)

λ2 = −ε (32)

The most general solution of (27) is

χ(z) = α F (a, b, c, z) + βz1−c (1− z)c−a−b F (1− a, 1− b, 2− c, z) (33)

where
a = −p− q + λ (34)

b = −p− q − λ (35)

c = −2p +
1

2
(36)

So the general form of u is

u = α z−p (1− z)−q F (a, b, c, z) + βzp+1/2 (1− z)q+1/2 F (1− a, 1− b, 2− c, z) (37)

Since u must not have any real zero, so α must be non-zero. This allows us to put α = 1.
However, the proper choice of the sign in the expressions for p and q is extremely important.
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For the potential given in (24), the real energy eigenvalues and the corresponding eigenfunc-
tions are explicitly given by [18],

En = −
{

n+
1

2
− 1

2
(s+ t)

}2

n = 0, 1, 2, .... <
s+ t− 1

2
(38)

φn(x) =

(

n
n− 2p− 1

2

)(

1− i sinh x

2

)−p (
1 + i sinh x

2

)−q

P
−2p− 1

2
,−2q− 1

2
n (i sinh x) (39)

where P a,b
n (z) are the Jacobi polynomials expressed as [19]

P a,b
n (z) = 2−n

n
∑

m=0

(

n+ a
m

) (

n + b
n−m

)

(z − 1)n−m(z + 1)m (40)

Case (i)
First let us consider the simplest case given by

β = 0

b = c

Hence

λ = p− q − 1

2
(41)

ε = −λ2 = − [p− q − 1/2]2 (42)

Using the relationship [20]
F (a, b, b, z) = (1− z)−a (43)

u(x) reduces to the simple form

u(x) = α

(

1− i sinh x

2

)−p (
1 + i sinh x

2

)q+1/2

(44)

Thus f(x) = u′(x)/u(x) is obtained to be

f(x) = i
[

p+
(

q +
1

2

)]

sech x −
[

p−
(

q +
1

2

)]

tanh x (45)

The isospectral partner potential of (24) as obtained from (21) turns out to be

V−(x) = −
[

4

{

p2 +
(

q +
1

2

)2
}

− V1

]

sech2x
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− i

[

4

{

p2 −
(

q +
1

2

)2
}

− V2

]

sech x tanh x (46)

with the corresponding eigenfunction (from (22)) ψn as

ψn =





(

1− i sinh x

2

)−p (
1 + i sinh x

2

)−q




[(

n
n− 2p− 1

2

)

(

2q +
1

2

)

[i sech x+ tanh x]P
−2p− 1

2
,−2q− 1

2
n (i sinh x)

− (p+ q)2 −En

−2p + 1/2

(

n− 1
n− 2p− 1

2

)

(

2q +
1

2

)

[i sech x+ tanh x]P
−2p+

1

2
,−2q+ 1

2

n−1 (i sinh x)

]

(47)
This is the special case of the so-called satellite potentials, with V+(x) and V−(x) having

exactly the same form, but with different coefficients.
We illustrate this with the help of some simple examples.
Let V1 = 25, V2 = 5
Thus

V+(x) = −25 sech2x− 5i sech x tanh x (48)

with energies

En = −
{

n +
1

2
− 5

}2

, n = 0, 1, 2, 3, 4 (49)

Then using equations (28) - (31), the values of p and q are
p = 5

2
or −3

q = 2 or −5

2

In order that the wave function vanishes asymptotically, only the positive sign of the discrim-
inant is allowed for p. Therefore, p = 5/2. The two values of q give rise to two interesting
cases.

a) q = −5/2
f(x) for this particular case becomes

f(x) =
11

2
tanh x − i

2
sech x (50)

and the isospectral partner potential of (48) turns out to be

V−(x) = −16 sech2x− 4i sech x tanh x (51)

with energies

En = −
{

n+
1

2
− 4

}2

, n = 0, 1, 2, 3, (52)

It is easy to check that V±(x) share exactly the same energy spectrum with the exception of
the ground state, as shown in Table 1 below.
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Table 1

n En[V+(x)] En[V−(x)]
0 −81/4 −49/4
1 −49/4 −25/4
2 −25/4 −9/4
3 −9/4 −1/4
4 −1/4 —

b) q = 2
This is the special case when p = q + 1/2 , so that ε = 0
and f(x) becomes purely imaginary.

f(x) = i 5 sech x (53)

The isospectral partner reduces to

V−(x) = −25 sech2x + 5 i sech x tanh x (54)

Thus
V±(x) = f 2(x)± f ′(x) (55)

The partner potentials (48) and (54) are totally degenerate. They share identical energies,
including the zero energy ground state, and supersymmetry (SUSY) is broken. This scenario is
quite different from conventional SUSY breaking. In the conventional supersymmetric quantum
mechanics (SUSYQM), SUSY is broken when the zero state energy does not exist and both
V±(x) have the same spectrum. The ground state wavefunctions φ0(x) and ψ0(x) of the partner
potentials (48) and (54), are respectively given by

φ0(x) =

(

1− i sinh x

2

)−
5

2

(

1 + i sinh x

2

)−2

= sech4x

[

sech x
√

1 + cosh x+ i
tanh x√

1 + cosh x

] (56)

ψ0(x) =

[

−dφ0

dx
+
u′(x)

u(x)
φ0(x)

]

=
9

2
[tanh x+ i sech x] φ0(x)

= sech5x

[

tanh x

(√
1 + cosh x

1√
1 + cosh x

)

+ i sech x

(

sech2x√
1 + cosh x

+
√

1 + cosh x− 1√
1 + cosh x

)]

(57)

apart from normalization constants.
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Case (ii)
Next we consider the particular case

β = 0, b = a+
1

2
, c = 2a

This gives the following values for

λ = −1

4
, ε = − 1

16
, q = −1

2

Hence, for this particular case, V1 = V2 = V0 (say) in (24). Using the relationship [20]

F
(

a, a+
1

2
, 2a, z

)

= 22a−1(1− z)−1/2
[

1 + (1− z)1/2
]1−2a

(58)

u(x) reduces to

u(x) = α 2−2p−1/2

(

1− i sinh x

2

)−p


1 +

(

1 + i sinh x

2

)1/2




2p+1/2

(59)

Thus f(x) = u′(x)/u(x) is obtained to be

f(x) =
1

4
tanh x − i

4
sech x + i

(

2p+
1

2

)

sech x

[

1 + i sinh x

2

]1/2

(60)

The isospectral partner potential of (24) viz.,

V+(x) = −V0 sech
2 x− iV0 sech x tanh x (61)

is obtained from (21), and turns out to be

V−(x) = −
[

1

4
+
(

2p+
1

2

)2

− V0

]

sech2 x− i

[

1

4
+
(

2p+
1

2

)2

− V0

]

sech x tanh x

+
(

2p+
1

2

)

[

sech2 x+ i sech x tanh x
]

(

1 + i sinh x

2

)1/2

(62)

or more explicitly,
V−(x) = −VR(x) sech2x− iVI(x) sech x tanh x (63)

with

VR(x) = σ +
(

p+
1

4

)

{√
cosh x+ 1 +

1√
cosh x+ 1

− cosh2x√
cosh x+ 1

}

(64)

VI(x) = σ −
(

p+
1

4

)

{√
cosh x+ 1 +

1√
cosh x+ 1

}

(65)

11



where

σ = 4p2 + 2p+
1

2
− V0 (66)

and

p = −1

4
± 1

2

√

2V0 +
1

4
(67)

It is worth noting here that the coefficients of (sech2x) and (sech x tanh x) are pure numbers
in the expression for V+(x), whereas they are functions of x in V−(x). From equation (38) it is
essential that s and hence V0 be large for sufficient number of energy levels, as t = 1/4. This
prevents p from taking the value −1/4. So the isospectral partners V±(x) in equations (61) and
(63), cannot be reduced to satellite potentials for any physical value of p in this particular case.

The corresponding eigenfunction is calculated to be

ψn(x) =



−i
(

p+
3

4

)

sech x+
(

p− 1

4

)

tanh x+ i
(

2p+
1

2

)

sech x

(

1 + i sinh x

2

)1/2




(

n
n− 2p− 1/2

)(

1− i sinh x

2

)−p (
1 + i sinh x

2

)
1

2

P
−2p− 1

2
, 1
2

n (i sinh x)

− (p− 1/2)2 −En

−2p+ 1/2

(

1− i sinh x

2

)−p (
1 + i sinh x

2

)
1

2

(

n− 1
n− 2p− 1/2

)

P
−2p+

1

2
, 3
2

n (i sinh x) (68)

V. Conclusions and Discussions

To conclude, it is shown in this paper how to generate equivalent SUSY partners of the complex
PT - invariant potential, viz.,

V (x) = −V1sech
2x − i V2sech x tanh x

with the help of Darboux’s method. The form of the newly constructed potentials depend on
the choice of β and ε, but they share the same energy spectrum as the origial potential, with the
possible exception of the ground state. If the original potential is so chosen that it admits real
eigenvalues only, then we can obtain a series of non-trivial complex potentials generating the
same real-valued spectrum. The new wavefunctions are also easily obatined by this approach.

Depending on particular values of V1 and V2, the isospectral partners may be of similar nature
with just the coupling constants taking different values. We term these as satellite potentials.
In the special case p = 5/2, q = 2, ε = −(p− q − 1/2)2 − 0, the SUSY partner potentials have
the same spectrum including the zero energy ground state, a situation which cannot occur in
conventional SUSYQM with real potential.

12



We have also constructed a non-trivial partner potential, and compared its real and imag-
inary parts graphically with those of the original potential, in Figures 1 and 2 respectively.
It is interesting to note that even in the non-trivial case, the partner potentials have similar
geometric form.

Further constructions with non-zero β and other values of the integration constant ε are left
as a future exercise.
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