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A New Method for Bounding Rates of Convergence of
Empirical Spectral Distributions
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The probabilistic properties of eigenvalues of random matrices whose dimen-
sion increases indefinitely has received considerable attention. One important
aspect is the existence and identification of the limiting spectral distribution
(LSD) of the empirical distribution of the eigenvalues. When the LSD exists,
it is useful to know the rate at which the convergence holds. The main
method to establish such rates is the use of Stieltjes transform. In this article
we introduce a new technique of bounding the rates of convergence to the

LSD. We show how our results apply to specific cases such as the Wigner
matrix and the Sample Covariance matrix.
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1. INTRODUCTION

Random matrices with increasing dimensions are called large dimen-
sional random matrices (LDRMs). A nice review article by Bai® discusses
some of the history, techniques and results in the area of LDRMs. Addi-
tional insight in the general area may be gained from the review works of
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Hwang"®, Bose et al.!'” and the books by Mehta“** and Girko'*®*", Ran-
dom matrices have also drawn the attention of mathematicians for vari-
ous reasons. The books by Deift*” and Katz and Sarnak™” deal with the
mathematical aspects of random matrices.

Suppose A, is an n x n Hermitian matrix with eigenvalues (character-
istic roots) Ag, Al.....An—1. Then the empirical spectral distribution (ESD)
function of A, is defined as

n—1
Fy(x)=n""! ZI{A,— <x).
—rs

The corresponding probability measure P, is known as the empiri-
cal spectral measure. Note that if {A,} are random, then F, and P, are
random: F,(x) is a random variable for every x and for every clement
in the basic probability space F,(-) is a distribution function. Also, if F
and G are two random distribution functions. then their Kolmogorov dis-
tance || F — G|loo =5up,cg | F(r) — G(r}] is also a random variable. For any
distribution function G (which may be random) on R, its (random) char-
acteristic function is defined as ¢ (t) = [ €™ dG(x). When talking about
the convergence of distribution functions we shall mean weak convergence,
and use the notation “F, = F™, as usual. Note that since weak conver-
gence of probability measures on R is metrizable, the concept of “conver-
gence in probability” is well-defined for distribution functions. Also, it is
well known that if F is a continuous distribution function, then F,=— F
if and only if | F, — F|la, ~ 0, and so if F is continuous then F, = F if
and only if ||F, — Fllx £

If {An};2, is a sequence of square matrices with the correspond-
ing ESD {P,} |, (typically with the dimension of A, increasing with n),
the Limiting Spectral Distribution (or measure) (LSD) of the sequence is
defined as the weak limit of the sequence {P,}. if it exists. If the matrices
are random, the limit is understood to be in a probabilistic sense, either
“almost surely” or “in probability™.

The expected spectral distribution function of A, is defined as E(F,{(-)).
This expectation always exists and is a nonrandom distribution function.
The corresponding probability measure is called the expected spectral mea-
sure.

There are essentially two general tools available to establish the
LSD: the moment method and the Stieltjes transform method. Often the
expected distribution function is easier to deal with. The weak conver-

gence of E(F,) then serves as an intermediate step in showing the weak
convergence of F,.
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When the LSD exists, it is useful to know the rate at which the con-
vergence holds. The main method to establish such rates is the use of
Stieltjes transform. In this article we establish some general results use-
ful in establishing the probabilistic weak convergence of F, from the con-
vergence of E(Fy) and the corresponding rates of convergence. We apply
these to establish some new rates of convergence. The rate will be mea-
sured in terms of the following two quantities:

AYF.G) = E(F ~Gllsc=Esup|F(r)—G(r)|
reQ

and when G is non random,

A(F,G)=|E(F)—~Glloc =sup|E(F(r)) — G(r)|
reQ

Given a random Hermitian matrix A4 of order n, the empirical character-
istic function of A is the characteristic function of the empirical spectral
distribution of A. Let us call it ¢. From the spectral decomposition of A4,
it is easy to see that

1 ,
Q1) = ;tr(e‘”‘)

where n is the order of 4 and ¢ denotes 3 7o 4 M*. as usual. We shall
henceforth deal with the spectral measure of 4 through this characteristic
function.

Our approach is to obtain bounds for Var(p(r)) and then using
Esscen’s lemma or otherwise, deduce the concentration of the spectral
measure near its mean, and also get the magnitude of concentration using
the bounds.

To do this, we need to be able to express the random matrix A4 as
a function of independent real random variables xj,x2,.... Xm, where m
is large. Then for each 1, ¢(t) is also a function of x1,x2....,%,. Typi-
cally, we show that this function is slowly varying, that is, either the partial
derivatives are bounded by small numbers in sup norm, or the expected
value of the norm-squared of ve(#) is small. This, followed by an applica-
tion of a Poincaré type inequality (when we have a bound on [[Ve(#)|l.2)
or an Efron-Stein type inequality (when we have bounds on the partials)
will produce a bound on Var(g(t)).

The bounds on the partial derivatives and the gradient of ¢(r) as a
function of (xi. X3.....Xn) are obtained by using the identity

dolt) _ -I-tr (itff_eim)
dx; n 0x;j
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coupled with the careful use of the fact that ¢4 is a unitary matrix. It
may be mentioned that in none of our examples shall we need to compute
e"A explicitly.

We shall employ the above approach to a few examples, including
large dimensional Wigner and Sample Covariance matrices, and obtain
improved rates of convergence under suitable conditions. Simulation results
suggest that our bounds for Var(g(#)) have the correct exponent for » in
all cases.

We now introduce some notations. For a complex random variable X,
its variance is defined to be E|X — E(X)|*. For L >0, define the probabil-
ity density

1—cosLx

hp(x)= .

Let H; be the corresponding distribution function. The character-
istic function of Hp is given by v (1) = (1 — J,’-—')I(Itl < L). Note that
S L@)lde=L.

Finally, the convolution F +G of F and G is defined in the usual way.
That is, F*G(x)=f F(x —»)dG(y)= [ G(x — y)d F(y).

Now suppose we have a complex matrix 4 which is a (component-
wise) differentiable function of a real or complex scalar variable u. The
following two simple Lemmae will be useful. We omit their proofs.

Lemma 1. If A(x) is an elementwise differentiable map from R or C
into C"*” then

d, 4 . (dA 4
—-tre )—tr(due )

Lemma 2. If A is Hermitian and ¢ is real, then ¢* is a unitary
matrix. In particular, for any vector x, le"_ Ax|=|x|, (where |-| denotes the
Euclidean norm) and also all entries of ¢/*4 have modulus < 1.

itA

2. MAIN RESULTS

We first establish a bound on the expected Kolmogorov distance. This
will be eventually used to establish rates of convergence for the ESD.

Theorem 1. Suppose F is a random distribution function on R with
(random) characteristic function ¢. Suppose Var(p(r)) < Ct* for each r. If
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G is a nonrandom distribution function on R, such that sup, .z |G’ (x)| <A,
then

1/2,1/2
AY(F,G)K2A(F.G)+ §(_3)_H_L_Cl/4

where A and A* are as defined in the introduction.

Proof. Let Fy=E(F), and let n be the characteristic function of Fy.
Then by assumption,

Elo(t) — n(t)] < VC1]

By Lemma 1 (Esseen’s lemma) of Feller®”

24
IF —Gllo <2 F*Hy —G*HLlloo+7r:.

Now

\F*xH,—GxHpllo < [[Fox H. - G* Hyloo+ | F % H, — Fo % Hy lo
|

<
S MFo—Gllow + 1 F * Hy ~ Fo* Hi || co.

So by applying the inversion formula (see Feller'®”, p. 482) and the
hypothesis about Var(y(z)),
l

* E|e(t) —n(t
ENF % Hy—FoxHplloo < ~ [ [riey EE0=1@1
T Jex H

cl2y

~r .

/4

Combining all these observations, we have
24CL  24x
+ -
i 4 nlL

Choosing L*=12AC~1/? gives the desired conclusion. 0

AY(F.G) < 2A(F,G)+

Remark 1. The following result linking the convergence of expected
Kolmogorov distance with the convergence of the characteristic function
may also be proved by a similar convolution argument. We omit the proof.

Theorem 2. Let {F,,n > 1} (random) and F (nonrandom) be distri-
bution functions on R, with characteristic functions {¢,,n > 1}, and ¢.
Suppose F is differentiable everywhere with bounded derivative. Then the
following are equivalent:
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(a) A*(F,,F)—0
(b)  @,(t) — (1) in probability for each re R
(©) Elgn(t) — @) —> 0 for each ¢.

Note the condition on the variance in the statement of Theorem 1.
The following result on bound for variances of functions of independent
random variables is useful while applying Theorem 1 to ESD. Part (b) fol-
lows from part (a). The carliest version of part (a) is credited to Hoeffding
(unpublished work) and different versions are due to Efron and Steint™
Steele!*® and Devroye™. A proof may be found in Gydrfi et al.*®

Theorem 3. (Efron-Stein type inequality).

(a) Suppose Z),...,Z,,Z]....,Z,; are independent m-dimensional
random vectors where Z; has the same distribution as Z} for all
i. Suppose that f:((R)Y")* — C satisfies E|f(Z,..., Zp)|* <.
Then

1 n
Var(f(Z1, ..., Za)) < 5;E|f(zl,....zn)

- f(Z}....,Zk_l,Z:.Zk+1,---,Zn)lz-

(b) If f:R"— C is Lipschitz in cach coordinate with Lipschitz con-
stants My, Ms, ..., M,, then for independent square integrable
real random variables X, Xa,.... X,,

n
Var(f(X1, X2, .... Xy SZM;’Var(Xj).
j=1

Better results can be obtained if X, X»,..., X, are i.i.d. from a distribu-
tion F which has the following property:

POIN. There exists a constant K >0 such that if X~ F, and g:R—R
is a (locally) absolutely continuous map, then Var(g(X))< KE|g'(X))°.

Remark 2. Such inequalities are known as “Poincaré Inequalities” in
the literature, It may be noted that (a) if X satisfies POIN with constant K,
then for any ¢ € R, c X satisfies POIN with constant K ¢2, and (b) for any distri-
bution function satisfying POIN, the variance inequality holds for absolutely
continuous functions g : R — C as well. There is a huge literature on Poincaré
and isoperimetric inequalities for probability measures, and we have included
some of that in our list of references. The fact that the one dimensional Gauss-
ian distribution satisfics POIN has been a part of folklore and has been known
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since 1930s. See for example Beckner!!!". That the multidimensional Gaussian
distribution also satisfies POIN has been known since 1950s. See for example
Brascamp and Lieb'*?". All distributions with log-concave densities (i.e., densi-
ties of the form eV'*’ where Uis a concave function) satisfy POIN. A complete
characterization of all absolutely continuous distributions which satisfy POIN
is available in Muckenhoupt'*

The next result, which follows from the Efron-Stein inequality is very
well known and is provable under weaker assumptions. See Ledoux®),

Theorem 4. If X . X,....,X, are independent and satisfy POIN
with Poincaré constants bounded by K, then for any C! map f:R"—C,

Var( f(Xy..... X, DK KE\VF(Xy,.... X))
where |-| denotes the Euclidean norm.

Now we demonstrate an application of the above results to find rates of
convergence for some random matrices:

Example 1 (Wigner Matrices). A Wigner matrix (Refs. 49 and 50) of
order n and scale parameter o is a Hermitian matrix of order n, whose
entries above the diagonal are independent complex random variables with
zero mean and variance -, and whose diagonal elements are i.i.d. real
random variables. This matrix is of considerable interest to physicists. Sev-
eral results on its LSD and rates of convergence of the ESD are known.
Wigner'™' assumed the entries to be i.i.d. real Gaussian and established
the convergence of E(F,) to the semi-circular law. Assuming the exis-
tence of finite moments of all orders, Grenander (Ref. 33, p. 179 and 209)
established the convergence of the ESD in probability. Arnold®? obtained
almost sure convergence assuming independence of the entries and finite-
ness of moments. Bai‘® generalised the result of Arnold® by considering
Wigner matrices whose entries above the diagonal are not necessarily iden-
tically distributed and have no moment restrictions except that they have
finite variance. There is a related result of Trotter*” also. Boutet de Mon-
vel et ul?) obtained some other generalizations of Wigner’s results with
weakly dependent Gaussian sequences.

For our purpose, we shall take the elements to be real. Suppose
that W, is a Wigner matrix with random independent entries (X (.',';)) having
common variance 1. We shall drop the superscript n for ease of notation.
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In many situations, the LSD of n~1/2W,, exists and is given by the famous
semi-circle law

X
F(x)= -21; @=yH2h_y, ndy.

-0

Consider the following “basic assumptions™:

(WD) EXji)= OE(X D=1
(W2) sup,'J,,EX8 <oo

W3) SE (XUI{,XUQMW}) =o(n?) for any €> 0.

Let F, be the ESD of n~1/2W,. Bai®® proved that under the above
assumptions, A(F,, F) = O(n~!/4) which was improved by Bai er al™
t0 ||Fy — Flloo = Op(n~1/4). In Bai e gl this was further improved to
| Fp — Flloo = Op(n-n/q)

Suppose we strengthen the third assumption to

W3 LE (X?fl{lxiﬂ?ml/l]) =o(n®) for any ¢>0.

Then they also showed that A(F,, F)=0(n~1/2).

Further, suppose that the basic assumptions hold and in addition
assume that

(W3**) sup, sup;; E|X;;|F < oo for every k> 1.

Then ||Fy, — Flloo = O(n~%/>*")almost surely for every 5> 0.

We will show here how our results may be applied under minimal
conditions to obtain weaker rate results, and under stronger conditions,
new and stronger results.

Fix any n> 1. Suppose we write the elements of R"*t1/2 35 tuples of
the form (aji), where j runs from 1 to », and for each j, k, runs from 1
to j. Then, we can have a map W,:R™"+1/2 _, gnxn which takes a tuple

(ajk) to the Wigner matrix whose (j, k)th entry is n~1/2ay if j >k, and

n~12qy; otherwise. Then W;* = g:"’ is a constant matrix whose (j, k)th

and (k, j)th entries are n~!/2 and all other entries are zero. Thus, if we
fix some t € R and define ¢! to be the empirical characteristic function of

W evaluated at ¢, then it follows from the results of the preceding section
that

a
(pn — _ltr (ztaWn lt“n) ltr(lrW-’k l’“n)
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Now, if we let B=¢""%#_and denote its elements by bjy, it follows that
dp, _ it(bji+byj)  2ithjx
dajk . nyn i

The last equality holds because B is symmetric. Thus,

\AEDD

jzk

2

LA
da g

2 b o]
< z atlb x|~ _ 4z
< =

n3 ne

Jk

The last equality follows from the fact that B is unitary.

(It is worth mentioning that it is a well-known result that for any Lips-
chitz function f:R— C, if we define Tp(Wo)=n"'37_; f(A;), where
Al A2..... A, are the cigenvalues of W,. then |VT(W,)[? SZn‘lllflliip.
See, for example, Refs. 37 and 45. For the case of complex entries, a simi-
lar result holds, too. See Ref. 35). Applying these observations to the sce-
nario where ;i are random, and noting that sup_,, <> F'(x)=n"!, we
have:

Theorem 5. If W, is a random real Wigner matrix whose entries
on and above the diagonal are independent and satisfy POIN with Poni-
caré constants uniformly bounded by K. then Var(p,(r)) <4Kt%/n2. Con-
sequently, by Theorem 1, if F denotes the semicircular law, then

8(6)‘/2K1/4n_1 P
732

where F, denotes the empirical c.d.f. of n=1/2W,.

AY(F,. FYS2A(F, . F)+

In this context, it should be mentioned that general bounds for
P(|tr( f(Wy)) — E(tr( f(Wp)))] > 1) where fis a Lipschitz function, may be
obtained by using the results of Guionnet and Zeitouni (Ref. 35, Theo-
rem 1.1). However, if fis not convex (as is the case here), then the stron-
ger assumption that the distribution of the entries satisfy a logarithmic
Sobolev inequality instead of POIN is required for those bounds to hold.
Those bounds would imply the variance bound on the empirical charac-
teristic function that we need. However, since f in this problem is not
convex, and since we are only interested in variance bounds for applying
Theorem 1, the stronger assumption seems to be unnecessary.

Now note that by Lemma 2, the elements of €% are bounded in
modulus by 1, and this implies

“ A},
Hajk 0

<2)tn~32,
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So, if we don’t assume POIN, we can still have the following result
under remarkably weak conditions. by invoking Theorems 1 and 3:

Theorem 6. If W, is a random real Wigner matrix. whose entries on
and above the diagonal are independent with variance uniformly bounded
by 1, then

4t’
Var(g, (1)) < < Z Var(xj) < —
j=k

Hence, if F,, denotes the empirical c.d.f. of n~1/2W, and F denotes the
semicircular law, then

1/2
A*(Fn, F)S2A(Fn, F) + 8(63’,,/ A,

Remark 3. A recent result of Goétze and Tikhomirov®! which
appeared after this article was submitted supercedes Theorem 5. There it
is shown that if My=sup;, EXJk, then A(F,, F)<CMJ/“n‘ 2 If further
the observations are Gaussian, then Goétze and Tikhomirov*” show that
A(F,, F)= 0(n~%3). Theorem 6, however, seecms to be new.

Example 2 (Sample covariance matrices). Suppose X is a real pxn
matrix with entries x;,, which are i.i.d. real random variables with mean
zero and unit vanance. Let S= lX XT. In case the entries are ii.d. nor-
mal, much is known about the dlstnbutlon of eigenvalues of S and related
matrices. See Ref. 1. The LSD of S was first established by Marcenko and
Pastur'*®. Subsequent work on S may be found in Refs. 7, 34, 39, 48.
51 and 52. If y,=p/n— y€(0,1) then the ESD of S, converges almost
surely to the law Fy(.) with the Mardenko-Pastur density

Vb—=x)x—a) ifa<x<h,

1
0 otherwise ()

f_v (x)= [ 2axy

where a=a(y)=(1— ﬂ“ and b=>b(y)=(1+ ﬂ' It can be easily shown
that the density is bounded by A =[x /¥(1—y)]L.

In cases where y > 1, the LSD exists but has a point mass at the origin. If
y =0, then a scaling and a centering are required for the LSD of S, to exist.
See Ref. 6 (or) 19 for the precise results. We do not consider these cases. For
versions of this result under variations of the above conditions, see the above
references.
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As in the case of Wigner matrices, the Stieltjes transform method was
used to derive rates of convergence results. Bai’® proved that A(F,, F,)=
0 (n~/*) or 0 (n=3*) depending on how close ¥, is to 1. The same
rates were obtained for convergence in probability of F, to F, in Bai
et al®. The most recent results are by Bai er al''" who proved several
results under the conditions given in Example 1. In particular it follows
from their results that if y, remains bounded away from 1 and suitable
combinations of the above conditions hold then A*(F,. Fy)= O(n=/2y,
| Fr = Fylle = Op(n™*) and ||F, — Fylloc = Oy s.(n=/5*7).

Now consider S as a function of the entries of X. Clearly.

Sjk = -(E = l(YXT +xv7)
dxjr n

where ¥ =dX/dx;. Now the matrix Y has 1 at the (j, k)th position and
0 elsewhere, ie., Y =e¢; pel , where e, is the r-vector with 1 at the mth

position and 0 elsewhere. Thus, if x.x denotes the kth column of X and ¢}
denotes the empirical characteristic function evaluated at ¢, then

do! :
,& =p° ltr(itS_,-ke"S)
0X jk
= it(np) ey XT S 4+ Xy T ei5)
= it(np)_ltr(ej,pxi‘e"ts +x.keT ')

P
= it(np)_l(x.zt’usf’j-l’ + "}’:Pens
itz

np

X.x)

where we have written z;; for the jth component of the vector z; =eitSx .
Note that since ¢S is unitary, |lzx|l=|lx«l-

Now suppose xj; are random variables. Then using the preceding
observations, we have

412 Y , 42 5
3 S ) Ml =—— 3 el =——= 3 Tl as.
ik P~ = L P™ ik

2

1
axjk

and so, under the assumption Vj, k, E|xji|* < M2, it follows that

AM22

E\VeLlP <=

Applying Theorems 1 and 4, we immediately have the following result:
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Theorem 7. If {xj¢} are independent and satisfy POIN with Poin-
caré constants bounded by K and second moments bounded by M, then

Var(gn (1)) < 4—‘%‘#. Consequently, if y=p/ne(0,1) and F, denotes the
Maréenko-Pastur distribution with parameter y, then

8(6)1/2K1/4M1/2n_1/2

A*(Fn,p,Fy) QZA(Fn.p, Fy)+

where F, , denotes the ESD of §.

(Note that if X is 2 mean zero random variable satisfying POIN with con-
stant K, then automatically EX2=Var(X)< K. So we can put M =K if
the entries have zero mean.)

If we don’t assume POIN but instead impose Vj, k, |x x| <M a.s., then

2M|t|

nJP

¢t

jk

<211 )zl = 21t (np) ™ Hix Il <

a.s,

Thus, if the variance of x;; is bounded by 1, then

M2 4M*¢2
np= .

4
n<p n

Hence we get

Theorem 8. Suppose y=p/ne(0,1) and xj; are independent with
mean zero and variance bounded by 1. Suppose M is such that P(|xj| <
M)=1. Then

8(6)\2MV2
A — )12

A*(Fp.p, Fy) S2A(Fy p Fy) +

where F, , is the EDF of S, as before.

Remark 4. Again, it is proved in Ref. 31 that under finite twelfth
moment, A(F, p, F;)= 0(n~!/2). However, Theorem 8 still appears to be
a new result.

Example 3 (Anti-Toeplitz matrix). Suppose {xp,x1.x2,...} 18 a
sequence of numbers. The anti-Toeplitz matrix of order n defined by this
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sequence is Ay ={{X(i4;-2) modn)). Visually,

[ X0 X1 X2 - Xp—} ]

Xy X2 ... Xp—] Xp

An = X2 xﬂ—l xO xl
L Xp—1 X0 X1 © Xp-2

From the results of Bose and Mitra*” and Bose et al'?, it follows that
if {x;} are i.i.d. with mean zero and variance 1 then at each argument, the
ESD of X, =n"'/2A, converges in Lj to the LSD with density f given by

flx)= |x|exp(—-x2), —00 < X < 00.
Hence the ESD converges to this distribution in probability.

Let B=¢"4, Denote elements of B by b; j. and the empirical char-
acteristic function of A, evaluated at ¢ by ¢’. as usual. Then it can be
checked by our usual technique that

el it
- bi:
axy, nﬁi+j Z Ji

-2=k mod n

for k=0,1,...,2n—2. Thus,

dph 2t ,
el ¥

i+j—2=k mod n

22
T i
|jl' n

We used the Cauchy-Schwarz inequality, noting that for each k, there
are at most 2n pairs of (i, j) such that i + j —2=k mod n. The last equal-
ity holds due to the fact that }_ > | j|2 =n, as we observed before. Now
we can show, as before, that if x; are i.i.d. from a density satisfying POIN,
then A*(F,. F)<2A(F,, F)+ O(n~1/%). Note that in this case, the eigen-
values can be explicitly obtained and using their form, under suitable con-
ditions, A(F,, F) is of a much smaller order than n~1/4,

In the next two examples on Hankel and Toeplitz matrices, the existence
of the LSD were open problems, very recently settled by Bryc et al.®. How-
ever, neither the closed form expressions of the LSD nor the convergence
rates are known. Our method, however, applies very easily to give bounds
like A*(F,. F) < 2A(F,. F)+ O(n~14) (assuming that the limiting distribu-
tion has a bounded density). We hope this will considerably ease the task of
finding the convergence rates after the limiting distributions are identified.
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Example 4 (Hankel matrix). A matrix of the form H, = ((x;,; )
(under the same notation as in the previous example) is called a Hankel
matrix. Note that the matrix is symmetric. The objcctive' is to investigate
the limiting behaviour of the spectral distribution of n~!">H,. As we said
before, the existence of the LSD has been settled. The computations for
our method are very similar to the previous example. In fact, here

A it
— b::
nﬁi Z It

0xx

+j-2=

and so, exactly similar computations as before show that under POIN we
can again get A*(F,, F)<2A(F,. F)+ O(n~/%) if the x; are iid. with
mean zero and varaince 1 and F has a bounded density.

Example 5 (Toeplitz matrix). Under the same notation as before,
the n x n matrix T, =((xj;- j)) is called a Toeplitz matrix of order n. Some
theoretical results and simulations of Bose, Chatterjee and Gangopadhy-
ay'!” showed that it is plausible that the LSD of n!/2T, exists when the
variables form one i.i.d. sequence. Recently Bryc et a/.*® has shown that
the LSD exists, is unimodal and nonnormal. Exactly the same kind of
computations as in the preceding examples show that in this case, too.
under POIN, A*(F,. F)<2A(F,. F)y+ O(n~1/), again if the limiting dis-
tribution has a bounded density.
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