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Abstract. In this note we consider the property of being constrained in the bidual,
for the space of Bochner integrable functions. For a Banach space X having the
Radon-Nikodym property and constrained in its bidual and for Y C X, under a natural
assumption on ¥, we show that L! (1, X/Y) is constrained in its bidual and L'(w,Y) is
a proximinal subspace of L' (1., X). As an application of these results, we show that, if
L'(u,X) admits generalized centers for finite sets and if ¥ C X is reflexive, then
L'{p,X/Y) also admits generalized centers for finite sets.

Keywords. Spaces of Bochner integrable functions; vector measures; proximinal
subspaces; generalized centers.

1. Introduction

Let (,.A, 1) be a finite measure space. Let X be a Banach space that is constrained in its
bidual ie., X is the range of a norm one projection when canonically embedded in its
bidual. Any dual space, thanks to the canonical projection of Dixmier (See [H], p. 213) is
contrained in its bidual. It is well known that the space of integrable functions L'(p)
satisfies this property. It is easy to see that X is constrained in its bidual iff X is isometric to
the range of a norm one projection in some dual space (see [Lin]). Thus this property is
preserved by ranges of norm one projections. In this note we consider the question, when
is the space of Bochner integrable functions, L'(u,X), constrained in its bidual? That
X should be constrained in its bidual is clearly a necessary condition. o, the space of
sequences converging to zero, is not constrained in its bidual (it is not even complemented
in £, see [H], p. 232). The author in [R3] noted the isometric version of a result of
Emmanuele [E1] that, if X is any Banach space that has an isometric copy of co, then cp is
isometric to the range of a norm one projection in L!(p, X). Thus by taking X = £ we see
that L!(u, X) is not constrained in its bidual. If X is constrained in its bidual and has the
Radon-Nikodym property (RNP), it was proved in [R1, R2], that L'(p, X) is constrained in
its bidual. Let cabv(u,X) denote the space of X-valued countably additive measures of
bounded variation on .4 that are absolutely continuous with respect to . Emmanuele and
Rao in 1994 (see [E2,R4]) have obtained an internal characterization by showing that
when X is constrained in its bidual, L! (11, X) is constrained in its bidual iff it is constrained
in cabv(u,X). Using this, in this short note we exhibit more examples of Banach spaces
for which L!(u,X) is constrained in its bidual. Our work is motivated by the recent
exposition of the Lindenstrauss’ lifting principle (LLP) by Kalton and Pelczynski in [KP].
A closed subspace ¥ C X is said to be proximinal if given x € X there exists ay € Y such

309



310 ‘"TSSRKRao

that d(x,Y)= ||x — y||. A natural question that can be asked in the context of spaces of
Bochner integrable functions is that, if ¥ C X is a proximinal subspace, then is L' (i, ¥) a
proximinal subspace of L!(u,X)? Only recently a counterexample was obtained by
Mendoza in [M]. As an interesting consequence of our approach we exhibit new classes
of proximinal subspaces ¥ for which L!(, ¥) is proximinal in L!(y,X). In this process
we obtain new proofs of some well known result on proximinality in L' (g, X).

In the concluding part of the paper we apply these results to study a weaker geometric
notion called GC (defined later in the paper) for quotient spaces of Bochner integrable
functions. Here our result states that, if L'(u,X) has GC and Y C X is reflexive then
L'(p,X/Y) has GC.

Our notation and terminology is fairly standard and can be found in [DU, H, L, HWW].

2. Main results

The new examples we exhibit come from quotient spaces and an isometric version of LLP
is used to achieve this. These results also give a unified approach to Corollary 1 and
Proposition in [R4]. We first recall the isomorphic version of LLP from [KP].

Lindenstrauss lifting principle: Let Y C X and Y be complemented in its bidual. Let F
be any £; space. Every bounded linear operator T' : F' — X /Y admits a lifting, i.e., there
exists a bounded linear operator T" : F — X such that 7" =T.

In this paper we assume that X,Y and X/Y are constrained in their bidual and will
consider the space L'(u,X/Y). We assume that L' (1, X) is constrained in its bidual and
most often we assume that Y has the RNP, so that L'(y,Y) is also constrained in its
bidual. Here it may be worth recalling from [DU] that L! (u, X/Y) can be identified with
the quotient space L'(u,X)/L'(u,Y). We consider the question, when is L'(u,X/Y)
constrained in its bidual?

In what follows we will need norm preserving liftings from L!(y). Even under the
assumptions of the above paragraph we do not know if this can always be achieved. Thus

we need an extra assumption on the projection which is satisfied in several naturally
occurring situations.

Assumption. Let P : X** — X be a norm one projection. Let Y C X be a closed subspace
such that P(Y++) =Y.

Remark 1. This clearly is the case when X is constrained in its bidual and Y is reflexive.
Also if M C X* then the Dixmier projection, Q : X** — X* defined by Q(A) = A/X,
satisfies the condition in the ‘assumption’ precisely when M is weak* closed (Lemma
IV.1.1 of [HWW]). We recall from Chapter IV of [HWW] that a Banach space X is a
L-summand in its bidual if when X is canonically embedded in its bidual, there exists a
projection P : X** — X such that |P(A)|| + ||[A — P(A)||= ||A]| for all A € X**. Clearly
such a X is constrained in its bidual and is also a proximinal subspace of its bidual. It was
shown in [Li] that if both X, Y are L-summands in their biduals then the ‘assumption’ is
satisfied. In Proposition 3 below we exhibit some more situations where the ‘assumption’
is satisfied. ‘

The following proposition which identifies Q as the only projection with the above

property is probably known but as we are not aware of a reference to it in the literature,
we give below its easy- proof.
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PROPOSITION 1

Suppose P : X*** — X* is a bounded linear projection such that for every weak® closed
subspace M C X*, P(M*+) = M. Then P = Q.

Proof. Since P and Q are projections with the same range, it is clear enough to show that
KerP C X+. Let A € KerP and let x € X. Write A = f +y where f € X* and y € X+ Let
M = Ker(x). Then M is a weak* closed subspace of X* and M ={\ e X : A(x) = 0}.
Thus y € M*. By hypothesis, P(M*+) = M. Therefore P(v) € M.Now P(A)= 0 = f(x).
Hence A(x) = 0. Therefore A € X™.

Tt follows from Lemma 1.1 in Chapter IV of [HWW] that the ‘assumption’ implies that
Y is a proximinal subspace of X. This is one of the motivations for considering this
approach.

We need the following elementary lemma.

Lemma 1. Under the ‘assumption’, X/Y is constrained in its bidual.

Proof. Define Q : X**/Y++— X/Y by Q(7**(x™)) = n(P(x**)). That Q is well defined
is guaranteed by the ‘assumption’. Clearly Q is a projection. Also

el = (PGl
=d(P(x"™),Y) ‘
< ||P(x*™) — P(N)|| forany A€ y+t

< o = Al

Therefore ||Q(7* (x*))|| < [|=**(x**)||. Hence X/Y is constrained in its bidual.
Before proceeding further we prove a proposition of independent interest that shows
the limitations of the ‘assumption’.

PROPOSITION 2

Let Y be a Banach space that is constrained in its bidual. Suppose whenever Y is
isometrically embedded in a Banach space X which is constrained in its bidual, the
‘assumption’ is satisfied. Then Y is reflexive.

Proof. Let X be any Banach space containing (isometrically) Y. We shall show that Y is
proximinal in X. It then follows from a result of Pollul [CW] that ¥ is reflexive. Note that
since Y C X C X**, the hypothesis on Y implies that it is proximinal in X**. Therefore Y
is proximinal in X and hence reflexive.

We do not know an answer to the corresponding subspace formulation.

Question. Characterize spaces X with the property that the ‘assumption’ is satisfied for
all Y C X that are constrained in their bidual.

The following lemma is the isometric version of the lifting theorem we need and we
give below its simple proof for the sake of completeness. '

Lemma 2. Let Y C X be such that the ‘assumption’ is satisfied. For any bounded linear
operator T :L'(u)— X/Y, there exists a T": L'(x)— X such that nT"=T and
T =T}
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Proof. It follows from Theorem 8 on p. 178 of [L] that there is a S : L' (1) — X** such that
IS||=||T|| and 7**S = T.Put T" = PS. Clearly ||T"||=||T||. Letf € L'(p). ¥ T(f) = =(x)

for some x € X, then x — S(f) € Y*+. By hypothesis we get P(x — S(f)) € Y. Thus
7T =T.

Theorem 1. Let Y C X be such that the ‘assumption’ is satisfied. Suppose Y has the RNP
and L' (1, X) is constrained in its bidual, then L' (1, X/Y) is constrained in its bidual.

Proof. We follow the arguments given during the proof of Proposition in [R4]. It is thus
enough to show that L!(y, X/Y) is the range of a norm one projection in cabv(u, X/Y).
Since Y has the RNP, and since L!(y,X) is constrained in cabv(u,X) by Theorem 5 of
[E2] the required conclusion follows once we show that elements of cabv(u,X/Y) can be
lifted to elements of cabv(u,X) in a norm preserving way. As in the proof of Proposition
in [R4] this can be achieved by using the correspondence between vector measures and
operators on L!-spaces and the above Lifting result for operators.

Remark 2. Even under the ‘assumption’ of the above theorem it not clear if the inclusion
LY(p,Y) C LY(u,X) satisfies the ‘assumption’ (see Proposition 3 below).

In the following Proposition we consider two situations where the explicit knowledge
of the projection shows that the ‘assumption’ is satisfied in the space of Bochner
integrable functions and hence the quotient space result of our Theorem can be obtained
by simply using Lemma 1 instead of the Lifting and other result of Emmanuele [E2] on
quotient space valued measures, see also Remark 6 below.

PROPOSITION 3
Suppose X has the RNP and is constrained in its bidual.

1. Consider the embedding of X as constant functions in L (e, X).
2. Let YCX and the ‘assumption’ is satisfied. Consider the inclusion L' (s, Y) C L' (12, X).

The ‘assumption’ is satisfied in both these cases. Thus the subspaces are proximinal and
the quotient spaces are constrained in the bidual.

Proof. Let P : X** — X be a norm one projection such that P(Y+1) = Y. We assume
w.l.o.g that u is a category measure on the Borel o-field of a compact hyperstonean
space K. Consider the canonical embedding X** C L!(u, X)**. We recall from [R1, R2]
that a norm one projection P" : L!(p, X)™ — L'(u, X) was defined by P\(\) = (A/C
(K,X*) o P),/dpu. Here we used Singer’s theorem that identified C(K,X*)* as cabv (X**)
and the suffix a indicates the absolutely continuous (w.r.t. u) part of the measure.

Now if A € X™* then the vector measure under consideration is the Dirac measure at
P()) and thus P" extends P.

Let Y C X satisfy the ‘assumption’ and let A € L!(u, Y)**. We claim that A can be
naturally restricted to C(K, Y*). To see this, let f € C(K, Y*). We first observe that it can
be in a norm preserving way extended to a f* € C(K,X*).

Since K is hyperstonean one can do this easily using properties of extremally discon-
nected spaces and Stone-Cech compactification (see § 11 of [L]). Equivalently one can

treataf € C(K, Y*) as a compact operator T : ¥ — C(K) and use Theorem 1 on p. 205 of
[L] to get a norm preserving extension 7" : X — C(K).
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Now one defines the restriction by
A(f) = M-

This is well defined since A € L' (i, ¥ )‘LL. This is what is meant by the natural restriction.
By the uniqueness part of Singer’s representation theorem, we see that the corres-
ponding vector measure actually takes values in YL and thus PA(L' (1, ¥)™) = L' (i, ).
Hence the conclusion follows.
As a corollary to the proof of the above proposition we have the following result that
extends several classical proximinality situations in the space of Bochner integrable
functions.

COROLLARY 1

Suppose Y C X satisfies the ‘assumption’ and Y has the RNP. Then L' (., Y) is a proximinal
subspace of L'(u, X).

Proof. We note that the projection P" defined as above, now has cabv(p, X) as its range.
Since Y has the RNP, PA(L!(u, ¥)™)=L'(u, ¥). Therefore L'(n,Y)C cabv(u,X) is
proximinal and in particular it is proximinal in L'(p, X).

Remark 3. Let Y C X* be a weak* closed subspace having the RNP. Since the ‘assumption’
is satisfied via the canonical projection, we get that L'(u, Y) is a proximinal subspace of
L'(p,X*). If Y C X is a reflexive subspace then again since Y is a weak” closed subspace
of X** we get a new proof of the classical result that L'(p,Y) is a proximinal subspace of
L}, X) (see [LC], Theorem 2.13), see also [R5].

If X is a Banach space that is a L-summand in its bidual it is still not known whether
L'(p,X) will always be a L-summand in its bidual. It follows from the above corollary
that if ¥ C X are both L-summands in their bidual (as mentioned in Remark 1, the
‘assumption’ is satisfied in this case) and Y has the RNP, then L'(y, Y) is a proximinal
subspace of L' (i, X).

Remark 4. We take this opportunity to point out that Corollary 3.5 of [M] does not lead to
a new class of proximinal subspaces, since the author’s ‘assumption’ “‘each separable
subspace Y is proximinal in X’ already implies that X is reflexive. To see this, note that it
is enough to show that every separable ¥ C X is reflexive. Now for such a Y, for each
closed subspace Z C Y, the hypothesis implies that Z is proximinal in X and hence in Y. It
now follows from the proof of the Theorem on p. 161 of [H] that ¥ and hence X is
reflexive. '

Remark 5. Suppose X, Y satisfy the ‘assumption’ and X/Y is isometric to some L'(v).
Since the identity map on X/Y can now be lifted in a norm preserving way, we get that ¥’
is also the kernel of a norm one projection. Thus L' (i, Y) being the kernel of a norm one
projection, is again a proximinal subspace of L' (u, X).

Remark 6. Suppose X,Y and X/Y are all constrained in their biduals. If X has the RNP
then L' (1, X/Y) is constrained in its bidual. To see this we only have to observe that the
hypothesis implies that X /Y has the RNP, then the conclusion follows from [R2]. In view
of Lewis and Stegall characterization of the RNP in terms of factorization of operators on
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L' spaces (Theorem IIL1.8 of [DU]) and the LLP we see that when X has the RNP so
does X/Y. :

The following corollary which covers the isomorphic case, is an immediate
consequence of the LLP and the arguments given during the proof of the above theorem.
We note that since we will be applying the LLP when the domain is a L'(v) space, o =1
in the proof of the LLP in [KP].

COROLLARY 2

Suppose X,Y and X/Y are complemented in their bidual. Suppose L!(u,X) is comple-
mented in its bidual and Y has the RNP. L*(u,X/Y) is complemented in its bidual.

It follows from Proposition 2.3 of [KP] thatif X is a L!'(v) space and ¥ C X is such that
X/Y has the RNP and constrained in its bidual (thus L!(u,X) and L'(p,X/Y) are both
constrained in their biduals) then there is a projection Q : X** — X such that Q(¥ Hy=Y.
However such a projection in general need not be of norm one, as can be seen by taking
Y = Ker(x*) where x* € X* does not attain its norm.

In the concluding part of the paper, as an application of the proximinality results
proved here, we consider a weaker geometric notion for quotient spaces of Bochner
integrable functions. We first recall the notion of generalized center (GC) due to Vesely
that is related to the existence of weighted Chebyshev centers, from [BR].

DEFINITION

A Banach space X is said to have GC, if every finite collection of closed balls in X** with
centers from X (as before, X is canonically embedded in X™) and having non-empty
intersection, has an element of X in the intersection.

It is easy to see that if X is constrained in its bidual then it has GC. co has GC and more
generally any Banach space whose dual is isometric to a L'(u) has GC (see [BR]).

To facilitate the study of GC the authors of [BR] have introduced the notion of a central
subspace. Y C X is said to be a central subspace if for every finite collection of elements
{y1,.--,yn} in Y and x € X, there exists a yo € ¥ such that ||y; — yo| < llys — x||. It is easy
to see that a Banach space X has GC iff it is a central subspace of X** (see [BR]). We also
have from [BR] that if ¥ C Z C X and Y is proximinal in X and Z is a central subspace of
X, then Z/Y is a central subspace of X/Y.

Using the arguments given in [R4] the following proposition is easy to prove.
PROPOSITION 4

L' (i, X) has GC iff X has GC and L'(u, X) is a central subspace of cabv(p, X**).
We use the above proposition and give an application of the proximinality results.

Theorem 2. Let X be such that L} (i, X) has GC. Let Y C X be reflexive. Then L' (1, X /Y)
has GC. ~

Proof. We note that since Y is reflexive, cabv(p,X**/Y) can be identified with the
quotient space, cabv(u, X**)/L! (i, ¥). From the above proposition and the hypothesis,
we have that L (4, X) is a central subspace of cabv(u, X**). From the proof of Proposition
3 and the subsequent remark, we have that L'(w,Y) is a proximinal subspace of

cabv(u, X**). Therefore L'(u,X/Y) is a central subspace of cabv(,X™ /Y) and hence
has GC. ’
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