


or imprecisely. Thus, the FLC falls in between the conventional precise mathe-

matical control and expert-like decision making.

FLCs model the human decision-making process with a collection of fuzzy

if-then rules.6 Successful design of a fuzzy control system depends on several

factors such as choice of the rule set, membership functions, inferencing scheme,

and the defuzzification strategy. Of these factors, selection of an appropriate rule

set is the most important one. Sometimes, fuzzy control rules are derived from

human experts who have acquired their knowledge through experience. However,

experts may not always be available; even when available, extraction of an

appropriate set of rules from the experts may be tedious, time-consuming, and

process specific. Thus, extraction of an appropriate set of rules or selection of an

optimal or suboptimal set of rules from the set of all possible rules is an important

and essential step toward designing any successful FLC.

There have been several attempts both under supervised and self-organized

paradigms for obtaining a good rule base. Some of these methods use neural

networks9–16 and others use genetic algorithms (GAs).17–33 The rule base tuning

has been attempted primarily in two ways: through tuning of membership functions

of a given rule set and/or through selection of an “optimal” subset of rules from all

possible rules. With an increase in the number of input variables, the possible set

of fuzzy rules increases rapidly. For instance, if each variable (both input and

output) has p fuzzy subsets, then for an FLC with q inputs and one output, the total

number of possible rules is pq11. It is not an easy task to determine a small subset

of rules from such a large “rule space” that would be suitable for controlling the

process.

Because fuzzy control systems are highly nonlinear with many input and

output variables, GAs34–36 often are used to optimize the control rules, which are

capable of rapidly locating a near-optimal solution to difficult problems.

Karr17 applied GAs for learning the membership functions of fuzzy control-

lers. Considering isosceles triangles for the membership functions, a GA with

conventional binary coding was used to move and to expand or to shrink the base

of each triangle. The fitness function minimized by GAs was defined by

f 5 O
i5case 1

case 4

O
j50 seconds

30 seconds

~w1xij
2 1 w2uij

2!

where x and u are the linear displacement of the cart and angular displacement of

the pole, respectively, of a cart-pole system; and w1 and w2 are weighting

constants. Karr used four different initial conditions (Cases 1–4) for tuning the

membership functions. Clearly, the performance of the system can be strongly

influenced by the choice of weights w1 and w2. Moreover, use of just four initial

conditions may not result in a good set of membership functions to ensure the

controllability of the system over the entire input domain.

Thrift19 described the design of a two-input–one-output fuzzy controller for

centering a cart-pole system. The alleles in the chromosome represented fuzzy sets

on the output variable. The length of a chromosome was equal to the total number

570 PAL, PAL, AND PAL



of combinations of input fuzzy sets. The fitness of an individual chromosome is

measured by 500 2 T, where T is the average time steps required by the controller

to be sufficiently close to the set point. Thrift used an ordinary two-point crossover

operation. The mutation operation can alter the allele value to its immediate upper

level or immediate lower level or to a blank code. A blank code indicates existence

of no rule corresponding to that combination of input fuzzy sets.

Nomura et al.20 also used GAs to determine both the membership functions

and an optimal set of rules for a single-input–single-output nonlinear system. For

a single-input system, the number of possible consistent rules is equal to the

number of linguistic values defined on the input linguistic variable. Homaifer and

McCormick24 pointed out that the method may suffer from the constraint that the

end points of a given fuzzy set are always located at the peaks of adjacent fuzzy

sets.

Park and Candel22 first showed that a new fuzzy reasoning model (NFRM)

controller outperforms the conventional FRM controller. To illustrate an applica-

tion of the NFRM to the DC series motor, they used two expert-provided fuzzy

relation matrices. Then, they showed that the performance of NFRM controllers

can be enhanced by GAs to derive the optimal fuzzy relation matrices and fuzzy

membership functions. The evaluation function used in GAs is

J 5 1/~1 1 e2!

Here, the mean-square error e2 is

e2 5 O
i51

N

~nri 2 nmi!
2YO

i51

N

nri
2

where nri is the actual speed for current i, nmi is the corresponding GA-tuned

NFRM-produced value, and N is the number of discretization intervals of the

speed. They showed that if domain knowledge is used in the initialization proce-

dure, it is exploited by the GA leading to faster convergence and better rule base.

Herrara et al.23 proposed a GA-based tuning method for the parameters of

membership functions used to define fuzzy control rules. This method minimized

a squared-error function defined in terms of the training data.

Homaifar and McCormick24 presented a method for simultaneous design of

membership functions and a rule set using GAs. The GA has been used to

determine the consequent fuzzy set of each possible rule and to tune the base

lengths of the antecedent fuzzy sets. The peaks for the antecedent fuzzy sets and

the definitions of the consequent fuzzy sets were kept unaltered. The information

about the rule set and membership functions were encoded into a single chromo-

some. The computation of fitness was divided into two stages, an evolution stage

(which lasted through generation 30) and a refinement stage. In the evolution stage,

the GA was used to find satisfactory controllers, i.e., controllers that moved in the

correct direction. In the refinement stage, they attempted to minimize the time

needed to bring the system to the set point. The fitness computation was done using

a complex algorithm. This method did not need expert’s knowledge or training data

LEARNING FUZZY RULES FOR CONTROLLERS 571



and the number of rules in a chromosome was kept fixed to the number of all

possible combinations of the input linguistic values.

Lim et al.31 also used the GA to learn fuzzy rules. It requires no prior

knowledge about the system’s behavior. Given a set of linguistic values on the

input and output variables, they derived a rule set having n fuzzy control rules

through adaptive learning, where n is a prespecified number. To satisfy the

constraint that each chromosome must contain exactly n rules, they used a special

type of two-point crossover operator called positioned-aligned crossover (PAX).

The mutation operator also is modified because of the n-rule constraint. If mutation

results in n 1 1 rules, the value of a randomly chosen allele will be nullified.

Similarly, if the mutation produces a chromosome with n 2 1 rules, a null allele

will be altered. They used the inverted pendulum control problem for simulation

and the fitness function used is

f 5 O
i51

d
bTui 1 ~1 2 b!Tei

dT

Here, d denotes the total number of different initial conditions used for testing the

chromosome. For the ith initial condition, Tui denotes the number of time steps that

the pole retains itself within 1° from the vertical position and Tei denotes the

number of time steps elapsed before the poll falls or Tei is equal to a prespecified

value of T (5200), the maximum number of time steps the controller is allowed

to run. The fitness value of all chromosomes in the population are scaled using the

following linear scaling function to avoid the effect of super individuals:

f9 5 k1 f 1 k2

where f and f9 are the fitness values before and after scaling, respectively. Suitable

values of k1 and k2 are chosen so that Fave 5 fave and Fmax 5 Sf 3 Fmin, where

fave is the average fitness before scaling; Fave, Fmax, and Fmin are, respectively, the

average, maximum, and minimum fitness after scaling; and Sf is the scaling factor.

RenHou et al.27 proposed a method of optimizing different control parameters

of a multi-input and multioutput fuzzy control system based on the GA. They used

the Takagi-Sugeno model18,37:

Ri: if ~x1 is A1
i ! and ~x2 is A2

i ! · · · and ~xn is An
i !

then ~yi 5 p0
i 1 p1

i x1 1 · · · 1 pn
i xn!

i 5 1, 2, . . . , m. The final output y is computed as

y 5 O
i50

n

ai z yiYO
i50

n

ai

where ai 5 min~mA1
i ~x1!, . . . , mAm

i ~xm!! and mj
i is a bell-shaped membership

function. They used the GA to select the optimal values of the consequent as well

as antecedent membership parameters. The fitness function used is

572 PAL, PAL, AND PAL



J 5 O
i51

n

buxi 2 xi
du or J 5 O

i51

n

b~xi 2 xi
d!2

where xi and xi
d are the output and the desired output (central point) of the process.

They used a double inverted pendulum with six linguistic variables each having

only two linguistic values. The number of rules in the rule base remains the same

as only the parameters of the rule set are optimized.

Carse et al.25 presented a GA-based approach to design fuzzy controllers for

multiple input-multiple output (MIMO) systems called Pittsburgh-style fuzzy

classifier system (P-FCS1) based on the Pittsburgh model of learning classifier

systems.38,39 They used a Mamdani-Assilian26-type model with symmetrical tri-

angular membership functions for both input and output variables. Each member-

ship function is represented by a pair, center and width. The system learns both

fuzzy rules and membership functions and they are encoded in a chromosome as

real numbers. The number of rules in each rule set is allowed to vary under the

action of different operators. They introduced a new crossover operator that tries

to preserve the epistatical linkage between genes representing rules with overlap-

ping fuzzy sets.

In Wong and Fan’s32 method, the complete rule base with n input variables

and one output variable is expressed as

R~j1, . . . , jn! : if x1 is A~1,j1! and · · · and xn is A~n,jn! then u is Of~j1,...,jn!

where xi and u stand for input and output linguistic variables. The term A(i, j) is the

jth fuzzy set of the ith input linguistic variable and f( j1, . . . , jn) is an index

function that decides a linguistic value of u. The f( j1, . . . , jn) 5 ^a1j1 1 . . . 1
anjn&, where ^b& denotes the integer nearest to b. Each chromosome contains the

encoded parameters ai, mi, m, Di, si, and D. The control rule base is decided by

the parameters ai and the membership functions are decided by the parameters mi,

Di, m, D, and si. Here, mi, Di, and si are the number, length of subdivisions and

width of fuzzy sets of the ith input variable, and m and D are the number and length

of fuzzy sets of the output variable. The performance evaluations (rise time,

overshoot, and integral absolute error) are considered in their fitness function.

Modeling of the index of output linguistic value of a rule using such a linear

combination of the indices of the fuzzy sets used in the antecedent clause of the

rule is not meaningful. This makes the learning task unnecessarily complex and

may not result in good solutions.

The GA has been used by Wong and Her29 to eliminate unnecessary fuzzy

sets to obtain a system with fewer rules. The rule structure is the same as that

described in Ref. 32. Wong and Her used triangular, assymetrical membership

functions with 50% overlap. Each chromosome contains the parameters that

describe membership functions of the fuzzy sets of input and output variables. The

fitness function used takes into account both the number of rules and the perfor-

mance of the rule base.

Chan et al.30 presented a GA-based optimized FLC (OFLC). They made some

modifications on simple GAs (SGAs) to improve its performance. The rule base

LEARNING FUZZY RULES FOR CONTROLLERS 573



may be initialized with an expert specified suboptimal one to speed up the

convergence. They used symmetrical rule tables, so the first half of the string is

mirrored to the other half after crossover and mutation. The initialization of

population is also done only on the first half. The fitness function is 1/(1 1 ITAE),

where ITAE is the integral time absolute error.

In this study, we first discuss some problems specially associated with the

mutation operator of the OFLC of Chan et al.30 and theoretically analyze its

computational performance. Then, we present a new scheme improved and sim-

plified OFLC (ISOFLC) with a symmetrical rule table, where we do not need to

consider all the rules in the rule table. Instead, the GA derives an n-rule fuzzy

system, where n is not fixed. The variable-length rule set will be able to grow or

shrink according to the need of the problem. The lower the number of rules in the

rule set, the lower would be the search space of the GA and the computation time

to determine the output of the system also would be low. Our evaluation function

itself keeps the balance between the number of rules and the performance of the

rule base on the system. The performance of the scheme is shown on the inverted

pendulum problem and compared with the work of Lim et al.31 Some better

theoretical properties of our scheme over that of Chan et al.30 are discussed also.

2. BRIEF OVERVIEW OF GAs

GAs34 are probabilistic heuristic search processes based on concepts of

natural genetic systems. They are highly parallel and are believed to be robust in

searching global optimal solutions of complex optimization problems. They re-

combine structural information to locate new points in the search space with

expected improved performance.

GAs are capable of solving a wide range of complex optimization problems

using three simple genetic operations (reproduction/selection, crossover, and mu-

tation) on coded solutions (chromosomes/strings) for the parameter set, not the

parameters themselves, in an iterative fashion. GAs consider several points in the

search space simultaneously, which reduces the chance to converge to a local

optima. They use the payoff or penalty (i.e., objective) function called the fitness

function and do not need any other auxiliary information.

Let us consider the problem of optimizing a complex function having k

parameters p1, p2, . . . , pk. To solve such a problem, GAs start with a set of initial

strings/chromosomes P 5 Si; i 5 1, 2, . . . , N as the initial approximations of the

parameter set. In GA literature, P is called a population. Each chromosome Si

represents a coded version of an approximate solution set ci 5 (ai1, ai2, . . . , aik).

Usually, a binary chromosome of length Lb 5 k z lb is taken as a string or

chromosomal representation of an approximation. The substring comprising bits

(i 2 1)plb through i z lb, i 5 1, 2, . . . , k, represents an approximation of the ith

parameter. The population of the chromosomes then undergoes a sequence of three

genetic operations to produce usually an improved population. These three oper-

ations are selection, crossover, and mutation. This process is repeated until some

stopping criteria is reached.

574 PAL, PAL, AND PAL



3. OFLC OF CHAN ET AL.30 AND SOME REMARKS

3.1. Chromosome Representation

In the work by Chan et al.30 the input and output fuzzy sets are modeled by

symmetrical and triangular membership functions. A chromosome represents a

candidate solution of the problem, i.e., a rule set for the FLC. The number of alleles

(containing integer values) in a chromosome is equal to the number of distin-

guished antecedent clauses in the rules. Suppose there are two antecedent (input)

variables x1 and x2 and one consequent (output) variable, say y. Let the number of

terms corresponding to x1, x2, and y be m, n, and l, respectively. Then, there are

m 3 n alleles in a chromosome, one for every possible combination of input fuzzy

sets associated with x1 and x2. Each of these m 3 n antecedent clauses is

represented by a unique position in every chromosome. For each antecedent clause

there are l possible consequences corresponding to l output fuzzy sets, which make

the total number of possible fuzzy rules m 3 n 3 l. The allele value at each

location in a chromosome contains the label of an output linguistic value to be used

for a given rule. For example, the seven linguistic values (fuzzy sets) negative big

(NB), negative medium (NM), negative small (NS), zero (Z), positive small (PS),

positive medium (PM), and positive big (PB) of a linguistic variable are coded as

1, 2, 3, 4, 5, 6, and 7, respectively.

3.2. Symmetrical Rule Table, Mirror Action, and Initialization

The system is assumed to be symmetrical and hence the rule base is taken as

symmetrical, which can balance the system from both directions to the set point.

Symmetrical rule tables reduce the search space.

Because of the symmetrical nature of the system, the second half of a

chromosome is taken as the mirror image of the first half of that chromosome with

respect to the line of symmetry. The mirror image of a site of a chromosome is

given by another site at the same distance with respect to the line of symmetry in

the opposite direction. The line of symmetry is located at (length of chromosome 1
1)/2. The mirror image of allele value NS (3) is PS (5). The index d, of the fuzzy

set representing the mirror image of a fuzzy set with the index k is governed by the

relation d 5 (number of fuzzy subsets(l ) 1 1) 2 k; in the case of NS (3), the

index of its image is 5 5 (7 1 1) 2 3, i.e., PS.

Chan et al.30 initialized the population using a random generator and/or used

an expert-provided rule set. Because a good initial population may speed up the

convergence, a population may be constructed based on the available information

or common sense. However, they claimed that their algorithm also can optimize the

controller with an empty rule base.

3.3. Fitness Function

The fitness function used by Chan et al.30 is

fitness 5 1/~1 1 ITAE! (1)

LEARNING FUZZY RULES FOR CONTROLLERS 575



Here, ITAE of a rule set, for d initial conditions, is defined as

ITAE 5 O
i51

d

~ITAE!i

3.4. Reproduction

The reproduction module consists of parent selection, crossover, and muta-

tion. First, a pair of parents is selected, and then either crossover or mutation is

applied to produce two children. The process is repeated to produce a new

population of children of the same size as that of the original population. Unlike

simple GAs, where mutation follows crossover, this algorithm performs only one

of the two operations on selected parents. If the crossover rate is 0.7 and the

mutation rate is 0.3, then the parents have a 70% chance of performing crossover

and a 30% chance of mutation.

3.4.1. Parents Selection

Roulette wheel selection34 is used in the OFLC to select parents. To avoid the

effect of super individuals, the maximum fitness of a generation is added to the

fitness value of each chromosome for linearization of fitness values.34 The chance

of a string to be selected as a parent thus becomes

pi 5 ~fi 1 fmax!YSO fi 1 NpfmaxD, i 5 1, 2, . . . , N

where N is the size of population and fmax is the maximum fitness value of any

chromosome in that generation.

3.4.2. Crossover

One-point crossover is used on the first half of chromosomes. After crossover,

the first half of a child is mirrored to the second half.

3.4.3. Mutation

Chan et al.30 uses a “one-step change mutation scheme,”33 which changes a

randomly selected allele value to either its next or previous value with equal

probability. Mutation is done on the first half of the chromosome and then it is

mirrored to the second half. Let nm be the number of mutations to be done on a

chromosome. Then, the following steps realize the mutation:

(1) Select two chromosomes by parent selection
(2) While nm . 1 do (3)–(5)
(3) Generate a random integer R1 from 1 to (length of the chromosome 2 1)/2 to select

which site is to be mutated

576 PAL, PAL, AND PAL



(4) Generate another random number R2 in [0, 1] to determine whether to increase or
decrease the rule output by one; if R1 ¶ 0.5, then we increase the allele value at site
R1 by 1 or decrease the allele value at site R1 by 1; when the allele value at site R1 is
1, it will not be decreased and when it is l, it will not be increased further

(5) nm 5 nm 2 1
(6) Mirror the first half of the chromosome to the second half; similar action is applied to

the second chromosome

3.5. Generation Selection

Generation selection is different from parent selection. It selects the next

generation population. In the OFLC steady state without duplicates (SSWOD)35 is

used to select the best-fit individuals between the parents and children for the new

generation. If the population size is N, then the reproduction module will produce

N children using mutation and crossover. Next, the existing population and their N

children, i.e., total 2N individuals are passed to the generation selection module to

select the best-fit population of N individuals for the next generation.

If none of the new N offspring is selected for the next generation, then the

number of mutations is increased by one in the next generation, and the whole

population is replaced by another randomly generated population, except for the

best string that is kept in the new population.

3.6. Some Remarks on OFLC

3.6.1. Search Space Reduction

If the controller has k inputs and one output each with d linguistic values, then

the total number of possible rule sets (search space) is ddk

. For example, for a

two-inputs and one-output controller with seven linguistic values for each input

and output variable, the search space contains 749 rule sets. For a symmetrical

controller, there exists an equilibrium point. So, the search space is reduced to 724

in Chan et al.’s30 method.

The search space and the computation time in each generation can be reduced

further if the evolutionary process allows deletion of bad and redundant rules. Chan

et al.’s30 method did not entertain this.

3.6.2. One-Step Change Mutation Scheme

Chan et al.30 used a “one-step change mutation scheme,”33 where the current

consequent is changed to either the immediately preceding or the next one.

Although, this scheme can improve local search, it can greatly influence the

maintenance of diversity, particularly when the population is initialized without

any prior knowledge or in a situation when the entire population has converged to

a homogeneous one. In the first case, the rate of convergence is expected to be low

and in the second case the whole population may get stuck to a nonoptimal/

suboptimal solution. For these reasons, we think, Chan et al.30 insisted on using

LEARNING FUZZY RULES FOR CONTROLLERS 577



prior knowledge about the system to get the initial population, and the OFLC

requires checking whether a new offspring is transferred to the next generation.

As mentioned earlier, when there is no offspring in a new population, the

number of mutations in a chromosome is increased by one in the next generation,

and the whole population is replaced by another randomly generated population,

except for the best chromosome, which is kept. This is nothing but a new run with

added information and with more mutation probability to restore diversity. In their

one-step change mutation scheme, the exploration property of the GA may get

significantly affected. This will be more prominent if the initial population is not

generated using expert knowledge, and then the performance of OFLC could be

poor. Our analysis in the next section reveals that indeed it is the case.

4. ANALYSIS OF OFLC

Suppose we have a chromosome representing a rule base containing only one

(actually two because it is symmetrical) bad rule at the rth site. The allele value at

the site corresponding to the bad rule is l, which should be 1. Now, in Chan et

al.’s30 scheme, l can never be changed to 1 by a single mutation. Let us calculate

the expected number of mutations (steps) required to change the value of the rth

site from l to 1 and its variance. A random site out of n (here, n 5 (M 2 1)/ 2,

where M is the length of the symmetrical chromosome) is selected. If the rth site

is selected, then we reduce the content of the rth site by 1, i.e., make it (l 2 1) with

probability 1 (as maximum value of the content is l ). The random selection of site

is continued until we get the rth site again. Then, the content of the rth site is either

decreased to (l 2 2) or increased to l from (l 2 1) with equal probability (i.e.,

1/2). The whole procedure is continued until the content of the rth site becomes 1.

We will now find the expected number of trials (i.e., choosing a site) necessary to

get 1 in the rth site and its variance.

We call a trial successful if rth site is selected. Suppose L is the number of

trials necessary to get J successes, where J is the number of successes needed to

make the content of the rth site as 1; L is obviously a random variable. It follows

a negative binomial distribution

P~L 5 l*uJ! 5 S l* 2 1

J 2 1 D S1

n
D JS1 2

1

n
D l*2J

The expectation and variance of LuJ can be derived as

E~LuJ! 5 nJ, V~LuJ! 5 n~n 2 1!J

The J is also a random variable. Thus, the random variable L is nothing but the

number of trials necessary to make the content of the rth site 1. We have to find

out

E~L! and V~L!

We know that E(L) 5 E(E(LuJ)) 5 E(nJ) 5 nE( J) and V(L) 5 E(V(LuJ)) 1
V(E(LuJ)) 5 E(n(n 2 1)J) 1 V(nJ) 5 n(n 2 1) E( J) 1 n2V( J). Now, we

shall find E( J) and V( J).

578 PAL, PAL, AND PAL



Consider a Markov chain40 with l states with the following transition matrix:

Pl3l 5 1
1 0 0 0 · · · 0 0
1

2
0

1

2
0 · · · 0 0

0
1

2
0

1

2
· · · 0 0

· · ·

0 0 0 0 · · · 0
1

2

0 0 0 0 · · · 1 0

2
l3l

The ijth element of the transition matrix P gives the probability of going to the jth

state from the ith state. This is a special type of Markov chain known as a random

walk model. State 1 is an absorbing state. Once the content of the rth site becomes

1, the process ends. If the content of the rth site becomes l, it becomes l 2 1 by

the next chance. The transition matrix can be partitioned in the following way:

P 5 S1 O*

R Q D
where O* 5 (0, 0, . . . , 0), R* 5 (1/2, 0, 0, . . . , 0), and

Ql213l21 5 1
0

1

2
0 · · · 0 0

1

2
0

1

2
· · · 0 0

· · ·

0 0 0 · · · 0
1

2

0 0 0 · · · 1 0

2
l213l21

For an absorbing Markov chain, N 5 (I 2 Q)21 is the fundamental matrix. Let

us denote m 5 l 2 1. To compute N, we use LU-decomposition of (I 2 Q), i.e.,

I 2 Q 5 LU

where L and U are lower and upper triangular matrices, respectively, which can be

computed from (I 2 Q) matrix as

L 5 @Lij#m3m 5 1
2

2
0 0 · · · 0 0

21

2
3

4
0 · · · 0 0

0
21

2

4

6
· · · 0 0

· · ·

0 0 0 · · ·
~m 2 1! 1 1

2~m 2 1! 0

0 0 0 · · · 21
1

m

2
i.e.,

LEARNING FUZZY RULES FOR CONTROLLERS 579



Lij 5 5
i 1 1

2i
if i 5 j and i Þ m

1

m
if i 5 j and i 5 m

21

2
if i 2 1 5 j and j Þ m

21 if i 2 1 5 j and j 5 m

0 otherwise

and

U 5 @Uij#m3m 5 1
1

21

2
0 0 · · · 0 0

0 1
22

3
0 · · · 0 0

0 0 1
23

4
· · · 0 0

0 0 0 1 · · · 0 0

· · ·

0 0 0 0 · · · 1
2 ~m 2 1!

m

0 0 0 0 · · · 0 1

2
i.e.,

Uij 5 5
1 if i 5 j
2 i

i 1 1
if i 1 1 5 j

0 otherwise

Thus,

N 5 ~I 2 Q!21 5 ~LU!21 5 U21L21

Here,

L21 5 @Lij
21#m3m 5 1

2 3
1

2
0 0 · · · 0 0

2 3
1

3
2 3

2

3
0 · · · 0 0

2 3
1

4
2 3 2 3

3

4
· · · 0 0

· · ·

2 3
1

m
2 3

2

m
2 3

3

m
· · · 2 3

m 2 1

m
0

2 3 1 2 3 2 2 3 3 · · · 2 3 ~m 2 1! m

2
i.e.,

Lij
21 5 5

2 3
j

i 1 1
if i . j and i , m

2 3 j if i 5 m and j Þ m

j if i 5 j and j 5 m

0 otherwise

580 PAL, PAL, AND PAL



and

U21 5 @Uij
21#m3m 5 1

1
1

2

1

3

1

4
· · ·

1

m 2 1

1

m

0 1
2

3

2

4
· · ·

2

m 2 1

2

m

0 0 1
3

4
· · ·

3

m 2 1

3

m

· · ·

0 0 0 0 · · · 1
~m 2 1!

m

0 0 0 0 · · · 0 1

2
i.e.,

Uij
21 5 H i

j
if i < j

0 otherwise

So, we get

N 5 @Nij#m3m 5 1
2 2 2 · · · 2 2 1

2 4 4 · · · 4 4 2

2 4 6 · · · 6 6 3

· · ·

2 4 6 · · · 2~m 2 2! 2~m 2 2! ~m 2 2!

2 4 6 · · · 2~m 2 2! 2~m 2 1! ~m 2 1!

2 4 6 · · · 2~m 2 2! 2~m 2 1! m

2 (2)

i.e.,

Nij 5 H2j if i > j and j Þ m

2i if i , j and j Þ m

i if j 5 m

THEOREM. Suppose nij is the total number of times that the process comes to state

j starting from state i. Then, E((nij)) 5 N and V((nij) 5 N2 5 N(2Ndg 2 I) 2 Nsq,

where Ndg is the matrix N after making all off diagonal elements zero and Nsq is

the matrix where every element of N is squared.40 We get, N2 5 [(N2)ij], where

~N2!ij 5 H2j~4j 2 1! 2 ~2j!2 if i > j and j Þ m

2i~4j 2 1! 2 ~2i!2 if i , j and j Þ m

i~4j 2 1! 2 ~i!2 if j 5 m

The set containing only state 1 is an ergodic set. The other states are transient

states. Let t 5 (t1, t2, . . . , tm)T be the vector giving the total number of steps

(including the original position) that the process is in a transient state, where ti 5

total number of steps needed to reach an ergodic set from the transient state i. In

an absorbing chain, this is the time to absorption.

LEARNING FUZZY RULES FOR CONTROLLERS 581



THEOREM. E(t) 5 t and V(t) 5 t2, where t 5 Nz and t2 5 (2N 2 I)t 2 tsq, z
is a column vector consisting of 1’s only and tsq is the vector in which every

element of t is squared.40. Thus, for our fundamental matrix N in Equation 2, we

get

t 5 1
1~2m 2 1!

2~2m 2 2!
·
·
·

i~2m 2 i!
·
·
·

m~2m 2 m!

2
Because we are interested in the last elements of t and t2, we give the results from

(t)m and (t2)m only, which are nothing but E(J) and V(J), respectively, i.e.,

expected number of steps needed to reach an ergodic state from state l and its

variance.

tm 5 m~2m 2 m! 5 m2 and ~t2!m 5
m2

3
~2m2 1 1!

So, we get

E~L! 5 nE~J! 5 nm2 5 n~l 2 1!2

V~L! 5 n~n 2 1!m2 1 n2
m2

3
~2m2 1 1!

5 n~n 2 1!~l 2 1!2 1 n2
~l 2 1!2

3
~2~l 2 1!2 1 1!

So, if n 5 24 and l 5 7, then

E~L! 5 964 and V~L! 5 524,448

Thus, on average 964 mutations (with a variance of 524,448, which is a very big

number) may be required. Note that here we considered only one chromosome, so

crossover operation was not considered.

This analysis gives an indication that if expert knowledge is not available to

initialize the population, the computational efficiencies of OFLC could be very

poor. This can be improved if we replace the one-step change mutation by random

mutation. We show it theoretically.

In random mutation, an allele is replaced with a random number between 1 to

l. Thus, the allele value can go to 1 from l in a single mutation (one step), which

is not at all possible in OFLC. We now calculate the expected number of mutations

(steps) required to change the value of the rth site from l to 1 and its variance for

random mutation. Let us define a trial as randomly selecting one of the sites and

then randomly altering its value. The probability that the rth site will be selected

and its content will be changed to 1 is p 5 (1/n)(1/l ) and q 5 1 2 p. Thus, p

is the probability that the content of the site will be changed to 1 in one step and

582 PAL, PAL, AND PAL



q represents the probability that the content of the site will not be changed to 1 in

one step. Now, the content of rth site can change to 1 in i steps, i 5 1, 2, . . . , `.

So, the expected number of trials needed is

E~L! 5 O
i51

`

i z p z qi21 5
p

~1 2 q!2 5
1

p
5 n z l

and

V~L! 5 SO
i51

`

i2
z p z qi21D 2 ~E~L!!2 5

2 2 p

p2 2
1

p2 5
1 2 p

p2

5 n2
z l2 2 n z l 5 n z l~n z l 2 1!

Assuming the same values of n (524) and l (57), we get E(L) 5 168 and

V(L) 5 28,056. Thus, on average, 168 mutations (with variance 28,056) can

change the value of a particular site from l to 1, and for OFLC, it is 964, where

variance is also very high (524,448).

5. PROPOSED SCHEME: ISOFLC

We shall illustrate our method keeping in mind the inverted pendulum

problem that has two input variables and one output variable. An OFLC does not

allow rule deletion. Consequently, the rule base will always have m 3 n rules,

where m and n are the number of fuzzy sets associated with the two input variables.

The scheme proposed here, called the ISOFLC, entertains rule deletion also and

thereby reduces the search space drastically. The execution time for each genera-

tion also will be greatly reduced because for evaluation of fitness of each chro-

mosome it will process fewer than m 3 n rules. To achieve this, we need some

modifications and changes in the chromosome representation, initial population,

fitness function, and in the mutation operation as described next.

5.1. Chromosome Representation

The allele value at each location in a chromosome contains either the label of

an output linguistic value to be used for a given rule or zero. If a chromosome

contains an allele value of zero at position i, then in that rule base there will be no

rule with the antecedent clause corresponding to the ith site.

5.2. Initial Population

The parameters required for the initialization of population are population size

and lower limit (q) and the upper limit (Q) on the number of rules to be selected

initially in a chromosome. For each chromosome, a random number is generated

between q and Q, which gives the initial number of rules in the chromosome.

Positions of these rules in the chromosome also are selected randomly. The allele

LEARNING FUZZY RULES FOR CONTROLLERS 583



value for each of these rules is also selected randomly from the set {1, 2, . . . , l}.

Thus, we are considering all possible fuzzy rules to get the initial population.

We do not restrict the GA to derive a rule base having number of rules

between q and Q. Then, q and Q will be treated as constraints in the learning

process. Instead, we allow the number of rules in the rule set to vary, such that, the

variable-length rule set may be able to grow or shrink according to the need of the

problem. So, we use the same crossover operation of OFLC in ISOFLC.

5.3. Fitness Function

We like to get a rule base with fewer rules but without compromising the

performance of the system. The rule base should be able to bring the system to the

target state with lower ITAE. So, we introduce a new fitness function that uses

number of rules as well as ITAE. The simplified fitness function that can decide on

the trade-off between the number of rules and the quality of performance is

fitness 5
1

w1 z nr 1 w2 z ITAE
(3)

Here, nr is the number of rules in the rule set and ITAE is already defined in

Equation 1. The w1 and w2 are the weights associated with the number of rules and

the ITAE, respectively. We have used a convex combination of nr and ITAE, i.e.,

w1 1 w2 5 1.

5.4. Mutation

We have used random mutation. If the number of linguistic terms associated

with the output variable is l, in this mutation scheme, an allele is randomly

replaced with a random number between zero to l. So, it can

(i) Insert a rule by selecting a site of zero allele value and setting it to a randomly

selected nonzero value in 1, 2, . . . , l

(ii) Delete a rule by selecting a site of nonzero allele value and setting it to zero

(iii) Modify a rule by selecting a site of nonzero allele value and setting it again to

a randomly selected different nonzero value in 1, 2, . . . , l

This mutation scheme can maintain the diversity of the population. It also helps the

learning process to get a rule base having fewer rules because of its rule deletion

property.

5.5. Initial States

The rule base should be such that the controller is able to operate over the

entire input space. To satisfy this criterion, we use a sufficient number of initial

states distributed over the entire input space to compute the fitness of an individual

chromosome. The more the number of initial states, the more will be the degree of

584 PAL, PAL, AND PAL



reliability on the extracted rule set; but it will increase the design time of the

controller. So, a trade-off is made by the designer. Initial states used in ISOFLC are

shown in Table I.

The proposed scheme selects, in a self-organized manner, an “optimal” subset

of rules from all possible rules, which attempts to bring the system to its set point

within a short time (measured by the number of time steps), keeping in view that

the controller will operate over the entire input space. ISOFLC attempts to achieve

the following:

(i) To minimize the number of rules (considering the variable nr in the fitness

function and allowing deletion in the mutation)

(ii) To minimize the average time to reach the set point, i.e., settling time (by

using ITAE to evaluate the fitness)

(iii) To ensure that the controller operates over the entire input space (by proper

choice of initial states)

6. SIMULATION RESULTS OF ISOFLC

We have implemented the proposed method (ISOFLC) on the inverted pen-

dulum problem with several initial populations. In most cases we get a rule base

having few rules and low ITAE within a few generations without any guidance

from human experts.

The inverted pendulum problem is a well-modeled control problem com-

monly used for establishing fuzzy control algorithms and development tools. The

inverted pendulum is a pole of mass m supported through a hinge by a cart of mass

M, where the pole motion is constrained to be on a vertical plane and the cart

motion is constrained to be along the horizontal X direction. When the cart is at

rest, the pole is balanced in the vertical position and the force u on the cart is zero

and then the system is in equilibrium. The objective of the control problem is to

apply forces to the cart until the pole is balanced in the vertical position (i.e., u 5
0 and u̇ 5 0). The control rules are of the form

if ~u is $NB, . . . , PB%! and ~u̇ is $NB, . . . , PB%! then ~u is $NB, . . . , PB%!

Here, u is the angular displacement, u̇ is the angular velocity of the pole, and u is

the force applied on the cart. The terms u and u̇ are the input linguistic variables

and u is the output linguistic variable. For simplicity, we have ignored the

cart-positioning part and constrained ourselves only to pole balancing.

Table I. Initial positions used.

Initial positions

(20.18, 21.8)(20.18, 1.8)(0.18, 21.8)(0.18, 1.8)

(20.12, 21.2)(20.12, 0)(20.12, 1.2)(0, 1.2)

(0.12, 1.2)(0.12, 0)(0.12, 21.2)(0, 21.2)

(20.06, 20.6)(20.06, 0.6)(0.06, 20.6)(0.06, 0.6)

(20.03, 0)(0, 20.3)(0.03, 0)(0, 0.3)

LEARNING FUZZY RULES FOR CONTROLLERS 585



We have used the following computational protocols: pole length, 0.5 m; pole

mass, 0.1 kg; cart mass, 2 kg; the maximum allowable angular deviation, 0.18 rad;

and angular velocity, 1.8 rad/second. Each of the linguistic variables u, u̇, and u has

seven linguistic values or fuzzy sets: NB, NM, NS, Z, PS, PM, and PB. We used

isosceles triangles as membership functions with 50% overlap with the neighboring

triangles. The membership functions of the input and output linguistic variables are

shown in Fig. 1. All membership functions have equal base length. This is possibly

the most natural and unbiased choice for the membership functions.

Hence, the number of all possible fuzzy rules is 343 (57 3 7 3 7) and there

are 49 (57 3 7) alleles in a chromosome. The allele value is 1 for NB, 2 for NM,

and so on. In our simulation, each chromosome is tested with the 20 different initial

positions, shown in Table I, each of which is simulated for T 5 200 time steps.

Different initial conditions test the rule set for its ability to control different

situations. The choice of initial positions plays a vital role in achieving the stability

of the controller over the entire input space.

Parameters of the GAs:

Population size 5 50

Mutation rate 5 0.3

Crossover rate 5 0.7

Maximum number of generations 5 50 ~for proposed scheme!

5 100 ~for OFLC!

Number of rules in a chromosome in the initial population (in ISOFLC) is taken in

the range of 7–12 (generated randomly). The pole is considered to be balanced if

u ¶ 0.001 rad, and u̇ ¶ 0.01 rad/second within 100 time steps. The termination

condition for the simulation is set to be either the maximum number of generations

or the fitness does not increase in five successive iterations. We generated 1369

(537 3 37) samples (initial states) uniformly distributed over the product space

Figure 1. Fuzzy membership functions of the linguistic values associated with input linguistic
variables u and u̇ and output linguistic variable u.

586 PAL, PAL, AND PAL



u 3 u̇, which are used to examine the stability and performance of the rule set

extracted.

To show the effectiveness of our fitness function in Equation 3, we imple-

mented the proposed scheme but with the fitness function of Chan et al.30 described

in Equation 1. We made several simulations. Two of them are shown in Table II

having 17 and 19 rules and their corresponding ITAEs are 1.6751 and 1.6361,

respectively. Using our fitness function in Equation 3, with w1 5 0.3 and w2 5
0.7 (say, Case I), we get rule sets having much less ITAE within 50 generations.

Here, we report only two of them in Table III. Although they have the same

number of rules as in Table II, their ITAEs are much less, 0.8759 and 0.7250,

respectively. Increasing w1 to 0.5, i.e., w1 5 w2 5 0.5 (say, Case II), ISOFLC,

within 25 generations, settles to rule sets having fewer rules but with slightly

higher ITAEs. We report only two of them in Table IV. Table IV shows a rule set

with 9 rules and an ITAE 5 6.5314 and 11 rules with an ITAE 5 4.4657.

To ascertain the quality of the rule sets extracted by ISOFLC, we have

examined each of the 1369 (537 3 37) initial conditions over the entire input

space. Table V shows, in most cases, an inverse relation between the number of

rules and the quality (measured by ITAE) of a rule base produced by ISOFLC, and

all rule bases considered in the Table V are able to bring the system to the target

state. So, by choosing a proper combination of the values of w1 and w2, a trade-off

between the number of rules and the performance (in terms of ITAE) can be

decided as required by the user.

Table VI shows the performance comparison of the results obtained by

ISOFLC (for both Case I and Case II) and OFLC of Chan et al.,30 averaged over

10 runs. Note that OFLC used an exhaustive rule set, i.e., m 3 n (549) rules in

the rule set, whereas the average number of rules in the rule set selected by

ISOFLC is only 18 and 11.4 in Cases I and II, respectively.

Table II. Results of ISOFLC but with the fitness function of Chan et al.30

u

u̇

NB NM NS Z PS PM PB

A rule set containing 17 rules (ITAE 5 1.6751)

NB 2 0 1 0 0 0 0

NM 1 3 0 0 1 0 0

NS 0 0 0 1 0 0 0

Z 3 0 2 4 6 0 5

PS 0 0 0 7 0 0 0

PM 0 0 7 0 0 5 1

PB 0 0 0 0 7 0 6

A rule set containing 19 rules (ITAE 5 1.6361)

NB 2 1 0 1 0 0 0

NM 1 0 3 0 0 0 0

NS 0 5 0 2 0 0 0

Z 0 1 3 4 5 7 0

PS 0 0 0 6 0 3 0

PM 0 0 0 0 5 0 7

PB 0 0 0 7 0 7 6

LEARNING FUZZY RULES FOR CONTROLLERS 587



7. COMPARISON OF OUR RESULTS WITH LIM ET AL.’S WORK

HAVING THE SAME GOAL

7.1. Some Remarks on Lim et al.’s31 Method

Given fixed domains and symmetrical triangular membership functions for

each input and output variables, Lim et al.31 described a learning process based on

Table III. Results of ISOFLC with w1 5 0.3, w2 5 0.7.

u

u̇

NB NM NS Z PS PM PB

A rule set containing 17 rules (ITAE 5 0.8759, average time steps 5 24.1)

NB 1 0 1 0 1 0 0

NM 0 2 0 1 0 0 0

NS 0 0 0 1 0 0 0

Z 0 2 3 4 5 6 0

PS 0 0 0 7 0 0 0

PM 0 0 0 7 0 0 0

PB 0 0 7 0 7 0 7

A rule set containing 19 rules (ITAE 5 0.7250, average time steps 5 23)

NB 1 0 1 1 0 0 0

NM 0 1 0 0 0 2 0

NS 0 1 0 1 0 0 0

Z 2 0 2 4 6 0 6

PS 0 0 0 7 0 7 0

PM 0 6 0 0 0 7 0

PB 0 0 0 0 7 7 7

Table IV. Results of ISOFLC with w1 5 w2 5 0.5.

u

u̇

NB NM NS Z PS PM PB

A rule set containing 9 rules (ITAE 5 6.5314)

NB 1 1 0 1 0 0 0

NM 0 0 0 0 0 0 0

NS 0 0 0 2 0 0 0

Z 0 0 2 4 6 0 0

PS 0 0 0 6 0 0 0

PM 0 0 0 0 0 0 0

PB 0 0 0 7 0 7 7

A rule set containing 11 rules (ITAE 5 4.4657)

NB 1 1 0 1 0 0 0

NM 0 0 0 0 0 0 0

NS 0 0 0 2 0 0 0

Z 0 0 2 4 6 0 0

PS 0 0 0 6 0 0 0

PM 0 0 0 0 0 0 0

PB 0 0 0 7 0 7 7

588 PAL, PAL, AND PAL



GA to derive fuzzy control rules. We have already described their algorithm briefly

in Section 1:

(1) They did not consider symmetrical rule base. So, the search space is large but
flexibility is more.

(2) Number of rules in the rule base is fixed. An appropriate choice of the number of rules
requires at least some knowledge of the underlying problem complexity, which may
not always be available. Modifications of genetic operators such as crossover and
mutation and other operators such as rule creation and rule deletion were required in
their algorithm just to keep the number of rules in chromosome fixed. Fixing the
number of rules may act as a constraint on the learning ability of the system.

(3) The fitness function of Lim et al.31 is

f 5 O
i51

d
bTui 1 ~1 2 b!Tei

dT

For a test run with the ith initial condition, Tui denotes the number of time steps the
pole remains at within 1° from the vertical position and Tei denotes the number of time
steps elapsed before the poll falls. Fitness function is suitable only for the inverted
pendulum. Lim et al.31 set b 5 0.6 in their simulation. For each of these tests, the

Table V. Number of rules and the corresponding ITAE and fitness of 10 different rule sets
generated by ISOFLC for Cases I and II.

Case I Case II

w1 5 0.3, w2 5 0.7 w1 5 0.5, w2 5 0.5

No. of rules ITAE Fitness No. of rules ITAE Fitness

15 0.9083 0.19 9 6.5314 0.1288

17 0.8759 0.17 9 6.8155 0.1264

17 0.9006 0.17 11 4.0702 0.1328

17 1.0559 0.17 11 4.1371 0.1322

17 1.1708 0.16 11 4.2023 0.1316

19 0.7250 0.16 11 4.5851 0.1284

19 0.8873 0.17 13 2.0513 0.1328

19 0.9530 0.15 13 2.1703 0.1318

19 1.0296 0.15 13 2.4203 0.1296

21 1.0406 0.14 13 2.7528 0.1270

Table VI. Performance comparison of ISOFLC and OFLC, averaged over 10 runs.

ISOFLC

OFLCCase I Case II

No. of rules 18 11.4 49 (fixed)

Average no. of time steps 25.2 42 28

Average ITAE 0.9547 3.9732 1.0609

No. of balanced positions among 1369 1369 1369 1369

Failure (%) 0 0 0

LEARNING FUZZY RULES FOR CONTROLLERS 589



cart-pole system is simulated until the pole falls or a prespecified value of T (5200)
time steps is reached.

We implemented the algorithm of Lim et al.31 on our cart-pole system. Table VII

shows a result of their method having 20 rules, which can only balance 1321 states

among 1369. We had to relax the balancing condition mentioned in Section 6 for

Lim et al.’s31 method, because their rule set is not able to set the cart-pole system

to that precision. The pole is considered balanced if u ¶ 0.005 for at least five time

steps. This may be caused by higher importance on Tei in the fitness function,

which did not care for the set point. Table VIII compares ISOFLC with Lim et

al.’s2 method, averaged over 10 runs. We repeated our experiment 10 times and the

average number of rules was 18 with an average ITAE of 0.9547 in Case I and

these are, respectively, 11.4 and 3.9732 in Case II, whereas the average ITAE of

Lim et al.’s2 method is about 300 with 20 rules.

8. CONCLUSIONS

Chan et al.30 proposed an algorithm based on the GA, called OFLC, to derive

an optimal rule set. They used existing knowledge of the system to increase the

speed of optimization. We first addressed a few limitations of the OFLC, partic-

Table VII. A typical rule set containing 20 rules obtained by the method of Lim et al.31

u

u̇

NB NM NS Z PS PM PB

NB 3 0 1 0 5 2 0

NM 0 0 0 2 6 6 0

NS 0 2 0 0 3 0 0

Z 1 6 1 0 6 0 6

PS 0 0 0 7 0 5 0

PM 0 0 6 5 0 6 0

PB 0 0 0 0 0 0 6

Table VIII. Performance comparisons of ISOFLC and Lim et al.’s31 method (averaged
over 10 runs).

ISOFLC

Lim et al.31Case I Case II

No. of rules 18 11.4 20 (fixed)

Average no. of time steps considering

only balanced positions

25.2 42 40a

Average ITAE 0.9547 3.9732 300

No. of balanced positions among 1369 1369 1369 1311a

Failure (%) 0 0 3.5a

aFor Lim et al.’s31 method, the balanced condition is taken as u ¶ 0.005 for at least five time
steps.

590 PAL, PAL, AND PAL



ularly, the problems that may arise because of one-step change mutation. We then

suggested modifications to avoid these problems by random mutation. We ana-

lyzed the theoretical properties of one-step change mutation and random mutation.

We also proposed a new scheme, called ISOFLC to reduce the number of rules in

the symmetrical rule set. Our fitness function allows the user to decide on the

trade-off between cost (number of rules) and quality (ITAE). Given the required

precision (with respect to balancing), our fitness function is able to generate a small

rule set, which can bring the system to the set point from anywhere over the domain

of input variables. The superiority of our scheme is established by comparing it

with Chan et al.’s method30 and also with Lim et al.’s31 method.

References

1. Klir GJ, Yuan B. Fuzzy sets and fuzzy logic—theory and applications. Englewood Cliffs,

NJ: Prentice Hall PTR; 1995.

2. Zadeh LA. Fuzzy logic and approximate reasoning. Syntheses 1975;30:407–428.

3. Lee CC. Fuzzy logic in control system: Fuzzy logic controller—Part I. IEEE Trans Syst

Man Cybern 1990;20:404–418.

4. Lee CC. Fuzzy logic in control system: Fuzzy logic controller—Part II. IEEE Trans Syst

Man Cybern 1990;20:419–435.

5. Driankov D, Hellendoorn H, Reinfrank M. An introduction to fuzzy control. New York:

Springer-Verlag; 1993.

6. Yamakawa T. A fuzzy logic controller. J Biotechnol 1992;24:1–32.

7. Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and

control. IEEE Trans Syst Man Cybern 1985;15:116–132.

8. Sugeno M. Industrial applications of fuzzy control. Amsterdam: Elsevier Science; 1985.

9. Lin C, Lee CSG. Neural-network–based fuzzy logic control and decision system. IEEE

Trans Comput 1991;40:1320–1336.

10. Shann JJ, Fu HC. A fuzzy neural network for rule acquiring on fuzzy control system. Fuzzy

Sets Syst 1995;71:345–357.

11. Pal NR, Pal T. On rule pruning using fuzzy neural networks. Fuzzy Sets Syst 1999;106:

335–347.

12. Benitez JM, Blanco A, Requena I. An empirical procedure to obtain fuzzy rules using

neural networks. In: Proc VII IFSA World Congr. Sao Paulo, Brazil; 1995. pp 663–666.

13. Ishibuchi H, Fujioka R, Tanaka H. Neural networks that learn from fuzzy if-then rules.

IEEE Trans Fuzzy Syst 1993;1:85–97.

14. Lee K, Kwang D, Wang HL. Int J Uncertain Fuzziness Knowl Based Syst 1994;2:265–277.

15. Li CC, Wu CJ. Generating fuzzy rules for a neural fuzzy classifier. In: Proc 3rd IEEE Int

Conf on Fuzzy Systems (FUZZ-IEEE ’94). June 26–29, Orlando, FL; 1994. pp 1719–

1724.

16. Yao S, Wei C, He Z. Evolving fuzzy neural networks for extracting rules. In: Proc 5th

IEEE Int Conf on Fuzzy Systems (FUZZ-IEEE ’96). New Orleans, LA; 1996. pp 361–367.

17. Karr CL. Design of an adaptive fuzzy logic controller using a genetic algorithm. In: Proc

4th Int Conf on Genetic Algorithms. San Mateo, CA; 1991. pp 450–457.

18. Carr CL. Genetic algorithm for fuzzy logic controller. AI Exp 1991;2:22–23.

19. Thrift P. Fuzzy logic synthesis with genetic algorithm. In: Proc 4th Int Conf on Genetic

Algorithms. San Mateo, CA; 1991. pp 509–513.

20. Nomura H, Hayashi I, Wakami N. A self tuning method of fuzzy control by genetic

algorithm. In: Proc Int Fuzzy Syst Intell Contr Conf (IFSICC ’92). 1992. pp 236–245.

LEARNING FUZZY RULES FOR CONTROLLERS 591



21. Karr CL, Gentry EJ. Fuzzy control of pH using genetic algorithms. IEEE Trans Fuzzy Syst

1993;1:46–53.

22. Park D, Kandel A, Langholz G. Genetic-based new fuzzy reasoning models with appli-

cation to fuzzy control. IEEE Trans Syst Man Cybern 1994;24:39–47.

23. Herrera F, Lozano M, Verdegay JL. Tuning fuzzy logic controllers by genetic algorithm.

Int J Approx Reason 1995;12:299–315.

24. Homaifar A, McCormick E. Simultaneous design of membership functions and rule sets

for fuzzy controllers using genetic algorithms. IEEE Trans Fuzzy Syst 1995;3:129–139.

25. Carse B, Fogarty TC, Munro A. Evolving fuzzy rule based controllers using genetic

algorithms. Fuzzy Sets Syst 1996;80:273–293.

26. Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic

controller. Int J Man Mach Stud 1974;7:1–13.

27. Renhou L, Yi Z. Fuzzy logic controller based genetic algorithms. Fuzzy Sets Syst

1996;83:1–10.

28. Gurocak HB. A genetic-algorithm-based method for tuning fuzzy logic controllers. Fuzzy

Sets Syst 1999;108:39–47.

29. Wong C-C, Her S-M. A self-generating method for fuzzy system design. Fuzzy Sets Syst

1999;103:13–25.

30. Chan PT, Xie WF, Rad AB. Tuning of fuzzy controller for an open-loop unstable system:

A genetic approach. Fuzzy Sets Syst 2000;111:137–152.

31. Lim MH, Rahardja S, Gwee BH. A GA paradigm for learning fuzzy rules. Fuzzy Sets Syst

1996;82:177–186.

32. Wong C-C, Fan C-S. Rule mapping fuzzy controller design. Fuzzy Sets Syst 1999;108:

253–261.

33. Kinzel J, Klawonn F, Fruse R. Modifications of GA for designing and optimising fuzzy

controller. In: Proc IEEE Int Conf on Computational Intelligence. June 27–29, Orlando,

FL; 1994. pp 28–32.

34. Goldberg DE. Genetic algorithms in search, optimization, and machine learning. Reading:

Addison-Wesley; 1989.

35. Davis L. Handbook of genetic algorithms. Reinhold: Van Norstrand; 1991.

36. Bhandari D, Pal NR, Pal SK. Directed mutation in genetic algorithms. Inf Sci 1994;79:

251–270.

37. Sugeno M, Nishida M. Fuzzy control of model cat. Fuzzy Sets Syst 1985;16:103–113.

38. Nakaoka K, Furuhashi T, Uchikawa Y. A study on apportionment of credits of fuzzy

classifier system for knowledge acquisition of large scale systems. In: Proc 3rd IEEE Int

Conf on Fuzzy Systems. June 26–29, Piscataway, NJ; 1994. pp 1797–1800.

39. Parodi A, Bonelli P. A new approach of fuzzy classifier systems. In: Proc 5th Int Conf

Genetic Algorithms. Los Atlos, CA. Morgan Kaufmann Publisher, San Mateo, CA; 1993.

pp 223–230.

40. Kemeny JG, Snell JL. Finite Markov chains. New York: D. Van Nostrand Company, Inc.;

1960.

592 PAL, PAL, AND PAL


	1.pdf
	2-24.pdf

