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Abstract

In the present paper we consider a class of unequally replicated designs having concurrence range 2 and
spectrum of the form 121 (1.12)”"3 p3. Now, Jacroux’s [Some sufficient conditions for the type I optimality of
block designs, J. Statist. Plann. Inference 11 (1985) 385--396] Proposition 2.4 says that a design with spectrum
of the above form, if satisfies some further conditions, is type 1 optimal. Unfortunately, this proposition does
not apply to our designs since they have a poor status regarding E-optimality. Yet we are able to prove the
A-optimality (in the general class) of these designs using majorisation technique. A method of construction
of an infinite series of our A-optimal designs has also been given.

The first and only known infinite series of examples of designs satisfying Jacroux’s conditions appears
to be the first one in Section 4.1 of Morgan and Srivastav [On the Type-1 optimality of nearly balanced
icomplete block designs with small concurrence range, Statist. Sinica 10 (2000) 1091~1116] ~ hitherto
referred to as {MS]. In this paper, we use majorisation technique to prove stronger optimality properties
of the above mentioned designs of [MS] as well as to present simpler proof of another optimality result in
[MS].
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1. Introduction

In the present paper, we continue the search for optimal block designs. It is well known
that the “best” design (BIBD) must be binary and must have replication numbers as well as
the concurrences all equal. It is also well known that these equalities require certain divisibility
conditions, which are often not met. So, the following questions arise in one’s mind, (a) “what
is the best design in a set up where the divisibility conditions are not satisfied?”, (b) “if the
divisibility conditions are satisfied, but a BIBD does not exist, then what is the best design?” We
take a glimpse at the status of our knowledge regarding question (a). For (b) we refer to [12,14].

It is reasonable to believe that in the situations when equal replication is possible but all the
concurrences cannot be equal, a binary equireplicate design with concurrences differing by at most
one would be optimal. This was conjectured by John and Mitchell [10], who coined the name
“regular graph designs” (RGD) for such candidates. While this conjecture has been disproved
regarding E-criterion (see [2,3], for instance) it is widely believed to be true for A- and D-criteria.
In fact, many RGDs have been proved to satisfy general optimality (see [5,7,1]).

Now suppose equal replication is not possible. Then a likely candidate for optimality is a binary
design with replication numbers as well as concurrences differing by at most one. These were
termed as semi-RGD:s in [9], where many sufficient conditions for the optimality of RGDs and
semi-RGDs were provided. '

Next, let us consider the situations when neither RGD nor semi-RGD can exist. Morgan
and Srivastav [12] considered these. They defined nearly balanced incomplete block designs
NBBD(m), which are binary designs with replication numbers differing by at most once and
concurrences differing by at most m. They provided sufficient conditions for the optimality of
NBBD(2)’s, using which they proved optimality of certain classes of NBBD(2)'s.

The two classes of NBBD(2)'s (say d, d>) considered in Section 4.1 of Morgan and Srivastav
[12] caught the attention of the present author for many reasons. Both are unequally replicated,
but the spectra of their C-matrices are “very good”. Of these ds has spectrum (;)* 2y and
it turned out to be, not surprisingly, generalised optimal of type 1 like the most balanced group
divisible designs (MBGDD) of type 1 (see [5]). On the other hand, d) has spectrum g1 (u2)" =3 u3.
Now, in view of Proposition 2.4 of Jacroux {9] many researchers in this area, including the present
author, believe that a design with spectrum like this is must be optimal but no example was known.
d) seems to be the first example satisfying the hypothesis of above proposition and indeed it is
optimal! This observation was so exciting that finding another example like this and verifying its
optimality seemed to be very urgent. That led to the birth of the present paper. The design d* [see
after (4.1)] may be thought of “opposite” of d.

In Section 3, we handle existing optimality results: extend one and provide simpler proof of
another, both using majorisation technique. In Section 4, we prove A-optimality of d* in the
general class and present a method of construction of it in Section 5.

2. Preliminaries
Notation 2.1. Consider a vector x = (x, x2,..., X») € R".

(a) x 4 and x | will denote the vectors obtained by rearranging the coordinates of x in the
increasing and decreasing order, respectively.

(b) Suppose x has m distinct entries (m < n). Then x will be denoted by [i—,x;", if x; has
multiplicity n;, i = 1,...,m, Y ro n; = n.
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Definition 2.1 [11]. For x, y € R", x is said to be weakly majorised from above by y (in symbols,
x <% y)if

Zj};}:yf, k=12,...,n VR

1t is clear that <Y is reflexive and transitive.
We begin with a trivial but useful result.

Theorem 2.1. Consider ann x 1vector x. Let ¥ = (Y°7_, x;) /n. Then
n
x"<v nx,-.
i=]

We shall now state Tomic’s theorem and derive a few results from it. For the proof of this
theorem and other results on weak majorisation see [11].

Theorem 2.2 (Tomic). x <¥ y if and only if

Y et <Y s

i=1 i=1

Jor every convex decreasing functiong : R - R,

Theorem 2.3, Suppose x(U, yO gre m x 1 and x@, y@ are n x 1 vectors such that
@ < y®  i=1,2

Then,
x = (xORE@) < y = (O, @),

Here (plq) is the juxtaposition of the vectors p and q.

Theorem 2.4. For an n x } vecior x, let %(t) denote the t x 1 vector (x1,x2, ...,%), t <n

Consider two n x | vectors x and y with entries arranged in ascending order and satisfying the
Jollowing conditions:

@ Y <Y w

and
(i) X@) <" (), forsomet <n.

Then, each of the following is a sufficient condition for x <* y:

@ xt41 = X422 =0 =0y
(b) xr41 = X442 = = Xn-ks ¥n 2 Xiq — ZL] xi + E?:l Yi-
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Proof. (a) Take ¢ = §(t), g = (@41, .., @n). ¢ = x or y. By assumption,

H t
doxz) w
i=1 i=1 .
If equality holds in the above relation, then we are done by Theorems 2.1 and 2.3. So, we assume
strict inequality. Let 8 = Y j_; xi — 3.7, ¥i- Clearly x® is not majorised by y®. We define a
vector y* as follows. y; = yr + 8, ¥/ | = yr41 — 8, ¥} = yi,i # ¢, ¢ + 1. Then, clearly,

u 74
Zy}":Zy,-, u=_tn.
i=1

i=l|
Thus, by Theorem 2.3
x <% y*.
But it is clear from the definition of y* that y* <" y. Hence, the result follows from the transitivity
of <%,
(b) is proved by applying (a) on X(n — 1) and y(n — 1). [

Notation 2.2. Consider an n x n real symmetric matrix A.

(a) The principal submatrix bordered by the set of rows i, j,...,! of A will be denoted by
A, j, ..., D.

(b) 1(A) will denote the vector of eigenvalues of A, arranged in ascending order. If A is
nonnegative definite, then pu(A) will denote the vector of positive eigenvalues of A.

We now present a few inequalities on the eigenvalues of real symmetric matrices. The first one
is a well-known result called Ky Fan’s maximum principle (see Problem 1.6.15 of Bhatia [4], for
instance), from which the others can be derived easily.

Theorem 2.5. Consider a symmetric matrix A of order n. Suppose x1,x3, ..., xx (k < n) are
orthonormal vectors € R*, Then,
k k k
> ul <Y xTax; <X uja. 2)
Jj=1 j=l Jj=l

Theorem 2.6. Consider a symmetric matrix A of order n and constant row sum s. If the average
row sum of a principal submatrix B of order t is p then

ul (A) < (np — t3)/(n — 1) < py (A).

Proof. W.lg., let B = A(l,2,...,1). Let x denote the normalised version of the vector (n — ¢)’.
(—t)"~*. Now apply Theorem 2.5 withk =1. O

Putting s = 0 and ¢ = 1 in the theorem above we get the following well-known (see [8], for
instance) and very useful result.

Corollary 2.1. For a symmetric matrix A of order n with row sums zero the following equation
holds for everyi, 1 <i < n:

ul(A) < (] (n = 1)ai; < p}(A).
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Consider a nonnegative definite matrix A with each row sum zero. Let B;, 0 < i < m, pe
disjoint principal submatrices of A; ¢ denotes the order of B;. For every i, | <i < m, let there
exist an integer u;, 1 < u; < #; and a set y;1, ¥i2, - - - » Yiu; Of orthonormal vectors in RY, each of
which is orthogonal to the all-one vector in R%. Also, let z; € R be a vector with nonnegative
entries in the increasing order, 1 < ¢ <-m. Further, let zo = np/(n — 1), where p is the average
row sum of By. Finally, letz = (z0 | 21 | -~ | 2m) € R" where = 1 + 2 ie1 ;. For such a data
set, we have the following result.

Theorem 2.7
(a) Suppose the following inequalities are satisfied.
] i
Ey}??{yg} < Zzu', 1<i<u;, 1<i<m. (2.3)
J=1 Jj=l1
Then we can say the following about the eigenvalues of A:
! l
Yol <Y 2l igigh (2.4)
j=1 Jj=l1

(b) If = holds in place of < in (2.3), then the following hold:

i i
Y uw>Y g, 1<i<h @5)
j=1 j=1

Theorem 2.8 Consider a v x v matrix A. For some m, n, m +n < v, suppose there are real
numbers zi, 1 <i <mandw;, 1 <i < n, such that

(a) (2.4) holds withh = m,
(b) (2.5) holds with n for h andw;jforz;, j =1,2,...,nand
©) Xia12j + 2o wj < w(A),

Then
I_[zi ¥ £ M n wj <Y p(A).

=] j=1
Here 7 = (tr(A) — 2 Ge12j = X wj)/(v—m —n).

Let us now consider a block design set up. All designs in this paper are connected block designs
with constant block size. We present a set of notations, which are commonly used.

Notation 2.3

(i) 2 = Dy x,v denotes the class of all connected block designs with v treatments and b blocks
of size k each.

(i) 2 &,v denotes the class of binary designs in Dp ¢ .
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@iii) r:=[bk/v]. . = [r(k — 1)/(v — 1)]. Here [x] is the smallest integer > x.
(iv) The replication number of the ith treatment in a design d € 2 will be denoted by rai
(1 £i < v). R(d) will denote the diagonal matrix diag(ra, ..., r4y).
(v) Foradesignd € 2, N(d) is the usual (v x b) treatment-block incidence matrix of d. C (7))
will denote the information matrix of d : C(d) = R(d) — k! N(d)N 7. u(d) will denote
the vector of positive eigenvalues of kC(d). A;, ; will denote the (i, j)thentry of N(d)N (d)T.

We shall drop d from the notations in (iv) and (v) when there is no scope of confusion as to
which design is meant.

Next, we present a few known definitions.

Definition 2.2 [1]. A design d) € 2 is said to be better than another design d» € 2 in the sense
of majorisation (in short M-better) if

uldi) <% p(da).

d* € Dy r,v is said to be optimal in the sense of majorisation in a subclass of 9, . , (or, in short,
d* is M-optimal in this subclass) if it is M-better than every member of this subclass.

Definition 2.3 [5]. Let M be a number larger than all the eigenvalues of C(d) foralld € 2. Then,
a thrice differentiable function f : (0, M) — R is said to a (generalised) optimality criterion of
type 1 (respectively, type 2} if (i) £(0+) = oo, (ii) f’ < 0, (iii) f” > 0, (iv) f"” < 0 (respectively,
f" > 0).1f f is such a function, then define ¥ : 2 — Rby Yrd)=3 ) f(u(d);.r), de .
We say that the design d; is better than the design d» with respect to the critetion f (in short
J-better) if ¥ s(d1) < Ps(dz). A design d* is said to be type 1 (respectively, type 2) optimal in
a subclass of 2 if it is f-better than all the designs in this subclass for all type 1 (respectively,
type 2) optimality criteria f.

Definition 2.4. A design d* is said to be E~optimal in 2 if ,u,(d*)f > ,u.(d)I vd € .

Definition 2.5. A design d* is said to be A-optimal in @ if 37—} (u; (d*) ™! < TV (i (d)) ™!
Vd € .

Extending the notion of A-optimality criterion to vectors, we define the following.

Definition 2.6. An n x 1 vector x is said to be A-better than another n x 1 vector y if
n n
Yry = Zy,.-' -> x>0 (2.6)
i=l i=1

Remark 1. As noted in Remark 3.1 of Bagchi and Bagchi [1), if d) is M-better than d, then d is
A-better than da, apart from being better with regard to many other (convex) optimality criteria.
In view of this, we have the following result.

Corollary 2.2. Suppose the C-matrix of a design d satisfies Theorem 2.8 for certain z’s and w'’s.
If further [ iz, zi @)V~ " ]"[;‘-___1 w; is A-worse than p(d*), then d is A-worse than d*.
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3. A review of known results

We shall refer to the paper Morgan and Srivastav [12] as MS throughout this paper.
First we present a result which is a direct consequence of Proposition 2.4 of Jacroux 9.

Theorem 3.1. Suppose d* is a design in 9 ,’,{ kv Satisfying the following properties:

() C} has spectrum of the form 1 (u2)* s,
(ii) d* is E-optimal in @f,’, kv
(iii) d* minimises tr[(C)*] overd ¢ @f," kv

Then d* is type 1 aptimal in 9}, ..
Next, we state a well-known result of Cheng [6].

Theorem 3.2. Suppose d* is adesignin Q,ﬁ &,y Such that Cg« has spectrum of the form 1) (1) 2
and further, d* satisfies Property (iii) of Theorem 3.1. Then d* is type 1 optimal in 9%, .

We now consider two series of optimal NBBD(2)’s of MS. Using majorisation technique we
now prove stronger optimality property for one series. For the other series, we provide a simpler
proof for the known result. The parameters of both the series satisfy

k=3, v=2(mod3), r(k—1)/(v-1)isaninteger (which is, of course, A). (3.1}
Here 7, A are as defined in Notation 2.3(iii).
At first, we consider the set up satisfying bk = vr + 1. More precisely, the parameters are
v=3t+2, A=2 andhenceb=3r+3t+1 and r=v—1. 3.2)
Here 1 is an integer > 1.

An NBBD(2) ) and a non-binary design d) with completely symmetric C-matrix co-exist
in this set up. Both of them are optimal with regard to some optimal criteria or other. (For the
description, construction and other details see MS and [15].)

Let us define
a=r(—1+A. (3.3)
We note that in a set up where r(k — 1)/(v — 1) is an integer (which is the case here),
a=vi. (34)
Now, we express the spectrums of kCjz and kC 4, in terms of a:
spectrum(kCj ] = (a — Da’(a + 3), (3.5)
spectrum[kC;, ] = a’ L. (3.6)

Morgan and Uddin [13] proved that dy is E-optimal in 9}, . Here we show that
Theorem 3.3, d; is E-optimal in Dy 4 ,\{d}}.

Throughout the remaining part of the paper, d will denote a competing design. Further, We
follow the notations below.
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Notation 3.1

(i) A =kCy4, u = u(d).
(ii) While using Theorem 2.7, the vector y;; is the normalised version of the vector x; j presented.
For instance, y;; of Lemma 4.4 is (1/2/(6))x11 = (1/4/(6))(2, 1, —)T.

Proof of Theorem 3.3, Consider a design d in D 1 ,\{d;}.

Casel:a;; <r(k—1)forsomei,sayi = 1.
In this case, a1; < r(k ~ 1) ~ 2 and so applying (a) of Theorem 2.7 with B = A(1), we get

u,I<a-—l.

Case 2: a;; = r(k—1) for every i.
Since d  dy, 3, j), such that &; ; <A — 1. So, taking B = A(i, j) and applying (b) of
Theorem 2.7 we get uf < a — 1 and the proof is complete. [J

In fact d| satisfies stronger optimality as it is shown below.
Theorem 3.4. d; is

(a) type 1 optimal in 9,’: k. and
(b) M-better than every non-binary design in Dy i , other than 31.

Proof. (a) follows from the fact that d; satisfies all the conditipns of Theorem 3.1.
(b) Let d be an arbitrily fixed non-binary design other than d;. By (b) of Theorems 2.4 and 3.3
it is enough to show that

ul > a. | G.7)

Letu = max{a;;, 1 <i < v}.

Casel:u > r(k —1).
In this case, 3i such that a;; > r(k — 1) + 2, so that p,f 2 a 4+ 2. Hence we are done.

Case2:u <r(k—-1).

Case 2.1: g;; =r(k— 1) foralli.
Since d # d,3(i, j), such that &; ; > A + 1. So, taking B = A(i, j) and applying (b) of The-
orem 2.7 we get ,u,f za+1.

Case 2.2: a;; < r(k — 1) for at least one i.
Let m be the number of i’s such that a;; < r(k — 1),1i.e.,a;; < r(k — 1) — 2. Then,

v—1
Y wi Svr(k—1) ~2m = (v - Da - 2m. (.8)

i=1

Case 2.2.a:m = v,
In this case u; < a — 2 Vi and we are done.
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Case 2.2.b: m < v.
In this case, 3i, such that a;; = r(k — 1). Thus, Mf za, O

As an immediate corollary, we have
Corollary 3.1. d; is type 1 optimal in Dy 4,,\{d1).

We now consider another set up satisfying (3.1) and having bk = vr + 2. This was first con-
sidered by Roy and Shah [15] who provided the first example of a type 1 optimal unequally
replicated design, referred to dz here. dy is an NBBD(2), according to the definition of MS. The
set up of Roy and Shah [15] is of the following nature:

v=25(mod6), r={~-1)/2, A=1 (3.9

In MS, a very similar set up is considered. This has

v=2(mod3), r=2wv-1), A=2. (3.10)

MS constructed an NBBD(2) having the form of C-matrix as well as its spectrum similar to
that of d, and proved the same optimality property. They also found a non-binary design, termed
d> here, which do not seem to satisfy any optimality property like d,. It is not known whether a
design corresponding to d; exists in the set up (3.9). The spectrums of these are as follows:

spectrum(ds] = a"~%(a + 4), (3.11)
spectrum(d] = a*~1. (3.12)

Here a is as in (3.3). Looking at the spectrums, the following result is clear.
Theorem 3.5. d, is M-better than da.

In MS, the optimality property of d has been derived from general lemmas. However, if we
restrict to this particular set up and also use majorisation techniques, then the proofs becomes
considerably simpler and transparent. This is what is done below. Henceforth, d2 would refer to
both the designs of MS and {15]. We shall also refer to d>, which may be a hypothetical design
in the set up (3.9).

Let us first state a well-known result.

Lemma 3.1. Suppose x;, 1 < i < n are integers satisfying Y ;_, xi = a. Let u be the greatest
integer < a/n and g =a —nu. Then Y ", (x;)? is minimum if x;’s are “as nearly equal as
possible”. More precisely,

@ F_:(xi)2 >(m—gat+ga+1)>=m@) say.
i=l

(b) Further, ifZ:Ll(x,-)z > m(u), then Z?=l(x,-)2 2mu)+2

Now we present a proof of the crucial property of da.
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Lemma 3.2. d> minimises tt{(C)?] over d € D
Proof. Fix an arbitrary designd e 92 k,v- NOW, r[(Ca)?) = Y(ea j)z = T1(d) + 2T2(d), where

v
Ti(d) = (k — 1)? [Z(ﬁ'){l and T>(d) = Z(lij)z- (3.13)
i=1 i<j

Since 3 ;. ; Ai,j = (1/2)v(v — 1)A + 2, applying Lemma 3.1 on A;, j’s, we find that m(A) =
1/2Qvw - DA +4A+2=T(d) - 2.

From this and the expression for 7 (d), it is clear that if the replication vector of d is different.
from that of d», then tr[(C4)?] > tr[(ng)z]. Hence, we assume

ri=r, 1igv-2, rp_1=r,=r+1.

In view of (b) of Lemma 3.1, all we have to show is T3(d) > m(A). But to show that it is
enough to show the following.

Claim. The expression for Ty(d) always contain at least a term (A — 1)%.

Proof of the claim. Recall that

D hij=rik—1). (3.14)
J#i |
80, 3 iy bij =@ —DA+2,i€{v,v~1}. S0, ¥, (A, )? is minimum if Ay,m = Ay =
A+ 1 for some m, ! < v and for all other j’s, A ; = A. Clearly, one of m, ! has to be < v — 2.

Wlg., let! = 1. Then, Ay, = A + 1, so that 3/ such that 1; ; = A — 1. This completes the proof
of the claim and hence the proof of the lemma. O

A direct consequence of the preceding lemma, in view of Theorem 3.2, is the following.
Corollary 3.2. d is type | optimal ind € 9}, .

We shall now consider the general class and prove the following result.
Theorem 3.6. d, is type 1 optimal ind € Dy 4 ».

Proof. Fix an arbitrary non-binary design d € Py k,,. In view of Corollary 3.2, it is enough to
show that d3 is M-better than d.

Case 1: d has at teast two non-binary blocks. X
In this case, tr[Cy] < w[C 3, [for the description of > see Section 4 of MS]. Since C & is

completely symmetric, d is M-worse than d; and hence M-worse than d3 by Theorem 3.5.

Case 2: d has exactly one non-binary block.

Let 8 denote the non-binary bilock. Since & = 3, only one treatment (say ip) can appear more
than once in B. Since B is the only non-binary block, n; ; < 1 Vi % ig, Vj.

Wlg., let v # ig. Applying (a) of Theorem 2.7 with A = kCy, B = A(v), u = u(A), we
get u,f 2 v+ 1)k —1)/(v~-1) 2 a+ 2. Therefore, 2:’__'_',2 ,u,iT < (v — 2)a. Hence the result

follows from (b) of Theorem 2.4. O
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4. A new optimality result

'We consider a set up where k = 3 and bk + 1 is divisible by v. Thus, bk = vr — 1. We further
assume r = (v — 1)/2, so that A = 1. Thus, the parameters are of the following form:

v=6s+45, r=35+2 andhenceb =657 +9s +3. @.1)

Here s is an integer > 1.
Let d* denote the design with the following parameters.ry =r — L,r; = r,2 < i < v;Ayo =
A—1=2113,A23=A+1.4;; = A forall other (i, j)s.

Lemma 4.1. The spectrum of kCys is as follows:
w(d*) = (@ —3)'a" 3@+ 1) @2)

Proof. By straightforward verification we find that the spectrum of kC 4+ in terms of @ is as above,
[Recall (3.3).] OO

Remark 2. Even though a happens to be equal to v in the present set up [see (3.4)], we prefer to
continue with the symbol a, so that the magnitudes of the eigenvalues are not mixed up with the
multiplicities.

Remark 3. It is easy to verify that d* satisfies conditions (i) and (iii) of Theorem 3.1. But it
appears that it does not satisfy condition (ji), although we have not yet found a design E-better
than d*, Because of this, Theorem 3.1 could not be applied and general optimality of d* could
not be proved. We believe that d* is also D-optimal, but the proof would be more involved.

We now present our main result.
Theorem 4.1. d* is A-optimal in Dy i , with b, k, v as in (4.1) provideda > 11.
We prove this in two steps. First, we show that

Theorem 4.2. d* is A-better than any non-binary design in Db k,v, whenevera 2> 11.

Next, we prove
Theorem 4.3. d* is A-optimal in @f’ &,y If the parameters satisfy a > 11.

An outline of the proofs of Theorems 4.2 and 4.3: We fix an arbitrary design d: a non-binary
design in Dp,x,, for the former and a design in @f, kv for the later theorem with b, k, v as in
(4.1). We need to show that d is A-worse than d* whenever a > 11. To do this, we proceed as
follows. In the Appendix, we have listed vectors vi, 1 <i < 12 and proved in Theorems A4 and
A5 that each of them is A-worse than v0 = 1.(d*), if a > 11. Therefore by Corollary 2.2, it is
enough to show that 1.(d) is A-worse than vi for some i, 1 < i < 12. This is what is done here.
Now the proof for Theorem 4.3 is quite involved. We first rule out the possibility of 4 having the
replication vector different from d*. [See Theorem 4.4.] Next we take up A; ;’s. We show that
if these are too small or too big, then d is A-worse than d*. Explicitly, we find that A; ;’s must
satisfy (4.8) and (4.10). Thus, there are two possibilities for A23: A or A — 1. These two cases ar¢
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handled in Theorems 4.5 and 4.6, respectively. For proving each of these theorems, we have to
handle several cases separately. Usually, to. show that z(d) is A-worse than some vi, we apply
Theorem 2.6 or 2.7 on submatrices of A = kC4. We shall also use the result of Corollary A3 of
Appendix often.

Proof of Theorem 4.2. Consider a non-binary design d € Pp ¢ . Let

d = max a;;.
I<igy

Claim. Ifé < r(k — 1), then d is M-worse than d*.

Proof of the claim. Suppose the hypothesis is true. Then, aj; <r{k— 1) — 2, for each i. This
implies the following statements.

(@) tr(A) < (v~ 1)(a — 2) and
(b) 3(i, j) such that Mij€A-—1.

Now, (a) implies

v—2

dm S@-2@-2). @3)

i=1

Further, in view of (b), applying (a) of Theorem 2.7 with B = A(i, j), we get ,uI < a — 3. This,
together with (4.3) and (c) of Theorem 2.4 proves the claim.

So, we assume § 2> r(k — 1). This means a;; > r(k — 1) + 2, for some i. Thus, by Corollary
2.1, ,uf = a.Again,asr) <r -1, u,f < a — 2, by the same corollary. These, in view of Theorem
2.8 implies that u is M-worse than the vector v12 of Appendix. Hence, the proof is complete by
Lemma AS and Corollary 2.2. O

Before going to the proof of Theorem 4.3, we obtain a few useful results, the first of which is
trivial.

Lemma 4.2. Consider a design d. Fix a treatment i.

@) If r; <, then either A;,j < A — 2 for some j + i, or there exist j), ja, such that A; j, <
A-lLu=12
(®) Ifri =r, and A; j > (respectively, <) X for some j, then there exists 1 such that A;; <

(respectively, =) A.

Lemma 4.3, Foranyd, u} > a+ 1.

Proof. W.l.g., let us assume that the replication numbers of d are in the increasing order.

Case 1: The replication vector of d is different from that of d*.
Then, r, > r, thatis r, > r + 1. Now applying Corollary 2.1 withi = v, we get p,f = a+2.
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Case 2 (Remaining case): The replication vector of d is same as that of d*.

By (a) of Lemma 4.2, A1, ; < A for some j. W.l.g., let j = 2. Then, by (b) of Lemma 4.2, there
exist /, such that Ao} > A + 1. Now we apply (a) of Theorem 2.7 with B; as A(2,1) and get the
required result. []

Corollary 4.1. If ,u;' < a — 3, then d is M-worse than d*.
Proof. By (c) of Theorem2.4. 0

Theorem 4.4. If the replication vector of d is not the same as that of d* then d is A-worse than
d*.

Proof. It is enough to show that if r; 4 rp < 2r — 2, then d is A-worse than 4*.

Casel:ri <r-2.
In this case, applying Corollary 2.1 with i = 1, we get u,f < @ — 4 and so the result follows
from Corollary 4.1.

Case2:ri=ro=r —1.Clearly, r, > r +1.

First we take B; = A(1, 2). Applying (a) of Theorem 2.7 if 1; 2 < A — 1 and (a) of the same
thearemif Ay 5.2 A + 1, we get 41 < a — 3 and we are done by Corollary 4.1. Hence, we assume
A2=A.

Now, we take i = v and apply Corollary 2.1. We get

uf >a+2v/@w-1). a.4)

Again, by Lemma 4.2, there exist j # 1,2,/ # 1, 2 such thatd;; <A—TlandAy; <A-1.

We choose By = A(l, j), B2 = A(2,1). Now applying Theorem 2.7(a) and using (4.4) we find
that vl <" u(d). O

In view of the preceding theorem, henceforth we assume that 4 has the same replication vector
as d*.
Next we obtain bounds on A;,;’s.

Lemma 4.4. If one of the following conditions holds, then d is M-worse than d*:

(@) tA1,j — A 2 3, for some (i, j),i, j > 1.
®) |A1,; ~ Al = 2, for some | > 1.
©@Aj=ri=r—1,1j > X forsomel, j > 1.

Proof. In view of Corollary 4.1, it is enough to show that p.I <a-—3

Suppose condition (a) holds. Taking B; (respectively, Bp) = A(i, j) if A, j < (respectively, >)
A and applying (a) (respectively, (b)) of Theorem 2.7, we get the required condition.

Now suppose condition (b) holds. Recall that r; = r — 1, so that ayy =r(k—1)—2. Pro-
ceeding on the line as above with A(1, j) instead of A(, j), we get the result. _

Finally, assume condition (c). We take By = A(1, j, 1), x,1=(2,-1, —1)T. Now, applying
(a) of Theorem 2.7 we get the required result,. [
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In view of our findings above and Lemma 4.2, we can assume w.l.g., that :
Alz=A13=A—1, A3 <A, (4.5)
Wlg. let j =2, = 3. Then,

Lemma 4.5. If |A; ; — A| = 2, for some (i, j), i, j > 1, then d is A-worse than d*.

Proof. We shall show that if the condition holds then, u(d) is M-worse than »1. Now, suppose
the condition holds. Then, by Lemma 4.4, Aij=A—~20rA+4+2

Casel: A;; = A —2.
Applying (b) of Theorem 2.7 on C = A(i, j) we get

w2z a+20/(v-2). (4.6)
In view of Lemma A4, it is enough to show

!
Y uj<ia~2, i1=12 @7
Jj=1
Case 1.1: {i, j} = {2, 3).
Then we choose By = A(1,2,3), x1,; = (2, -1, -1)T and x; 2 = (0, 1, ~1)T. Applying (a)
of Theorem 2.7 we get (4.7).
Case 1.2: {i, j} and (2, 3} are disjoint. Then take { to be anyone in {2, 3}.
Case 1.3: {i, j} and {2, 3} has one element in common. Take [ to be the element of {2, 3} which
is not in {i, j}.
In both Cases 1.2 and 1.3 we take By = A(i, j) and Bz = A(1,!). Clearly, By and B, are
disjoint. Now taking x) ; = x23 = (1, —1)T and applying (a) of Theorem 2.7 on By, B3, we find
that (4.7) holds in these cases also. So, the proof for Case 1 is complete.

Case 2: A; ; = A+ 2. If {i, j} = {2, 3], then we are done by Lemma 4.4. So, assume {i, j} #
{2, 3}.

We take Cases 2.2 and 2.3 exactly like 1.2 and 1.3, respectively, and chose [ as there. Let m be
the other element of {2, 3). Taking By = A(, j), By = A(1, 1), x1,; = (1, —1)T and applying (b)
of Theorem 2.7 on By, B), we find that (4.7) holds. Again, (a) of Theorem 2.7 on B; = A(i, j)
yields (4.6). Hence, we are done in this case also. [

In view of the above, we assume the following.
Fori#j, i,j>1, Mje{lA—-1LA+1} (4.8)
Using this, we are able to extend Lemma 4.2 as follows.

Lemma4.6. Fixi 2 2. LetS={j#i:Xij=A~1}andT ={j #i:Aj=A+1). Thenthe
sizes of S and T are equal.

For A),;'s, we can say more as shown below.
Lemma4.7. Let S = {i : A1,; = A — 1). If the size of S is > 3 then d is A-worse than d*.

Proof. Suppose |S| > 3. Wlg, let§={2,3,4,.. }.If; j =1 + 1, forsome i, j € § then we
are done by Lemma 4.4. So, assume A; ; < A. Further, replace S by its subset = {2, 3, 4}. Letsbe
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the number of pair (i, ) suchthati;; = A — 1. Then,s = 0, 1,2, 0r 3. We take B, = A(1,2,3, 4
and apply Theorem 2.6. We get

uy>a+1+s/2. (4.9)

Now, we consider the different values of s. In each case we apply (a) of Theorem 2.7 with By as
above and #; = 1 or 2 mutually orthogonal vectors among which x; = (3, —1, =1, ~1)T i5 ope,
Thus, for every s,

ul <a—3+s/6.
So, in view of Corollary 4.1, if s = 0 then we are done. If s = 3, then the inequality above together
with (4.9) yields that . (d) is M-worse than v2.

Now we consider the cases s = 1 and s = 2. We assume, w.l.g., that A3 4 = A — 1 whens = |
and A3 =Xdy4=A—1whens =2 Letxs =(0,2, ~1, DT, x3=1(0,0,1, ~DT. Now we
apply Theorem 2.7, with the vectors x1, x3 if s = 1 and x), x3 if s = 2. We find that u(d) is
M-worse than v4 if s = 1 and v7 if s = 2. So, our proof is complete. [

In view of the lemma above, we assume the following:
A2a=A3=A—1; Aj=X, j24 Az3=Aiori-1. (4.10)

Theerem 4.5. If A2 3 = A then d is A-worse than d*.

Proof. By Lemma 4.2, 3, ja suchthat Az j, = A3 ;, = A+ L.

Casel: j; = j,. Wlg, let j; = 4.

By Lemma 4.2, 33, js such that A4, j; = Aq,j, = A ~ 1. Wlg, let j3 =5, j4 = 6. But then
Jdj suchthat A5 ; = A + 1.
Case 1a: j = 2.
Case 1a.1: A35 = A — 1. We take By = A(1,2,3,4,5), x;1 = (4, =1, -1, ~1, = )T, x1 2 =
(0,0, -1, —1,2)T; B, = A(2,4,5) and x,; = (2, —1, —1) . Now, applying (a) of Theorem 2.7
on B) and (b) of the same theorem on B, we get the following inequalities:

! !
):M? QU

i=] i=l

b >a+5/3.

Here! =1,2,z1 =a ~5/2 and z; = a — 5/3. So, by Theorem 2.8, v3 <¥ u(d) and this case
is settied.
Case 1a.2: A3 5 > A. In this case we take B, as in Case la.l,x;y = (8,-3,-3, -1, ~DTx o=
0,0,0, -1, DT, B, = A(2, 3, 4, 5),x21 =(1,1, -1, =DT. Now, proceeding as before, we get
v7 <¥ u(d) and we are done with Case 1a.
Case 1b: j > 2. This means j > 5.

We take By = A(1,2,3), B = A(4, 5, 6) and x,1 =x21 = (2, -1, —1)T. In view of Cor-
ollary A3, we assume A5 ¢ = A, w.l.g. Now, applying (a) of Theorem 2.7 on By, By we get the
following inequalities:

! !
Yl <Y u 1=12 @.11)

i=l i=1
Here z; =a —8/3, 20 =a —4/3.



8. Bagchi / Linear Algebra and its Applications 417 (2006) 8-30 23

Further, we take By = A(2,3,4), x31 = (-1, -1, 2)T, B4 = A(5, j). Now, applying (b) of
Theorem 2.7 on B3, B4 we get

m

Yut>Yw, m=12, 4.12)

i=l. i=1

where wy = a@ +4/3 and w; = a + 1. Thus, by Theorem 2.8, v6 <¥ u(d). Hence Case 1 is
settled.

Case 2: ji # j2. Wl.g., we asssume jj = 4, j, = 5.

If A34 = A + 1, then we are reduced to Case 1. So, let A3 4 = A or A — 1, w.l.g. Similarly
As=AorA—1
Case 2a: Atleastoneof Ay sand A3 4isA — 1. Wlg., letds g = A —1,

Case2a.1: A45 ='A + 1. Wetake By, By and x; ; same asin Case 1a.2,butx; » = (1, =1, 1, = )T
and x21 =(1,-1, —1, DT. Then, proceeding along the same lines we get the same result as in
Case la.2.

Case 2a.2: Aqs < A. We take Bj as in the preceding case, x1, = (2, -1, =1,0,0)7, x; =
©,1,-1,1, —1)T Applying (a) of Theorem 2.7 on B, we get an equatlons like (4.11) with
I =1,2,the same z; but z; = a — 3/2.

Further, we take B3 = A(2,4), By = A(5, j). Now, applying (b) of Theorem 2.7 on B3, By
we get two equations like (4.12) with w) = w» = a + 1. Thus, by Theorem 2.8, v9 <¥ u(d).
Hence Case 2a is settled.

Case2b: Ay 5 = A3 4 = A.
Case2b.1: Ay5 =1+ 1.

Jj1, jasuchthatAs ;, = A5, =1 — L.

Wetake B) = A(1, 2, 3), B2 = A(S, j1, j2).Inview of Corollary A3, we may assume Ajijp =
A w.l.g. Applying the same argument as in Case 1b get the same system of two inequalities. Now, we
take B3 = A(2,3,4,5),x3,1 = (1, —1, —1, 1)T and apply (b) of Theorem 2.7. We get uf = 3/2.
Now, using Theorem 2.8, we have v5 <" u(d).

Case2b.2: g5 =A — 1.

We take B; = A(1,2,3,4,5), x11=2,—-1,-1,0,0)T, x;2=(0,1,-1,1,-1)7T, B, =
A(2,3,4,5), x01=(1,1, -1, —1)T. Then, applying Theorem 2.7: (a) on B; and (b) on B>
we find »5 <% u(d).

Case 2b.3: 14,5 = A. We take By, x),) as in case 1b. Now, by Lemma 4.6, 35, I such that A4 j =
A—landAs; =4 — 1.

If j =1, wetake By = A4, 5, j), x21 = (1,1, =2)T.If j # I, we take B, = A(4, j), B3 =
A(5,1). We apply (a) of Theorem 2.7 on Bj, B in the former case and B;, B3, B3 in the later
case. We obtain (4.11) with the same z;. In the former case we have the same range for! and 73 =
a —4/3.Inthelater,! = 1,2, 3;z2 = 73 = a — 1. Next, we take By, Bs asin Case 2a.2 and get the
same equations. Combining these, we see that v9 <¥ u(d) if j =/ and v10 < w(d) otherwise.

The proof of this theorem is now complete. [

Now we consider the remaining possibility in the next theorem.
Theorem 4.6. If A2 3 = A — | then d is A-worse than d*.

Proof. By Lemma 4.6, 31, j2, j3, jasuchthatdy ;, = A2 j, = A3, = A3, = A+ 1.
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Case 1: One element is common between (jy, j2} and {j3, ja}. Wlg. let ji = j3 =4dand j, = 5,
By Lemma 4.6, 3j such that A5 ; = A — 1.

Case 1a: Jj> 5. Take Bl = A(l, 2,3, 4)a X1,1 = 3, -1, -1, _I)T, XL2 = ©,1, -1, O)T, By =
A5, j), B3 = A(2,4) and By = A(3, 5). Applying (a) of Theorem 2.7 on B, B, we see that
(4.11) is satisfied withl =1, 2, 3, 1=a- 8/3, n=z23=a-1. Further, applying (b) of the
same theorem on B3, B4 we find that (4.12) is satisfied with the same values of w,, w,. Thus,
v9 <" u(d). Hence this case is settled.

Case 1b: j < 5. This means j = 2. We take By = A(1,2,3,4,5),x1; = 4, -1, -2, -1, 0T
x12 = (0,2, —1,0, —1)T. Applying (a) of Theorem 2.7 on B; we see that (4.11) is satisfied
withi =1,2,z) =a—29/11 <a—35/2,22 = a — 5/3. Again, taking B, = A(2,3,4), x5, =
(1, 1, —=2)T and applying (b) of the same theorem, we get (4.12) withm = 1 and wy; = a + 5 /3.
Hence, v3 <Y u(d) and this case is also settled.

Case 2: No element is common between {1, j2} and {j3, js}. W.l.g., we assume j; =4, j, = 5,
h=6,j3s=7

In this case, we must have
Mji<i jel6,7}, (4.13)
as otherwise it will be same as case 1.
Similarly,
A3 <A, je{4,5) (4.14)

Now, we take B; = A(2,4,5) and B, = (3, 6, 7). In view of Corollary A3 we can assume
A4,;5 = Ag,7 = A. Then, applying Theorem 2.7 on By, x1,1 = (2, -1, —1)T; By, x01 = x1; we
get the following equation:

m
Y ul>m@+4/3); m=1,2 (4.15)

i=1

Case 2.1: ).3,4 =A-1
Case2.la: 246 =1+ 1.

Appling Lemma 4.6 oni = 6 we find that 3/, m such that Ag ; = Ag.m = A — 1. W.L.g., we may
assume that ] # 2,

We take B3 = A(1,2,3,4), x31 = (3, -1, 1, =T, x35 = (0, 1, =2, YT; By = A(6, D),
x4,1 = (1, —1)T. Now, applying (a) of Theorem 2.7 on B3, B4 we get equations similar to
@1 withl <3,z =a—7/3,z3 =a — 5/3, z3 = a — 1. These, combined with (4.15) gives
v10 <¥ u(d). Hence this case is settled.

Case 2,1b: A4 6 < A.

We take B3 = A(1,2,3,4,6), x31 = (2, -1, )T, x3, = (1, -1, 1, —1)T. Application of
(a) of Theorem 2.7 on Bj yields inequalities similar to (4.11) with{ = 1,2, z1=a—-7/3. 22 =
a — 2. [Recall that A5 ¢ < A.] This with (4.15) says v11 <* u(d). Hence this case is also settled.
Case 2.2. A3 4 = A. [In view of (4.14), this is the remaining case.]

Case 2.2a. \q6 = A + 1.

We take Bs = A(1,2,3,4,6), x31 = (4, =1, -1, —1, =), x35 = (0,2, -2, 1, —1)T. We
get (4.11) with I < 2, z) =a —13/5, z2 = a — 7/5. Now, using the fact that (¢ —7/3,4 -
5/3) < (a — 13/5, a — 1/5) together with (4.15), we see that v10 <* 1(d) and the proof I
complete for this case.
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Case 2.2b. A4 6 < A. _

Letf =X —X46. 50,7 =0 or 1. We take B3 and x3; as in Case 2.2a and x3 2 = (0, 1, —1,
1, —=1)T. Then, proceeding in the same way as that case and using the fact that (@ — 7/3,a —
5/3) <¥ (@ —5/2,a — 3/2), we find that if t = 0, v10 < u(d). If ¢ = 1, then v11 <¥ u(d).
Thus this case is settled and hence the proof of the theorem is complete. O

5, Construction

In this section we present an infinite series of designs d* [see the statement following (4.1)]
with A = 1. ’

Notation 5.1
(a) pisanoddinteger, say p = 25 + 1. P is the set is the set of integers modulo p. P* = P\{0}.
) I =1{0,1,2}.
© Vo=1x P.
(d) V = Vo U {a, B} is the set of treatments.

We first construct a Steiner triple (d) on the treatment set V; as follows.

Let B={B; :t € P*}; B, = {(0, 1), (0, —1), (1,0)} and C = {(0, 0), (1, 0), (2, 0)}. Clearly,
|B| = § - d will consist of blocks of two types. The blocks of type one are generated by adding
(i, j) to each member of B and those of type two by adding (0, j) to C. Here the addition is
mod 3 for the first and mod p to the second co-ordinate. Thus, d has 3sp blocks of type one and
p blocks of type two and hence altogether b = 3sp + p = 652 + 5s + 1 blocks.

Theorem 5.1. d* with . = 1 exists for all s, whenever P* defined above can be partitioned into
two sets Q, R such that |Q| = |R] = s and for everyu € Q, 2u € R.

Proof. Let us assume the condition on P. We construct 4* from d as follows. We take a certain
subclass consisting of p — 1 blocks of type one and all the p blocks of type two. We replace each
one of these 2p — 1 blocks by two blocks. Finally, we add the block

{(1,0), (2,0), a).
Thus, we get b* = b+2p —1+1=6s*+95 + 3 blocks. We now describe the procedure

for replacement.
For j € P, the block {(0, j), (1, j), (2, j)} of type two is replaced by the pair of blocks

{(0, /). (1, j), e} and {(0, /), (2, /). B}, ifje QU{0},
and
(0, /), 2, j),a} and {(0, /), (1, j). B}, ifjeR.
Now, let us consider the following set L of p — 1 (= 2s) blocks of type 1 of d.
L={L,:teP*); L, ={(1,0),(1,20),(2, 0}
We replace L, by two blocks, say D, and E,, which are as follows:

D! = {(1,0)s (1, t): (2: ‘)}a te P*;

g - [{,20,2,n,0) ifre@,
t=1a,20. 2.0, 8 ifteR



26 S. Bagehi / Linear Algebra and its Applications 417 (2006) 8-30

It is easy to verify that

(i) every pair of treatments-of Vp appear together exactly once,

dl) a occurs twice with (1, 0) once with all other treatments of Vj,
(iii) B does not occur with (1,0) and it occurs with all other treatments of V) exactly once,
(iv) a, B do not occur together.

These completes the proof of our theorem. [J

Remark 4. Regarding the partitioning of P* in Theorem 5.1, we observe the following. Suppose
p 18 a prime or a prime power.

Case 1: 2 is not a quadratic residue [e.g.: p = 11, 13, 19], then we may take Q as the set of
quadratic residues.

Case 2: -2 is a primitive element (e.g., p = 19, 23). Then, Q = {1, ¢, ..., (@)P~/2} 4 = 9
satisfies the condition.

We have also checked that the required partition exist for other odd integers p < 23, except
forp=1.

We now present d* fors = 1. Thishas v =11, b =18, r =5,k =3, A = 1. The treatment
setis {(i, ), i, j = 0,1, 2} U {a, B} Blocks are as follows:

o, ©2 1,0
©,2) 0.0 @1
0,0 @1 (1,2
(LD (1,2) (2,0
1.0 (€, @
(1,2) 2,1) «

(L (1,2 2,2
a,n @2 8

2, ) (2,2) (0,0
2,2y (2,00 (0,1
2,00 2,1 (0,2

0,0) (1,0) «
0,00 (2,00 8
©.1 1,1 a
0,1 @10 8
0,2y 1,2) B
0.2y 2,2) «
1,0 2,0 «

Remark §. The design presented above is A-optimal by virtue of Theorem 4.1.

5.1. Concluding remark

So, far we have seen two series of designs with spectrum and tr(C,)? satisfying Jacroux’s (9]

conditions (see Theorem 3.1). These are dy of MS and d* of this paper. It is interesting that the
spectrum of one is the “opposite” of the other:
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spectrum[kCj ] = (@ — 1)a”>(a + 3), (5.1)
spectrum[kCys] = (@ — 3)a’>(a + 1). (5.2)

dy has a comparatively bigger value of its minimum eigenvalue and consequently satisfies

general optimality (within the binary class) while 4* does not seem to be likely to satisfy general
optimality.

Now, does there exist a design with spectrum
(a-2)a"3@a+2)?
If it does, then it is very likely to be type 1 optimal as the proofs of this paper indicate.
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Appendix A

Consider two non-null n x 1 vectors x, y. To show x is A-worse than y, we need to show
¥,y > 0. [Recall (2.6).] So, we express ¥y, , in the following form:

n
Yy = Z npcp(Dp)_l .
p=1

Here Dp = (xpyp) !, ¢p = yp — xp and n is the number of terms in ¥, of the form (x,)~! -
(yp)~!. Note that we are using the same notation for expressing different 1, ,y 8 since it will be

clear from the context. Moreover, D,’s are arranged in ascending order except in Lemmas Al
and A2.

Lemma Al. Suppose l is an integer, € = 1 and t1, t; are positive real numbers satisfying
U+ Dt =1 +2/3. :
Ifa>4andt),1, < 1/12 ther x = (a — €)*(a — eny)! is A-worse than y=(a—4¢/3)(a -

Proof. We note that ¢* =3y, ,DiDyD3/(a—€)(a—ety) = (€[22 = 3)(1 — 1) —
4e/3) — (4/3 — t2)(a — €t1)] which is > 0 under the given conditions. O

Lemma A2. Let [, € and 11, t; be as in Lemma Al except for the relation between | and 1y, t
which is as follows:

U+ Dy = Ity —2/3.
Ifa>5thenx = (a—€)(a+et) is A-worse than y = (a — 4e/3)(a + en)'*\.

Proof. We note that y* = 3y, ,D1D2D3/(a — €)(a + €t2) = (2 + 3n)(1 + f)(a — 4¢/3) —
(4/3 + ny)(a + €11). It is easy to see that this is > 0, under the given conditions. [J



2 8. Bagchi / Linear Algebra and its Applications 417 (2006) 830

Consider a real symmetric matrix A of order n with constant diagonal element ¢ and of the
following form:

| A B, _12 ¢ ¢
A [w])T Az]’ “'—[“ a i

€

where ¢ = X1 and ¢t = Oor£l.
Corollary A3. Suppose the matrix A described above satisfies the following conditions:

(8) 3 anm x 1 vecior z, m < n — 3 and an integer h < m such that the eigenvalues of Ay
satisfies the following inequalities:

f j
Y ey u 1<j<h

i=1 i=1

and

J J
Y uf(A) 2y wwi, 1Sj<m—h
=] i=1
G Lets; =) [ zi.1=5;+2(a—€)—a(m—2) and 82 = s, + (a — 4¢/3) —a(m — 1)
satisfy the conditions given below:

@) 31 and 8> has the same sign and
@i) max(jé1l, 182]) £ 1/12, wherel =n—-m — 2.

Then j1.(A) is A-best ift = 0.

Proof. Let x; = (2, —1, —DT and x; = (0, 1, —1)T. Now we apply Theorem 2.7 on B [(a) or
(b) depending on the sign of €], the corresponding vector(s) being x; if ¢ = 0 or —¢ and x), x2
if t = €. It follows from Theorem 2.8 that in the former case x* <" 1(A) and in the later case,
y* <% p(A), where x* = (x|z), y* = (y|z). Here z is as in (a) and the vectors x, y are as in
Lemma Al (respectively, Lemma A2), if the sign of §; is the same as (respectively, different
from) €.

Now the result follows from Lemmas Al and A2. O

Now, we list a few n x 1 vectors vi = (viy, via, ..., viz) $, 1 < i < 12 [see Notation 2.1}.
Our aim here is to show that if a is not too small, each vi is A-worse than v0 which is the same as
p(d*), when n = v — 1. [Recall Definition 2.6.] We shall use the notation v;,j in place of Y.y,
when x = vi and y = vj.

Notation
(0) v0 = u(d*) = (a—3)'a" 2@+ 1).
(1) v1 = (@ — 2)%@a + )" 3(a + 2n/(n — 1)), where (n — 3)t =5 =2/(n — 1).
@ v2 = (a—5/2)(a—1)’a"*(a+5/2).
3) v3 = (a — 5/2)(a — 5/3)(a + 1)"3(a + 5/3), where (n — 3)t = 1/2.
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4) v4 = (a — 17/6)(a — I)(a + 1)"3(a + 3/2), where (n — 3)t = 1/3.
(5) v5 = (a — 8/3)(a — 4/3)a + )" 3(a + 3/2), where (n — 3)r = 1/2.
6) v6 = (a — 8/3)(a — 4/3)(a - 1" 4a+ 1)(a +4/3), where (n — 4)t = 1/3.
(7) v7 = (a = 8/3)a — 1)(a — 1)**(a + 2), where (n — 3)t = 1/3.
(8) v8 = (a — 8/3)(a — 3/2)(a + 1)*~*(a + 1), where (n — 4)t = 1/6.
(9) v9 = (a — 8/3)(a — 1)*(a + )" > (a + 1)?, where (n — 5)t = 2/3.
(10) v10 = (a — 7/3)a — 5/3)(a — 1)@ + 1)*5(a + 4/3)2, where (n — 5)t = 1/3.
(11) v11 = (@ — 7/3)(a — 2)(a — )" 4(a + 4/3)%, where (n — 4}t = 1/3
(1) v12=(a—2)a—1t)"2a,where(n -2}t =g > 2.

Theorem Ad4. v0 is A-better than vl if either of the followmg conditions are satt.sﬁed (a2 12,
(ii)a=n+1210

Proof. ¥y,0=D;' — D' — (D;' — D;'), where Dy =(a—2)(a—-3), D;=afa~-2),
D3 =a(a —t), D4 = (a + 1)(a + 2 + 8). From this, after simplification, we get v o D1 D2 Ds/
(a—2) =2a%*—-22a — 12+ 8(a + 1)(a — 6), which is clearly > 0 under condition (i). Under
condition (ii), 5(a + 1) > 2 and together with 2 > 10 makes the expression above > 0. Hence
the result. [0

Remark 6. In the application, @ = v =n — 1 [see (4.2)], so that condition (ii) is enough. We
have presented the lemma in the form above to show that the result holds even when there is no
relation between a and n, provided a is big enough.

Theorem AS. Ifa > 11, then v0 is A-better than vi, 2 < i € 12.
Proof. We prove the results in four steps:

(a) v0 is A-betterthan vi,2 <i £ 5,i =9and i = 12 whenevera 2> 11.
(b) v5 is A-better than vi, 6 < i < 8, whenevera = 7.

(c) v9 is A-better than v10, whenever a > 10.

(d) v6 is A-better than v11, whenevera > 7.

(a) Take i = 2. We find that ¥* = 2y oD\ Dy D3 = 3(D3 — D) Dy — (D2 — D) D3, where
=(a—3)a—-5/2), Dy=a(a—-1), D3=(a+ 1)(a+5/2). Now, since, D3 — D, >
9a/2 > Dy — Dy, ¥* > 9a(a® — 10a + 10), which is > 0, whenever a > 9.

Next, we observe that ¥; g is 1 in2,i = 3,4, 5, 9. Thus, ¥, 0 > ¥;0{t = 0) and w.l.g., we can
putt =0iny;0,i =3,4,5,9.

Now we compare v3 with v0. We observe that 6y3 0D D2D3 > ¢* = -—3D3(D2 - Dy) +
3(D3 — D2) Dy + 4(D4 — D3) Dy, where Dy = (a — 3)(a — 5/2), D = a(a — 5/3), D3 = a?
Dy = (a + 1)(a + 5/3).

On simplification, ¥* = %5— 3~ 281 a? + Z%Qa + 50 which is > 0, ifa > 7.

Next we take up v4. We define gb* = 6vr4,001D2D3 D4, where Dy = (a — 3)(a — 17/6),
Dy =a(a—1), D3 =a? Dy = (a + 1)(a +3/2).

On simplification ¥* becomes > £a’ — 67a%, which is > 0 whenevera > 9.

Next memberis v5, We find that * = 6y5 0D D2 D3D4 > 4—6'-a5 79q% + 42 449 a® + 10642 +
48a, which is > 0, whenevera > 11.
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Now. we look at v9. Here y* = 39,001 D2D3Ds = £a° — 40a* + 18243 + 1642, which is
>0, whenever, a > 11,

Finally, we consider v12. We see that y* = ¥r12,0D1 D2 > 2D| — D,, whichis = g2 — (10 -
t)a + 6 and sois > 0 if a > 10. Hence, the proof of (a) is complete.

(b) In the comparison between vi with v5, we take t; tobe t of vi,i = 6,7, 8 and 1, = ¢ of
v3. Since ; 5 is increasing in #, foreachi = 6,7, 8, we can putr; = 0, w.l.g.

First we compare v6 with v5. We define y* = Y6501 D2D3 where Dy = (a ~ t))a; D, =
(a + 1)a; D3 = (a + 4/3)(a + 3/2). Itis easy to check that ¥* > 0, whenevera > 0,

Next, v7 with v5. We define * = 6y s D1 Dy Ds.

It is easy to check that the coefficient of #) in ¢* is always > 0. The part of ¥* free from 1, is
%éaz(a —T+13a% — 3—25a + 15 which is > 0, whenevera > 7.

Finally, we compare v8 with v5. Since D;’s are in ascending order, 6y sD)D; > y* =
(D2 — D1)D3Dy4 + 3(D3 — D2) DDy + (D4 — D3) Dy Dy

On simplification, ¥* > (4/3 — 2t))a — 11/2. Since #; < 1/6, ¥* > 0, whenevera > 6.

(¢) Weputt; = ¢ of v10 and £; = ¢ of v9. We define Y* = 319,90 D2 D3 Ds.

Now, since £ +1 < 1, Dy < a(a-+1), so that D3 — Dy < 6(a — 1). Again, Dy — Dy =
Sa —1/3.

Simplifying the expression for y* using the relations above, we see that y*/(2a(a + 1)) >
2a3 — 1942, which is > 0 whenever a > 10.

(d) On simplification we find that ¥* = 9y 6D Dy D3 > 12a® — 90a” + 1024, which is
>0 whenevera > 7. O
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