


/0 ¼ 2pa

Z 1

0

eÿkjyÿgjJ0ðkaÞJ0ðkRÞdk ð1:1Þ

where a is the radius of the ring with centre at ð0; 0; gÞ using a cylindrical co-ordinate system

ðR; h; yÞ, y-axis being taken as the axis of the ring. However, in a fluid with a boundary at its

upper surface, the potential due to a ring source can be decomposed into two parts, the first

part representing the potential due to a ring of wave sources present in an unbounded fluid

while the second representing its image in the upper boundary and the bottom, if there be any,

conditions.

Hulme [2] constructed the velocity potential due to a horizontal ring of wave sources of time-

harmonic strength submerged in deep water with a free surface in terms of multi-valued toroidal

harmonics. Rhodes-Robinson [3,4] earlier used a reduction technique to obtain the ring source

potential for both deep water and finite depth water in the presence of surface tension at the free

surface. Mandal and Kundu [5] obtained the velocity potential due to a ring source of time-

dependent strength submerged in deep water with an inertial surface in the presence of surface

tension, the inertial surface being composed of uniformly distributed non-interacting floating

material. Here we consider the motion due to a submerged horizontal ring of wave sources of

time-dependent strength present in water with an ice-cover, the ice-cover being modelled as a thin

elastic sheet composed of elastic material of uniform area density. The problem is formulated as

an initial value problem for the velocity potential describing the motion in the fluid, and the

Laplace transform technique is employed to solve it. Three types of source strengths, namely

impulsive initially but zero later, the classical case of constant strength and finally the important

case of time-harmonic strength are considered. The steady-state development of the potential

function for time-harmonic source strength shows the existence of outgoing progressive waves of

any frequency under the ice-cover. This is in contrast with the case when the ice-cover is modelled

as an inertial surface in which case outgoing time-harmonic progressive waves exist under the

inertial surface only when the angular frequency is less than a certain constant which depends on

the surface density of the inertial surface [6].

2. Mathematical formulation

A cylindrical co-ordinate system ðR; h; yÞ is chosen in which the y-axis is taken vertically

downwards into the water which is assumed to be homogeneous with density q and inviscid. The

upper surface of water is covered by a thin layer of ice modelled as an elastic sheet having uniform

surface density �q, Young’s modulus E and Poisson’s ratio c; � being a constant having the

dimension of length. A horizontal ring of radius a of uniformly distributed point sources, each of

the same time-dependent strength mðtÞ, is present at a depth g below the mean position of the ice-

cover, taken as the y ¼ 0 plane. The axis of the ring coincides with the y-axis. The only external

force acting on the system is the gravity g. The motion in water is generated when the point

sources on the ring start operating at a given instant simultaneously. Since the motion in water

starts from rest, it is irrotational and can be described by a potential function /ðR; y; tÞ. Then /

satisfies
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1

R
ðR/RÞR þ /yy ¼ 0 ð2:1Þ

in the fluid region except at points on the ring. If fðR; tÞ denotes the depression of the ice-cover

below its mean position, then the linearised kinematic and dynamic conditions on the ice-cover

are given by

/y ¼ ft on y ¼ 0 ð2:2Þ

and

ð/ÿ �/yÞt ¼ ðDr4
R þ 1Þgf on y ¼ 0 ð2:3Þ

where D ¼
Eh3

0

12ð1ÿm2Þqg
is a constant, h0 being the very small thickness of the ice-cover and

r2 ¼ 1
R

@
@R
ðR @

@R
Þ. Elimination of f between (2.2) and (2.3) produces the linearised ice-cover con-

dition

ð/ÿ �/yÞtt ¼ ðDr4
R þ 1Þg/y on y ¼ 0: ð2:4Þ

The initial conditions at the ice-cover are

/ÿ �/y ¼ 0; ð/ÿ �/yÞt ¼ 0 on y ¼ 0 at t ¼ 0 ð2:5Þ

which are obtained due to continuity of f for all times. Also, / must satisfy the bottom condition

r/ ! 0 as y ! 1 ð2:6aÞ

for deep water, or

/y ¼ 0 on y ¼ h ð2:6bÞ

for water of uniform finite depth h. Also, at points near the ring

/ ! mðtÞ/0 as fðRÿ aÞ2 þ ðy ÿ gÞ2g1=2 ! 0 ð2:7Þ

where /0 is given by (1.1).

It may be noted that for time-harmonic motion of angular frequency r, the ice-cover condition

(2.4) becomes

K/þ Dr4
R

ÿ

þ 1ÿ �K
�

/y ¼ 0 on y ¼ 0 ð2:8Þ

where K ¼ r2=g. If / has the time-harmonic progressive wave form given by

/ ¼ RefeÿkyH
ð1Þ;ð2Þ
0 ðkRÞeÿirtg

for deep water, or
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/ ¼ Refcosh kðhÿ yÞH
ð1Þ;ð2Þ
0 ðkRÞeÿirtg

for water of uniform finite depth h, then k satisfies the polynomial equation

DðkÞ � kðDk4 þ 1ÿ �KÞ ÿ K ¼ 0 ð2:9Þ

for deep water, or the transcendental equation

D0ðkÞ � kðDk4 þ 1ÿ �KÞ sinh khÿ K cosh kh ¼ 0 ð2:10Þ

for finite depth water. It can be easily verified that the nature of the zeros of DðkÞ and D0ðkÞ
remains the same whether 1ÿ �K is positive or negative so long as D 6¼ 0, and that both DðkÞ and
D0ðkÞ possess a unique positive real zero.

For DðkÞ we denote its positive real zero by k. The other zeros of DðkÞ are two pairs of complex

conjugate numbers denoted by ðk1; k1Þ and ðk2; k2Þ where Rek1 > 0, Imk1 > 0 and Rek2 < 0,

Imk2 > 0. Chakrabarti et al. [7] gave an elementary proof for the nature of the zeros of DðkÞ for
� ¼ 0. However, for � 6¼ 0, the same elementary proof can be used to find the nature of the zeros of

DðkÞ with obvious modifications.

Again, for D0ðkÞ we denote its positive real zero by l. It can be shown that D0ðkÞ has a negative

real zero at k ¼ ÿl, two pairs of complex conjugate roots l1; l1 and ÿl1;ÿl1 with Rel1 > 0,

Iml1 > 0 and Rel1 < Iml1, and an infinite number of purely imaginary roots �ianðan > 0,

n ¼ 1; 2; . . .Þ where anh ! np as n ! 1 (see [8]).

For the case D ¼ 0, the ice-cover is no longer modelled as an elastic plate, and it becomes an

inertial surface, and the ice-cover (inertial surface) condition becomes

K/þ ð1ÿ �KÞ/y ¼ 0: ð2:11Þ

This shows that progressive wave is possible only when 1ÿ �K > 0 i.e. r < ðg=�Þ1=2 (cf. [6]). For
rP ðg=�Þ1=2, the form (2.11) does not allow any progressive wave.

3. Solution

To solve the initial value problem for / described above, we use Laplace transform defined by

/ðR; y; pÞ ¼

Z 1

0

/ðR; y; tÞeÿpt dt; p > 0; ð3:1Þ

then, / satisfies the boundary value problem described by

1

R
ðR/RÞR þ /yy ¼ 0 ð3:2Þ

in the fluid region except at points on the ring,

/ ! mðpÞ/0 as fðRÿ aÞ2 þ ðy ÿ gÞ2g1=2 ! 0; ð3:3Þ
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p2/ÿ Dr4
R

�

þ 1þ
�p2

g

�

g/y ¼ 0 on y ¼ 0; ð3:4Þ

r/ ! 0 as y ! 1 ð3:5aÞ

for deep water, or

/y ¼ 0 on y ¼ h ð3:5bÞ

for finite depth water.

We now consider the cases of deep water and finite depth water separately.

Case (a): deep water

A solution for / satisfying (3.2), (3.3) and (3.5a) is constructed as

/ðR; y; pÞ ¼ mðpÞ /0

�

þ

Z 1

0

AðkÞeÿkyJ0ðkRÞdk

�

ð3:6Þ

where AðkÞ is an unknown function of k to be determined such that the integral in (3.6) is con-

vergent. Using the form of /0 given in (1.1), it is seen that the condition (3.4) is satisfied if we

choose

AðkÞ ¼
2paJ0ðkaÞfgkð1þ Dk4Þ ÿ ð1ÿ �kÞp2geÿkg

ð1þ �kÞp2 þ gkð1þ Dk4Þ
: ð3:7Þ

Thus /ðR; y; pÞ in this case is obtained as

/ðR; y; pÞ ¼ mðpÞX ðR; yÞ þ mðpÞ

Z 1

0

X2

X2 þ p2
Y ðR; y; kÞdk ð3:8Þ

where

X ðR; yÞ ¼ 2pa

Z 1

0

eÿkjyÿgj

�

ÿ
1ÿ �k

1þ �k
eÿkðyþgÞ

�

J0ðkaÞJ0ðkRÞdk;

Y ðR; y; kÞ ¼ 4pa
J0ðkaÞ

1þ �k
J0ðkRÞe

ÿkðyþgÞ ð3:9Þ

and

X2ðkÞ ¼
gkð1þ Dk4Þ

1þ �k
: ð3:10Þ

Laplace inversion of (3.8) produces

/ðR; y; tÞ ¼ mðtÞX ðR; yÞ þ

Z 1

0

XðkÞY ðR; y; kÞ

�

Z t

0

mðsÞ sinXðt

�

ÿ sÞds

�

dk:

ð3:11Þ
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For a ring source of impulsive strength we take mðtÞ ¼ dðtÞ, and in this case (3.11) produces

/impðR; y; tÞ ¼ dðtÞX ðR; yÞ þ

Z 1

0

XðkÞY ðR; y; kÞ sinXtdk ð3:12Þ

For large t, the expression in (3.12) vanishes. This has the interpretation that since the sources

around the ring act instantaneously at t ¼ 0, they have no effect on the fluid motion after a long

lapse of time.

For a ring source of constant strength mðtÞ ¼ 1, (3.11) gives

/constðR; y; tÞ ¼ X ðR; yÞ þ

Z 1

0

Y ðR; y; kÞð1ÿ cosXtÞdk: ð3:13Þ

For a ring of wave sources of time-harmonic strength, we take mðtÞ ¼ sinrt where r is the circular

frequency. In this case, (3.11) gives

/ðR; y; tÞ ¼ sinrtX ðR; yÞ þ

Z 1

0

XðkÞY ðR; y; kÞ
X sin rt ÿ r sinXt

X2 ÿ r2
dk ð3:14Þ

To determine the form of (3.14) as t ! 1, we introduce a Cauchy principal value at k ¼ k which

is the real positive zero of X2 ÿ r2 i.e. DðkÞ, in the integral in (3.14), and following Rhodes-

Robinson [6], we obtain, as t ! 1

/ ! 2pa sin rt

Z

--
1

0

eÿkjyÿgj

�

þ
kðDk4 þ 1ÿ �KÞ þ K

DðkÞ
eÿkðyþgÞ

�

J0ðkaÞJ0ðkRÞdk

ÿ4p2a cosrt
kðDk4 þ 1ÿ �KÞ

1ÿ �K þ 5Dk4
eÿkðyþgÞJ0ðkaÞJ0ðkRÞ ð3:15Þ

where the integral is in the sense of Cauchy principal value. This integral can be simplified

by using the relation 2J0ðkRÞ ¼ H
ð1Þ
0 ðkRÞ þ H

ð2Þ
0 ðkRÞ, and rotating the contour in the complex

k-plane for the integral involving H
ð1Þ
0 ðkRÞ in the first quadrant and for the integral involving

H
ð2Þ
0 ðkRÞ in the fourth quadrant. Thus an alternative representation for the expression in (3.15) is

given by

/ ! 8a sinrt

Z 1

0

Lðk; yÞLðk; gÞI0ðkaÞ

k2ð1ÿ �K þ Dk4Þ2 þ K2
K0ðkRÞdk

þ 2p2ia sin rt f ðy; g; k1ÞH
ð1Þ
0 ðk1;RÞ

n

ÿ f ðy; g; k1ÞH
ð2Þ
0 ðk1RÞ

o

ÿ 2p2af ðy; g; kÞfsin rtY0ðkRÞ þ cos rtJ0ðkRÞg ð3:16Þ

where

Lðk; yÞ ¼ kð1ÿ �K þ Dk4Þ cos ky ÿ K sin ky; ð3:17Þ
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f ðy; g; kÞ ¼
2kð1ÿ �K þ Dk4Þ

1ÿ �K þ 5Dk4
eÿkðyþgÞJ0ðkaÞ: ð3:18Þ

It may be noted that the second term in the expression in (3.16) is real. For large R, we find from

(3.16) that as t ! 1.

/ ! ÿ4p2a
kð1ÿ �K þ Dk4Þ

1ÿ �K þ 5Dk4
eÿkðyþgÞJ0ðkaÞ

2

pkR

� �1=2

cos kR
�

ÿ rt ÿ
p

4

�

: ð3:19Þ

This shows that / represents outgoing progressive waves as R ! 1.

Case (b): finite depth water

In this case a solution for / satisfying (3.2) and (3.3) is constructed as

/ ¼ mðpÞ /0

�

ÿ 2pa

Z 1

0

eÿkðyþgÞJ0ðkaÞJ0ðkRÞdk

þ

Z 1

0

fBðkÞ cosh kðhÿ yÞ þ CðkÞ sinh kyg
J0ðkaÞ

cosh kh
J0ðkRÞdk

�

ð3:20Þ

where the functions BðkÞ and CðkÞ, for the satisfaction of the conditions (3.4) and (3.5b), are

chosen as

BðkÞ ¼ 4pa
gk 1þ Dk4 þ � p2

g

� �

MðkÞðX2
0 þ p2Þ

cosh kðhÿ gÞ;

CðkÞ ¼ 4paeÿkh sinh kg ð3:21Þ

with

MðkÞ ¼ cosh khþ �k sinh kh;

X2
0ðkÞ ¼

gkð1þ Dk4Þ sinh kh

MðkÞ
: ð3:22Þ

Thus / is obtained as

/ ¼ mðpÞPðR; yÞ þ mðpÞ

Z 1

0

X2
0

X2
0 þ p2

QðR; y; kÞdk ð3:23Þ

where

PðR; yÞ ¼ 2pa

Z 1

0

eÿkjyÿgj

�

ÿ eÿkðyþgÞ þ
2

cosh kh

�k

MðkÞ
cosh kðh

�

ÿ yÞ cosh kðhÿ gÞ

þ eÿkh sinh ky sinh kg

��

J0ðkaÞJ0ðkRÞdk ð3:24Þ
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and

QðR; y; kÞ ¼ 4pa
cosh kðhÿ yÞ cosh kðhÿ gÞ

MðkÞ sinh kh
J0ðkaÞJ0ðkRÞ: ð3:25Þ

Laplace inversion of (3.23) gives

/ðR; y; tÞ ¼ mðtÞP ðR; yÞ þ

Z 1

0

X0ðkÞQðR; y; kÞ

Z t

0

sinX0ðt

�

ÿ sÞmðsÞds

�

dk: ð3:26Þ

For impulsive source strength mðtÞ ¼ dðtÞ, and (3.26) gives

/impðR; y; tÞ ¼ dðtÞP ðR; yÞ þ

Z 1

0

X0ðkÞQðR; y; kÞ sinX0tdt ð3:27Þ

which tends to zero as t ! 1, as in the case of deep water.

For constant source strength mðtÞ ¼ 1, and (3.26) gives

/cðR; y; tÞ ¼ P ðR; yÞ þ

Z 1

0

QðR; y; kÞð1ÿ cosX0tÞdk: ð3:28Þ

For time-harmonic source strength mðtÞ ¼ sin rt and in this case (3.26) produces

/ðR; y; tÞ ¼ sinrtPðR; yÞ þ

Z 1

0

X0ðkÞQðR; y; kÞ
X0 sinrt ÿ r sinX0t

X2
0 ÿ r2

dk: ð3:29Þ

As in the case of deep water, the steady-state development of /, given by (3.29), can be obtained

by introducing a Cauchy principal value at k ¼ l which is the real positive zero of X2
0 ÿ r2 i.e.

D0ðkÞ, in the integral in (3.29). Then as t ! 1, we find

/ ! sinrt PðR; yÞ

�

þ 2

Z

--
1

0

kð1þ Dk4Þ

D0ðkÞMðkÞ
cosh kðhÿ yÞ cosh kðhÿ gÞJ0ðkaÞJ0ðkRÞdk

�

ÿ 8p2al
ð1ÿ �K þ Dl4Þ cosh lðhÿ yÞ coshlðhÿ gÞJ0ðlaÞJ0ðlRÞ

2lhð1ÿ �K þ Dl4Þ þ ð1ÿ �K þ 5Dl4Þ sinh 2lh
ð3:30Þ

where the integral is in the sense of CPV.

In the right-hand side of (3.30), combining the integral representation of P ðR; yÞ given in (3.24)

and the CPV integral and changing the contour along the real axis with indentations above the

pole at k ¼ ÿl and below the pole at k ¼ l, the following alternative representation is obtained:

/ ! 8pa sin rt
X

1

n¼1

gðy; g; ianÞK0ðanRÞ þ 4p2ia sin rtfgðy; g;l1ÞH
ð1Þ
0 ðl1RÞ

ÿ gðy; g; l1ÞH
ð2Þ
0 ðl1RÞg ÿ 4p2agðy; g;lÞfsinrtY0ðlRÞ þ cosrtJ0ðlRÞg ð3:31Þ
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where

gðy; g; kÞ ¼
2kð1ÿ �K þ Dk4Þ cosh kðhÿ yÞ cosh kðhÿ gÞJ0ðkaÞ

ð1ÿ �K þ 5Dk4Þ sinh 2khþ ð1ÿ �K þ Dk4Þ2kh
ð3:32Þ

and the second term in (3.31) is real. For large R, we find that, as t ! 1

/ ! ÿ8p2al
ð1ÿ �K þ Dl4Þ coshlðhÿ yÞ coshlðhÿ gÞJ0ðlaÞ

ð1ÿ �K þ 5Dl4Þ sinh 2lhþ ð1ÿ �K þ Dl4Þ2lh

2

plR

� �1=2

cos lR
�

ÿ rt ÿ
p

4

�

:

ð3:33Þ

This shows that / represents progressive outgoing waves as R ! 1.

4. Conclusion

The velocity potential due to a horizontal circular ring of wave sources of time-dependent

strength submerged in water with an ice-cover has been obtained for both infinite and finite depth

of water. For the case of time-harmonic sources, the steady-state development of the potential

function shows the existence of outgoing progressive waves at large distances from the ring

source. If the elastic parameter D is put equal to zero, then the results for deep water coincide with

the results obtained in [5] for deep water with an inertial surface in the absence of surface tension.

If both D and � are put equal to zero, then the results obtained above can be identified with the

results obtained earlier in [3]. The effect of surface tension at the ice-cover can be incorporated in

the above results.
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