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Abstract

Motion due to a horizontal circular ring of wave sources of time-dependent strength submerged in water
with an ice-cover, modelled as a thin elastic sheet, is investigated here by constructing the velocity potential.
The problem is formulated as an initial value problem which is solved by Laplace transform technique.
Water of infinite and uniform finite depth is considered. For the particular case of time-harmonic wave
sources, the steady-state development of the potential is also obtained.

1. Introduction

The velocity potentials describing the motion due to two-dimensional line singularity, line
multipoles and three-dimensional point sources submerged in water with a free surface were
constructed by Thorne [1] in a systematic manner. These are useful in the mathematical study of
water wave scattering or radiation problems involving obstacles of various geometrical shapes
present in water with a free surface. However, if an obstacle is in the form of a vertical body of
revolution having a common vertical axis of symmetry with the fluid motion, then one needs to
consider potentials due to submerged horizontal circular rings of wave sources since the problem
can then be formulated in terms of suitable distribution of rings of wave sources around the body
(cf. [2]).

The potential due to a ring of wave sources of constant unit strength in an unbounded fluid is
given by
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¢y = 2na /0 N e =11 (ka)Jy (kR)dk (1.1)

where a is the radius of the ring with centre at (0,0,7) using a cylindrical co-ordinate system
(R,0,y), y-axis being taken as the axis of the ring. However, in a fluid with a boundary at its
upper surface, the potential due to a ring source can be decomposed into two parts, the first
part representing the potential due to a ring of wave sources present in an unbounded fluid
while the second representing its image in the upper boundary and the bottom, if there be any,
conditions.

Hulme [2] constructed the velocity potential due to a horizontal ring of wave sources of time-
harmonic strength submerged in deep water with a free surface in terms of multi-valued toroidal
harmonics. Rhodes-Robinson [3,4] earlier used a reduction technique to obtain the ring source
potential for both deep water and finite depth water in the presence of surface tension at the free
surface. Mandal and Kundu [5] obtained the velocity potential due to a ring source of time-
dependent strength submerged in deep water with an inertial surface in the presence of surface
tension, the inertial surface being composed of uniformly distributed non-interacting floating
material. Here we consider the motion due to a submerged horizontal ring of wave sources of
time-dependent strength present in water with an ice-cover, the ice-cover being modelled as a thin
elastic sheet composed of elastic material of uniform area density. The problem is formulated as
an initial value problem for the velocity potential describing the motion in the fluid, and the
Laplace transform technique is employed to solve it. Three types of source strengths, namely
impulsive initially but zero later, the classical case of constant strength and finally the important
case of time-harmonic strength are considered. The steady-state development of the potential
function for time-harmonic source strength shows the existence of outgoing progressive waves of
any frequency under the ice-cover. This is in contrast with the case when the ice-cover is modelled
as an inertial surface in which case outgoing time-harmonic progressive waves exist under the
inertial surface only when the angular frequency is less than a certain constant which depends on
the surface density of the inertial surface [6].

2. Mathematical formulation

A cylindrical co-ordinate system (R, 0,y) is chosen in which the y-axis is taken vertically
downwards into the water which is assumed to be homogeneous with density p and inviscid. The
upper surface of water is covered by a thin layer of ice modelled as an elastic sheet having uniform
surface density ep, Young’s modulus £ and Poisson’s ratio y,e being a constant having the
dimension of length. A horizontal ring of radius a of uniformly distributed point sources, each of
the same time-dependent strength m(z), is present at a depth » below the mean position of the ice-
cover, taken as the y = 0 plane. The axis of the ring coincides with the y-axis. The only external
force acting on the system is the gravity g. The motion in water is generated when the point
sources on the ring start operating at a given instant simultaneously. Since the motion in water
starts from rest, it is irrotational and can be described by a potential function ¢(R,y,?). Then ¢
satisfies
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1
2 (R, + 6, =0 1)
in the fluid region except at points on the ring. If {(R,?) denotes the depression of the ice-cover
below its mean position, then the linearised kinematic and dynamic conditions on the ice-cover
are given by

¢,=Cony=0 (2.2)
and

(¢ —cd,), = (DVz+1)glon y =0 (2.3)
where D:% is a constant, /i, being the very small thickness of the ice-cover and

Xz.: + 2 (RZ). Elimination of { between (2.2) and (2.3) produces the linearised ice-cover con-
1tion

(¢ —ed,), = (DVy +1)g¢, on y =0. (2.4)
The initial conditions at the ice-cover are

¢—ep,=0, (p—€p),=0ony=0atr=0 (2.5)
which are obtained due to continuity of { for all times. Also, ¢ must satisfy the bottom condition

Vp —0asy— oo (2.6a)
for deep water, or

¢,=0ony=nh (2.6b)
for water of uniform finite depth 4. Also, at points near the ring

¢ — m(1)¢y as {(R—a)’+ (y—n)’}'? =0 (2.7)
where ¢, is given by (1.1).

It may be noted that for time-harmonic motion of angular frequency o, the ice-cover condition

(2.4) becomes

K¢+ (DVy+1—€K)p,=0o0ny=0 (2.8)
where K = 62 /g. If ¢ has the time-harmonic progressive wave form given by

¢ = Re{e P H"? (kR)e '}

for deep water, or
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¢ = Re{cosh k(h — y)H"? (kR)e '}
for water of uniform finite depth 4, then £ satisfies the polynomial equation

Alk) =k(Dk* +1 —eK) =K =0 (2.9)
for deep water, or the transcendental equation

Ao (k) = k(Dk* + 1 — €K) sinh kh — K coshkh = 0 (2.10)

for finite depth water. It can be easily verified that the nature of the zeros of A(k) and Ay (k)
remains the same whether 1 — €K is positive or negative so long as D # 0, and that both A(k) and
Ay(k) possess a unique positive real zero.

For A(k) we denote its positive real zero by 4. The other zeros of A(k) are two pairs of complex
conjugate numbers denoted by (4;,4;) and (,,74,) where Rei; > 0, ImA; > 0 and Re/, <0,
Im/, > 0. Chakrabarti et al. [7] gave an elementary proof for the nature of the zeros of A(k) for
e = 0. However, for € # 0, the same elementary proof can be used to find the nature of the zeros of
A(k) with obvious modifications.

Again, for Ay(k) we denote its positive real zero by u. It can be shown that Ay(k) has a negative
real zero at k = —p, two pairs of complex conjugate roots u,,z; and —u,, —, with Reu, > 0,
Imy, >0 and Rey, < Imy,, and an infinite number of purely imaginary roots =i, (o, > 0,
n=1,2,...) where a,h — nm as n — oo (see [8]).

For the case D = 0, the ice-cover is no longer modelled as an elastic plate, and it becomes an
inertial surface, and the ice-cover (inertial surface) condition becomes

K¢+ (1 —eK)p, =0, (2.11)

This shows that progressive wave is possible only when 1 — €K > 0 i.e. 0 < (g/ e)l/ : (cf. [6]). For
o= (g/e)l/z, the form (2.11) does not allow any progressive wave.

3. Solution

To solve the initial value problem for ¢ described above, we use Laplace transform defined by

B(R.y.p) = / T $Roy, e dl, p> 0, (3.1)

then, ¢ satisfies the boundary value problem described by

1

7 (Rbr)p+ 6, =0 (3.2)

in the fluid region except at points on the ring,

& — m(p)dy as {(R—a)’ + (v =n)"}'"* =0, (3:3)
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2 4 €P2 -
pro— DVR+1+? gp,=0ony=0,

V¢ —0asy— oo

for deep water, or

¢,=0ony=nh

for finite depth water.
We now consider the cases of deep water and finite depth water separately.
Case (a): deep water
A solution for ¢ satisfying (3.2), (3.3) and (3.5a) is constructed as

O(R,y,p) = m(p){d>o + /0 OCA(k)e"yJo(kR)dk}

1649
(3.4)

(3.5a)

(3.5b)

(3.6)

where A4(k) is an unknown function of k£ to be determined such that the integral in (3.6) is con-
vergent. Using the form of ¢, given in (1.1), it is seen that the condition (3.4) is satisfied if we

choose

 2maJo(ka){gk(l + Dk*) — (1 — ek)p*}e "
N (1 + ek)p? + gk(1 + Dk*)

A(k)

Thus ¢(R,y,p) in this case is obtained as
QZ

FR.y.p) = WX (R ) + () [ )

where

x | — ek
X(R,y) =2na / e Kl ST ekt L (ka).Jo (kR)dk,
0 1+ ek

J()(ka) iy
Y(R,y; k) = 4na =L Jy (kR)e <0+
(R,yik) = dma = o (kR)e

and

gk(1 + Dk*)
Q)=
() 1 + ek

Laplace inversion of (3.8) produces

BR.2.1) = m(OX (R) + [ Q)Y (R yik)

X {/Otm(f) sin Q(¢ — r)dr}dk.

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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For a ring source of impulsive strength we take m(¢) = 6(¢), and in this case (3.11) produces
P™ (R, y,1) = S()X(R,y) + / Q(k)Y (R, y; k) sin Qtdk (3.12)
0

For large ¢, the expression in (3.12) vanishes. This has the interpretation that since the sources
around the ring act instantaneously at ¢ = 0, they have no effect on the fluid motion after a long
lapse of time.

For a ring source of constant strength m(¢t) = 1, (3.11) gives

B Ry t) = X(RY)+ [ YRR = cos ) (3.13)
0
For a ring of wave sources of time-harmonic strength, we take m(¢) = sin of where ¢ is the circular

frequency. In this case, (3.11) gives

> Qsin gt — o sin Q¢
O(R, v, 1) = sin X (R, y) + / Qk)Y (R, y; k) Sm; IR dk (3.14)
0 — O

To determine the form of (3.14) as ¢t — oo, we introduce a Cauchy principal value at k£ = A which
is the real positive zero of Q* — ¢” i.e. A(k), in the integral in (3.14), and following Rhodes-
Robinson [6], we obtain, as t — oo

00 4
{e‘k'y‘" N k(Dk* 4+ 1 — €K) +Ke

AR _k@+”>}Jo(ka)Jo(kR)dk

¢ — 2nasin at]l

0

A(DI*+1—€K)

—47’a cos ot -
1 —€eK + 5D/

e "0 1o (2a)Jy(AR) (3.15)

where the integral is in the sense of Cauchy principal value. This integral can be simplified
by using the relation 2Jy(kR) = Hél)(kR) +H52) (kR), and rotating the contour in the complex
k-plane for the integral involving Ho(l)(kR) in the first quadrant and for the integral involving
Hé2> (kR) in the fourth quadrant. Thus an alternative representation for the expression in (3.15) is
given by

¢ — 8asinat /OC Lk, )L (E, n)]ogka)
o k*(1 —eK + Dk*)” + K?

+ 2n*ia sin at{f(y, ;A1 )HO(I)(J,I JR) — f(y,n; Zl)Héz> (ZlR)}
—27%af (v, n; A){sin 6t¥o(AR) + cos atJy(AR)} (3.16)

Ko(kR)dk

where

L(k,y) = k(1 — eK + Dk*) cos ky — K sin ky, (3.17)
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2k(1 — €K + Dk*)
f(y7n7k)_ 1—6K+5Dk4

e 0+ Jo (ka). (3.18)

It may be noted that the second term in the expression in (3.16) is real. For large R, we find from
(3.16) that as t — oc.

4 1/2
¢ — —4n’a A1 =K+ D) e A0t (ia)(an> cos (AR—Gt—%). (3.19)

1 —eK + 5DJ*

This shows that ¢ represents outgoing progressive waves as R — oo.
Case (b): finite depth water
In this case a solution for ¢ satisfying (3.2) and (3.3) is constructed as

¢ =m(p) {qﬁo —2na /00 e 0 Jo (ka)Jo (kR)dk
0

/ {B(K) cosh k(h — y) + C(K) sinhky} - (ﬁ k>h Jo(kR)dk (3.20)

where the functions B(k) and C(k), for the satisfaction of the conditions (3.4) and (3.5b), are
chosen as

gk<1 + Dk + e%)

B(k) = 4na OGS coshk(h —n),

C(k) = 4mae™" sinh kn (3.21)
with

M (k) = cosh kh + ek sinh kh,

02(k) — gk(1 —I—Al/)[lz?) sinh kh (3.22)
Thus ¢ is obtained as

_ ©Q?

5= PR )+ ) [ O y:Kydk (3.23)

where

2 ek
P(R ) —kly—nl —k(y+n) h h
(R,y) na/o [e e + T M )cos k(h — y)coshk(h —n)

+ e ™ sinh ky sinh kn H Jo(ka)Jy(kR)dk (3.24)
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and
o coshk(h — y)coshk(h —n)
O(R,y;k) = 4na (k) sinh kh Jo(ka)Jy(kR). (3.25)
Laplace inversion of (3.23) gives
O(R,y,t) =m(t)P(R,y) + /oo Qo(k)O(R, y; k){ / sin Qy(t — r)m(r)dr} dk. (3.26)
0 0

For impulsive source strength m(¢) = (¢), and (3.26) gives
d)imp(Ruya t) = 5(t)P(R7y) =+ / QO(k)Q(Raya k) sin Qofdf (327)
0

which tends to zero as ¢t — oo, as in the case of deep water.
For constant source strength m(¢) = 1, and (3.26) gives

¢°(R,y,t) =P(R,y) + /0OO O(R,y; k)(1 — cos Qot)dk. (3.28)

For time-harmonic source strength m(¢) = sin of and in this case (3.26) produces

Qg sin ot — o sin Qt

2 2
Q-0

d(R,y,t) = sin atP(R, y) + / " 00 (K)O(R, i k) dk. (3.29)

As in the case of deep water, the steady-state development of ¢, given by (3.29), can be obtained
by introducing a Cauchy principal value at £ = u which is the real positive zero of Qé -0’ ie.
Ao(k), in the integral in (3.29). Then as r — oo, we find

¢ — sin gt [P(R,y) + 2][: % coshk(h — y) coshk(h — n)Jo(ka)Jy(kR)dk

(1 — eK + Dp*) cosh pu(h — y) cosh u(h — n)Jo(na)Jo(uR)

Q.2
ST (1 — €K + Di®) + (1 — K + 5Dy*) sinh 2

(3.30)

where the integral is in the sense of CPV.

In the right-hand side of (3.30), combining the integral representation of P(R,y) given in (3.24)
and the CPV integral and changing the contour along the real axis with indentations above the
pole at £k = —u and below the pole at k& = p, the following alternative representation is obtained:

¢ — 8masinot Y g(v,n;ix,)Ko(a,R) + 4n’iasin ot{g(y,n; 1) Hy' (1,R)
n=1

— gl T)HS (IR)}Y — 4nlag(y, n; 1) {sin 61Yy(uR) + cos atJo(uR) } (3.31)
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where

k) = 2k(1 — €K + Dk*) cosh k(h — y) cosh k(h — n)Jo(ka)
EWTEE) = 1"k + 5Dk*) sinh 2kh + (1 — €K + Dk*)2kh

(3.32)

and the second term in (3.31) is real. For large R, we find that, as 1 — oo

_ 4 _ _ 1/2
b —877:2a,u(1 eK + Du*) cosh u(h — y) cosh u(h — n)Jo(ua) < 2 > cos <MR o E).

(I —eK + 5Dp*)sinh2uh + (1 — eK + Dp*)2ph  \ nuR 4
(3.33)

This shows that ¢ represents progressive outgoing waves as R — oo.

4. Conclusion

The velocity potential due to a horizontal circular ring of wave sources of time-dependent
strength submerged in water with an ice-cover has been obtained for both infinite and finite depth
of water. For the case of time-harmonic sources, the steady-state development of the potential
function shows the existence of outgoing progressive waves at large distances from the ring
source. If the elastic parameter D is put equal to zero, then the results for deep water coincide with
the results obtained in [5] for deep water with an inertial surface in the absence of surface tension.
If both D and € are put equal to zero, then the results obtained above can be identified with the
results obtained earlier in [3]. The effect of surface tension at the ice-cover can be incorporated in
the above results.
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