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ABSTRACT. In an adaptive clinical trial research, it is common to use certain data-dependent
design weights to assign individuals to treatments so that more study subjects are assigned to the
better treatment. These design weights must also be used for consistent estimation of the treatment
effects as well as the effects of the other prognostic factors. In practice, there are however situ-
ations where it may be necessary to collect binary responses repeatedly from an individual over a
period of time and to obtain consistent estimates for the treatmeat effect as well as the effects of
the other covariates in such a binary longitudinal set up. In this paper, we introduce a binary
response-based longitudinal adaptive design for the allocation of individuals to a better treatment
and propose a weighted generalized quasi-likelihood approach for the consistent and efficient
estimation of the regression parameters including the treatment effects,
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1. Introduction

For clinical trials on humans, it is highly desirable that one uses certain data-dependent
treatment allocation rules that exploit accumulating information to assign individuals to
treatments so that more study subjects are assigned to the better treatment. For example,
consider a clinical study on asthma prevention. Suppose that there are two competitive
treatments 4 and B available to treat the asthma patients. In this chmcal study, it 1s important
to treat a new patient with the better treatment. For this, although the overall effect of
particular treatments are unknown, the physician must use the existing information about the
effectiveness of these competitive treatments before assigning a new patient to the so-called
better treatment. Suppose that the clinical study consists of K patients, and 0 is a covariate
representing the treatment selection, so that §; denote the selection of the treatment 4 or B for
the ith (i = 1, ..., K) patient. It is then clear that this treatment covariate (6) can neither be
fixed nor completely random. The levels of such a covarnate, i.e. the values of
3;(i = 1, ..., K), are rather determined by using a suitable sequential adaptive design. For this,
a special sequential adaptive design was first constructed by Zelen (1969) based on the
so-called play-the-winner (PW) rule. Later, as a modification of Zelen’s (PW) rule, Wei &
Durham (1978) and Wei (1979) introduced the idea of the randomized play-the-winner (RPW)
rule to construct better adaptive designs. For the cases where treatments are applied to obtain
binary responses, Wei et al. (1990) and Smythe & Rosenberger (1995) studied the RPW rule-
based sequential adaptive designs in allocating the patients to the better treatment. Note
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however that the constructions of the sequential adaptive designs in the above studies were
confined to the situations where responses are considered to be the efiect of the treatment only.
But there are cases in practice where the response of an individual patient may also be affecteq
by other covariates (prognostic factors) on top of the treatment covariate. For example, in the
asthma prevention study, the response of an incoming patient may be affected by the treat-
ment as well as by certain relevant prognostic factors such as age, chronic conditions and
smoking habit of the patient. Recently, some authors have modified the RPW rule to include
the contributions of this type of prognostic factors in constructing the adaptive designs for the
treatment covariate. For example, Bandyopadhyay & Biswas (1999, 2001) have includeg
certain suitable prognostic factors in constructing the adaptive designs for the binary and
normal responses.

Note that the construction of the adaptive designs in all of the above work was confined to the
non-longitudinal (cross-sectional) set up. That is, once the treatment was assigned to an
individual, the individual was expected to have only one response. In practice, there are however
clinical trial experiments where it may be useful to register the study subjects sequentially and
collect responses from each study subject sequentially over time. For example, in the asthma
prevention study, once an individual enters into the study in a sequence of time, the individual
may be examined once a week over a period of 4 weeks for the detection of ‘asthma’ status. Here
the ‘yes’ or ‘no’ status of ‘asthma’ of an individual at a given week 1s a binary response. In this
study, it is important to construct a longitudinal adaptive design by using the available repeated
binary responses and covariate information such as age, chronic conditions and smoking habit,
for the purpose of assigning more study subjects to a better treatment. Here it is also of interest to
compute the treatment effect as well as the effects of the other covariates based on all covariate
information and the responses available at the end of the study.

In this paper, we propose a simple longttudinal adaptive design such that more study
subjects may be assigned to the better treatment. The construction of such a longitudinal
adaptive design may be considered as an extension of the existing adaptive designs based on
the idea of the RPW rule in the non-longitudinal set up. The proposed design is described in
section 2. In the same section, we also study the performance of the proposed design in
allocating study subjects to a better treatment, through a simulation study. Furthermore, with
regard to the estimation of the effects of the covariates including the treatment effect, one must
take the longitudinal adaptive design weights as well as the correlation of the repeated binary
responses into account. In section 3, following Sutradhar & Das (1999) (see also Jowaheer &
Sutradhar 2002) we introduce a general autocorrelation structure for the repeated binary
responses and take these correlations as well as the longitudinal adaptive design weights (to be
discussed in section 2) into account for consistent and efficient estimation of the regression
parameters of the model. More specifically, we use a weighted generalized quasi-likelihood
(WGQL) approach for a consistent and efficient estimation. In section 4, we extend the
stmulation study conducted in section 2 to examine the performance of the proposed WGQL
estimation approach as well as to study the misspecification effects of the longitudinal adaptive
designs. It is found that the longitudinal design weights play an important role in consistent

estimation. A simulation-based coverage probability for the treatment effect is also reported in
the same section. Some concluding remarks are given in section 5.

2. Binary longitudinal model for clinical trial data

Let the ith (=1, ...,K) patient enter into the clinical trial at the time point i, giving
T consecutive binary responses, namely y;, ..., i, -.., yir. Thus, the whole clinical trial
will be completed at time point K4+ T — 1. Next suppose that x; = (&;x)) with
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Xie =(Xi2s + + o> Xitus - - -» Xirp) - Here 3; is the treatment covariate and the other p ~ 1 covariates
are treated as prognostic factors. For example, for the asthma prevention study mentioned in
section 1, d; refers to the selection of the treatment for the ith patient and x; denotes the
prognostic factors such as age, chronic conditions and smoking habit of the ith patient,
recorded at time point 7 (¢ = 1,...,7). In all, there will be N = KT binary longitudinal
responses in the clinical trial. For the asthma prevention problem, these responses are the ‘yes’
or ‘no’ status of the asthma patients recorded over T repeated periods for each of the K
patients. Note that as the ith patient enters the system at ith time point, under the present
sequential set up, the rth response of the ith patient is actually collected at time point i + 7 — 1
for t =1, ..., T. Consequently, y; may be described as the response of the ith patient at
tth time sequence where t =i, i+ 1,...,i + T — 1. We however will explain y;, as the rth
(t =1, ..., T) repeated response of the ith individual, where the ith individual enters the system
at the ith time point. Further, note that the treatment covariate §; does not depend on 7. This is
because, once a patient is assigned to a treatment, the patient continues with the selected
treatment for the complete duration of T periods.

Let 8= (B, B2 -.sPus .., Bp) denote the effect of the p-dimensional covariate vector
x}, = (6;,x,), where fB,, in particular, represents the effect of the treatment, and
B2, ..., Bus - .., Bp denote the effect of the prognostic factors. It is of primary interest to esti-
mate the § vector based on all covariate information and the responses available at the end of
the study. Note that in the present set up, the treatment covariate §; (i = 1, ..., K) is chosen
such that more study subjects are assigned to the better treatment. It is then clear that the
consistent and efficient estimation of 8, specially the estimation of treatment effect §,, will
depend on the selection probabilities of d; (i = 1, ..., K). Further, note that the efficient
estimation of f will also depend on the longitudinal correlation structure of the repeated
binary responses y;, ..., Vi, .- yirforalli =1, ..., K. Following Sutradhar & Das (1999), a
general longitudinal correlation structure suitable for the binary responses will be introduced
in section 3 for the purpose of efficient estimation. The computation of the selection prob-
abilities of 9; (i = 1, ..., K) is discussed in the following section. To be specific, we introduce
an appropriate longitudinal adaptive design for the computation of these probabilities in

section 2.1, In section 2.2, we study the asymptotic as well as the small sample performances of
the proposed longitudinal adaptive design.

2.1. Construction of the longitudinal adaptive design

To construct the longitudinal adaptive design one needs to derive the formulas for the
selection probabilities of d; (i = 1, ..., K), where §; is the treatment indicator for the ith
patient. Note that the selection probability for J; for the ith patient will be computed
depending on the longitudinal outcomes of all i — 1 patients and their covariate information.

For simplicity, the history of responses for the past i — 1 patients will be denoted by yp;_;.
Further suppose that A4 is the better treatment between 4 and B, and

5. — J 1, 1f ith patient is assigned to 4
10, if ith patient is assigned to B

with
Pr(af o= llyHg‘-.]) = W; and Pl'(ﬁ,' = OI}?HI-_I) =] - Wi,

where w; (i = 1, ..., K) is referred to as the design weight. Now to construct the required
design we derive formulas for w; (i = 1, ..., K) as follows.
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Note that as at the start we have no reason to believe that any particular treatment is better
than the other, for the first patient we choose w; = 0.5 and obtain ; so that P(6; = 1) = w,,
Next, for i =2, ..., K, the distribution of J; will depend on {d,, -..,0;_;} and available
responses y,dr = 1, ...,i = 1; 1 £ ¢ < min(7, i — r)) along with their corresponding covari-
ate vectors x,,. As the selection of the ith patient is made at the ith time point, by this time, the
(i — 1)th patient has yielded one response and the (i — 2)th patient has yielded two responses
and so on. Furthermore, as a patient is kept in the study for T repeated responses, it becomes
convenient to write the formulas for w; for two cases, first for the case when 2 < i < T and
then for i > T. The formulas for w; for these two cases will be computed using a simple
longitudinal play-the-winner (SLPW) rule as a generalization of the existing randomized play-
the-winner (RPW) rule (Wei & Durham, 1978). As in the RPW rule, the proposed SLPW rule
will be illustrated as an urn design as described below.

As w; is the probability of selection of the better treatment for the ith patient to be
computed based on the history yg; [that is, y,, and the prognostic factors x,,
(r=1,...,i—- 1,1 <t<min(7, i — r))], it is convenient to compute w; by including two
types of balls in the urn, the first type being the indicator for the selection of the better
treatment 4 and the second type for the other treatment. The two types of balls are added
to the urn as follows:

(a) The urn will have « balls of each type initially.

(b) For a suitable t value and for available past responses y,,, y,t balls of the same kind by
which the rth (r = 1, ...,i — 1) patient was treated and (1 — y,,)r balls of the opposite
kind are added, at the treatment selection stage for the ith patient.

(c) For a suitable quantity u,, defined such that a larger value of u,, implies the prognostic
factor based on a less sertous condition of the »th (r = 1, ...,i — 1) past patient, G — u,,
balls of the same kind by which the rth patient was treated and u,, balls of the opposite
kind are added, at the treatment selection stage for the ith patient, where [0, G] is the
domain of u«,,.

As described in detail in the appendix, the above scheme produces the selection probabilities
w;i=2,...,K) for the cases 2 < i < Tand i > T as follows:

Case I (2 < i £ 7). For this case

w; =Pr(d; = lyy;_,) = ”?-1_,4_?()’?_—1) , (1)
where
i—1 i-r
ML =2a+ YD (Ge) =24 5ii— 1)(G + 1), 2)

1s the total number of balls in the urn at the selection stage for the ith patient, and

=1 i—r

o aO0Hic) =0+ Y Y 10,{(G = tn) + 3t} + (1 = 8,) (e + (1 = )7}, (3)

r=1 t=|\

s the number of balls of the first type that supports the selection of the treatment A.
Case 2 (i > T). For this case

w; = Pr(d; = llyn;_;) = EE_I%,(y:f"&l) ; (4)

where
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-1 [=r

g1 _za+):2(c;+«c)+ Z Y (G+1) (5)

r=l (= rei—T+1 t=1

and
=T

Ai1AQH) = @+ ZlZ[ar{(G tr) + ¥t} + (1 — 6, ){ttre + (1 — yn)r}]
r=1 =1
-1 i-r
)_:, lS,l‘[«z.-{(c; ts) + ¥t} + (1 = 8,){tte + (1 — y)}), (6)
r=i-T+1 t=

are similar to those of n;_, in (2) and nf_, ,(y#;_) in (3), respectively.

2.2. Performance of the proposed adaptive design

2.2.1. Limiting behaviour of design weights w;

Note that it follows from (4) that w,,/w; — 1 as i — oo. Again the sequence {w; i > 1} is
bounded by 0 from the left and by 1 from the right. Hence there exists a subsequence w;g, that
is convergent. Suppose that it converges to . Then from the above limiting result, we have

Wik(+1 o
Wi(i)

as i — 0o, implying that for some ¢ > 0,

(1 — €) < liminf w41 < limsup wiy4 < (1 + ¢),
and hence
limsup W)+l — liminf Wi()+1 < 2we.

As e is arbitrary, we conclude that {w; i > 1} is convergent. Suppose that it converges to @*.

To investigate w*, we now attempt to derive a closed form formula for this convergent
property. Let p’, = E(Y,|o,,..., &1) = exp(x] ﬁ)/(l + exp(x®. :B)) be the conditional prob-
ability for the binary response y,; given the treatment o, Further for o, = 1, let p;; reduce to
p.; and for 4, = 0, let it reduce to p,p. At this stage we assume that, as i — oo,

j=T i-T T

(l) Zzprj! Ry, (2) E Zprﬂ — N2, (3) Z:u,-j — u*.
r---l Jj=1 r=l Jj=I r-l F=
Next,
i-T i-T T
Zzp"f‘w’ " = Tzzpr}l(wr ®') + o’ [TZZPm —m] - 0,
iT =1 j=I r=1 j=I . r=1 j=I
as i — 00. It then follows that
i—~T
(4) Z z:p"ﬁwf — mw*, (5) :TZZPrﬂwr — 0", (6) ZZNUW,- —u'w’.
' j=I r=l j=I| i Jj=l

Using the above limiting results from (1} to (6) in equation (4), one obtains
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@' = ((G-l}- t)) [(G—u* +mr)e” + (1" + (1 — m)7)(1 — )],

yielding

__w+d-m)yy
T {2+ (2-m — m)t}’

mt

which is primarily a function of . In fact, this * is the limiting value of the probability of the
allocation of treatment 4. This can be viewed as the limiting proportion of allocation to
treatment A in this adaptive allocation scheme. For example, if &* = 2.0, n; = 0.8, 7y = 0.2,
and 1 = 2.0, @* reduces to 0.6. Similarly, for ¥* = 2.0, n; = 0.8, 7, = 0.2, and = = 4.0, »*
reduces to 0.65. Note that w* > 0.5 indicates that more study subjects will be assigned to the
better treatment A.

2.2.2. Allocation performance of the proposed design: a simulation study

In the last section, we computed the limiting value of w; as i — oco. As, In practice, a large
but limited number of patients are considered in a clinical trial study, we examine the
performance of the proposed adaptive design for various K = 100 and 200, where X is the
total number of patients involved in the clinical trial. The performance of the proposed
design will be examined through a simulation study. For this, we first provide a simulation
design as follows.

2.2.2.1. Simulation design. We choose T =4, where T denotes the number of repeated
responses collected from each of the X individuals. We choose p = 4 covariates, namely one
treatment covariate and three prognostic factors. As before, the treatment covariate is denoted
by J; and the other three covariates, that is, the prognostic factors are denoted by x;,, x;3, and
x4 for the ith individual at the rth (z = 1, ..., T) data collection time.

Note that the values of J; for all i (i = 1, 2, ..., K) are determined based on the adaptive
longitudinal design weights

wy = Pr(d; = llyn;_1),

constructed in section 2.1. The three prognostic factors are however chosen as follows. We
consider the chronic disease condition of an incoming patient as the first prognostic factor
denoted by x;;. To generate x;,; foralli (i = 1, 2, ..., X), we consider ¢; as a binomial variable
with parameters m and p, i.e. ¢; ~ b(m,p), where ¢; represents the number of chronic diseases
for the ith patient at his or her entry time to the clinical trial. We choose, for example, m = 5
and p = 0.5. We then consider x;,; = 0 for ¢; = 0,1 and x;,, = 1 for ¢; = 2, 3, 4, 5. Thus, the
ith patient with a low rating for chronic disease has x;; = 0 for all t = 1, ...,T. If the ith
patient however enters the trial with a high rating for chronic disease, then x;, = 1 for all
t=1,..,T.

To generate the other two prognostic factors, namely, x;; and x,4, we now consider the
age variable and generate an age between 20 and 80 from a uniform distribution. Next we
create six age groups, namely 21-30, 3140, ..., 71-80 and define d; as an ordinal variable
such that 4; = 1, 2, ..., 6, where, for example, d; = 1 indicates that the age of the ith patient
comes within the first age group 21-30. To generate x;3 and x;.4, we consider the merging of
two consecutive age groups into one age group and obtain three age groups, namely, 21-40,
41-60, and 61-80, which are referred to as the young, middle and old age groups
respectively. We now define x;3 = 1 and x;4 = 0 if the ith patient belongs to the young
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Table 1. Simulated means and standard errors of 8, (total number of patients receiving the better treatmen)
for selected values of the true correlation parameter p under AR(1) binary model with B, = 1.5, B, = 0.0,
B3 = 0.2 and B4 = 0.1, and adaptive design paramelers a = 10, G = 3.0and t = 2.0, 4.0, for values of K =

100, 200
K T p Mean Standard Error
e —————————————— e —
100 2.0 0.3 58.703 8.505
0.5 58.634 8.376
0.7 58.632 8.588
0.9 58.890 8.745
4.0 0.3 62.483 8.779
0.5 62.528 8.857
0.7 62.348 9.047
0.9 62.825 9.745
200 20 0.3 116.660 11.097
0.5 116.657 11.331
0.7 116.291 11.451
0.9 116.887 11.485
40 0.3 124.693 11.668
0.5 124.310 12.347
0.7 123.675 12.349
0.9 124.839 13.004

___‘——.__————.—_ﬂ——_—__—"—_-—__—_—'__—-—‘

It is clear from Table 1 that, irrespective of correlation values, the proposed design allo-
cated more individuals to the better treatment 4. For example, for K = 100, t = 2.0 and
p =09, 59 individuals of 100 were assigned to treatment A. Thus relatively more indi-
viduals were assigned to the better treatment. Similarly for K = 200, v = 2.0 and p = 0.9,
117 individuals were allocated to treatment A4; this is about 59 per cent. Note that the
allocation' improves for larger t. For example, for the same K = 200 and p = 0.9, the
number of individuals allocated to treatment A4 is 125 for the case with T = 4.0, whereas
the aliocated number is 117 for ¢ = 2.0. Thus the proposed design works well in assigning
more subjects to a better treatment.

2.2.3. Expected design weights under binary models

Recall that the adaptive design weights w; are given by (1) for 2 < i < T and by (4) fori > T,
T being small in the present longitudinal set up. By (4) these design weights satisfy the limuts
shown in section 2.2.1. Further, it was shown in section 2.2.1 that in the limit as i — 0o,
w; — w*, which is primarily a function of t. However, as w; is a function of the past responses
¥rs and the covariates x,, for(r=1,...,i — 1; 1 < ¢t < min(7, i — r)), it may be of interest to
examine the difference between w; and its expected value E(w;) = wy, say, under the true
model that generates all the past responses y,,. In the present set up, we consider a correlated
binary model for all y,,,(r =1, ...,i — 1; 1 < t < min(T, i — r)). This issue of examining the
difference between w; and wy is particularly important in a situation where one would like to
use w; as an estimator of wy in any statistical analysis, such as in the estimation of 8, the effects
of covarates. For this, for all i =1, ..., K (with X = 100 or 200) we will compare the w;

computed based on the sample binary responses as in the last section with its expected value
Wy, where wy is computed as

wio = Eg,Egy1s, *** E5s,....8-, (04)- (7)

As Esp5,. - ., 01-1(8) = Pr(d; = 1(8;_,, ..., 8;) = w;, where w;s are defined in (1) and (4), 1t
follows that forr =1, ...,i — 1,
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E(5,-Y,1) — EJIEﬁzitﬁ R Eﬁ,lﬂl,...,ﬁp.qE(arYﬂ]an sy 5])
= E&|E62|6; o ‘Eérlﬁn---,&r-: (5!'1’:1)! (8)

where p;, = E(Yq|or,. .. ,01) = exP(x:.:B)/(l +exp(x;";B)) with Xy = (Ory Xr2y ..o $xrtp)!' Sup-
pose that z, = x}|0, = 1 and z}, = x},|6, = 0. The expectation in (8) then reduces to

E(é,l’,.,) = WyQPr1, (9)
where py = exp(z],p)/(1 + exp(z.,B)). By similar calculation, it can be shown that
E(1 - 6,)(1 — ¥) = (1 = wro)(1 — p2), (10)

where p;; = exp(z:.8)/(1 + exp(z% B)). Now by applying (9) and (10) to (7), it follows from
(1) that for 2 < i < T, the unconditional expectation of w; is given as

[a + Z:;ll ::; [{(G o u,.,) +pm1.‘}w,.o -+ {u,, -+ ([ —Puz)‘t}(l . W:O)]]
20+ (1/2)i(i — 1)(G + 7)] — (11)

Similarly, it follows from (4) that for i > T, the unconditional expectation of w; is given by

Wijo =

r=] =}

Wip = {2&. + (G + t)T(dzzil_)_) }_1 [a + %i{(G ~ Up + D1 T)Wyo

+ (U + (1 = p2)7)(1 = wio)}

r=i—T+1 =}

i—1 f=r
+ Z Z{((G = Un) + pn )W + (un + (1 — p2)7)(1 = w,.g)}] : (12)

Note thatfori = 1,..., K, wypin (11) and (12) are the unconditional expectation of w; under the
present binary model. Further note that although £ is unknown, it remains the same
throughout the experiment. In the next section, we will consider the estimation of this un-
known parameter £. In this section, we compare the w; values with their corresponding wy
values for known f as well as for other given parameters such as 7 and p. It is clear that w;is a
function of binary responses for the past i — 1 patients that we simulate in a manner similar to
that in section 2.2.2. Here, the simulations of the binary responses depend on the £ and p
parameters of the correlated binary model. Unlike w;, wy is not dependent on the responses,
rather it directly depends on the parameters of the underlying binary model such as f. For
given B, 1, p, a, G, and non-stochastic function u,, as given in section 2.2.2, we now compute
the w; and wy values for all i = 1, ..., K, with X = 100 and 200. The graphs for w; and wy
are shown in Fig. 1 for K = 100. Note that although the graphs for w; and wy are plotted for
K = 200, they are not included here in order to save space. In Fig. 1, we show the graphs for
7 = 2.0 and for two values of p = 0.5 and 0.9.

Note that as w; is the expected value of w; under the binary model, the value of wy changes
with regard to i(i=1,..,K) only through the prognostic factors
x*(r =1,...,i = ;1 <t <min(T,i — r)) and the non-stochastic u,, functions constructed
based on x*. For convenience of numerical computations, as in section 2.2.2.1, we generated
the prognostic factors X,., X3 and x,.4 following certain suitable probability models. This
leads to two different sets of prognostic factors as well as u,, functions for the two choices K =
100 and 200. Consequently, for given values of B, 7, « and G, Figs 1 and 2 exhibit two similar
but slightly different graphs for wy for X = 100 and 200. As opposed to wy, the value of w;
changes depending on the past binary responses y,, (r =1, ...,i = 1; 1 £t < mn(7, i — r)
which are likely to be different under different simulations, also they are different because they
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Fig. 1. Adaptive design weights (w;) and expected weights (wp) for K= 100: wi —— wy: ...... , for
7(tau) = 2.0 and selected values of p(rho).

are generated with different values of longitudinal correlations, namely p = 0.9 and 0.5. For a
given i, the averages of w; over 1000 simulations are shown in Fig. 1 for K = 100. It is clear
that for given values of 't and p, the value of w; converges to wy for large i < K. The
convergence was found to be quite satisfactory for large i, specially for the values of i closed to
large K; such as for 100 < i < K, where K = 200, although we have not shown these graphs
here. Note that this convergence occurs irrespectiveé of the choices of the values of 7 and p,
although the convergence is faster for larger t = 4.0 and smaller p = 0.5 as compared with
smaller T = 2.0 and larger p = 0.9. In order to save space, we have also not shown the graphs
for the cases with T = 4.0.

3. WGQL approaches for parameter estimation including the treatment effect

Recall that in section 2, we proposed an adaptive longitudinal design that assigns the ith (i =
1, ..., K) individual to the treatment 4 (between A and B) with probability w; given by (1) for
2 < i< Tand by (4) for i > T. By taking A as the better of the treatments 4 and B, we have
also examined the performance of the proposed design by a simulation study and it was found
that the proposed design allocates more study subjects to the better treatment. In practice,
however, one may be interested to know the effects of the treatment as well as the effects of
other prognostic covariates. This means that one is interested in knowing the regression
parameter vector B which invisibly contributes to generate binary responses y(r =1,...,i = I;
1 < t < min(7, i — r)) which is necessary for the construction of w;. Note that the longitud-
inal correlations of the repeated responses have to be taken into account in estimating this b
parameter consistently and efficiently. As, in general, it is difficult to write the multivariate
binary distribution for the repeated binary responses y;i, . .., Vi - - -, ViT> Liang & Zeger (1986)
have bypassed the specification of the joint distribution and introduced a ‘working’ correlation
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structure-based generalized estimating equations (GEE) approach for the estimation of p. This
‘working’ correlation approach has however many pitfalls which are discussed by Crowder
(1995) and Sutradhar & Das (1999). Further, additional problems mount up if the individuals
enter a study 1n a sequence and one or more covariates, such as the treatment, for the incoming
individuals are determined based on the outcomes of past individuals.

In this paper, unhke Liang & Zeger (1986), we model the correlations of the repeated binary
responses following Sutradhar & Das (1999). This prompts the use of the true mean and
covariance structure-based generalized quasi-likelihood (GQL) approach for the estimation of
B in a non-adaptive longitudinal set up. As in the present adaptive longitudinal set up, it is
important to take the design weights into account; we incorporate these design weights in the

GQL approach and refer to this modified approach as the WGQL approach. This WGQL
approach is explained in the following subsection.

3.1. WGQL estimation approach for regression effects

Let yi =i, --Yis --»yir) be a T x 1 vector of repeated binary responses for the ith
(i =1, ..., K) individual. Note that the ith individual is assigned to treatment A with prob-
ability w; = Pr(di = ljyy) given by (1) for 2 < i < T and by (4) for i > T. Here, y;, is the th
response of the ith individual. Further note that as w; depends on the responses from the past
i — 1 patients, the unconditional expectation of y;, may be computed as

E(Yy) = Es,Es,5, -+ Ess,,...50 . E(Yitl0iy 05 = 1, . . ., 61)- (13)
It then follows from (7) to (10) that

E(Yy) = wiopinn + (1 — wio)piz = P, (14)
where wy is given by (1) for 2 < i < T and by (4) for i > T, and p;,y and p;,; are given as
respectively, with 2/, = (&, %i2,-.., Xip)ls =1 and zZ§ = (B Xi2s--., Xip)ls=0- Let
Di= Dt1y+-sPits»+ o p,-g-)’ where p;, is given by (14) for all i = 1,..., K, so that

E(Y)) = E(Ya,..., Yir) =D (16)

Next, we compute the unconditional covariance matrix of y; = (¥i, .-+ Yis - - - yg)'. For this,
(following Sutradhar & Das (1999), section 3) we now assume that conditional on &;, the
repeated responses y; and y;, at two time points ¢ and W,y = 1,..., T) have the longitudinal
correlation structure given by

corr( ¥y, Yuldi, - - -, 01) = Pi—v)» (17)

where p,,_, denotes the lag |t — v autocorrelation. Note that the autocorrelation structure
considered in (17) is general as it accommodates the Gaussian AR(l), MA(l) and
exchangeable type autocorrelation structures as special cases. It then follows that the
unconditional covariance between Y;, and Y}, is given by

cov(Yy, Yio) = Es,Esys, -+ * Esylby....50 [€OV(Yit, Yiu)|01, Bic1y - -, 01))
+ Cov;, ....5 [E(Yulau 51’—! ge=ey 61): E(Yfl‘lal‘: 51’—1, RN 51 )]

+ *x « _«11/2 . _*
= E5,Esys, * * Esjlan,....8-1 [Plt--vl {Piq:Piq :‘v}l/ | + cov,,....s [Pi Piuls (18)

where E(Y|d,,..., 8) = p, = exp(x B)/(1 + exp(x};B)) and var(Yaldi,...,01) = Pig; bY
(8) with ¢}, = 1 — p}. After some algebra, equation (18) reduces to
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°°V(Ym Yy) = P\t—v} [Wao{Pm Qulpmqwl}m + (1 - Wm){Pﬂz%zpinz%z}u 2]
+ wio{pinpin } + (1 = wo){picPin2} — Piebio = Oito- (19)

When ¢ = v, the covariance ¢, in (19) reduces to the vanance of y;, given by

var(Yy) = 0w = Piqis, (20)

where g, = 1 — p;, with p;, as defined in (14). Let Z; denote the covariance matrix of y;, which
may be expressed as

Z; = cov(Y) = (i),

fort,v=1, ..., T, where g, are given by (19) and (20).
Next for known X; one may write the quasi-likelihood (QL) estimating equation for f as

Z@z) =0 - p) =0, (21)
(Wedderburn, 1979; McCullagh, 1983), where p; is the T x 1 vector given by (16) and 8p./38
is the p x T first derivative vector of p| with respect to 8. Note that in practice, however, Z; is
unknown and is a function of wy, # and p, where wy again depends on §. In addition, p; vector
is a function of wyp which contains . Now in solving (21) for B, in the spirit of the GEE
approach (see Liang & Zeger, 1986) we re-express the QL estimating equation (21) as

5. (9 i - .
;(j;_gﬂ) z; l(“’iﬂyﬂ)()’-‘ — pi(wo)) =0, (22)

and we refer to this as the WGQL estimating equation for f, where p i1s a consistent
estimator for the longitudinal correlation parameter p. Note that for the case when
longitudinal data are subject to non-response,- Robins ef al. (1995) (see also Robins &
Rotnitzky, 1995) have modified the ‘working’ correlation-based GEE of Liang & Zeger
(1986), which they have referred to as the WGEE approach. The WGEE used in Robins
etal. (1995) is, however, similar but quite different from our WGQL estimating
equation (22). This is because the design weights in the present set up are quite different
from the weights used to represent missing values. Furthermore, in (22) we use the true
covariance structure, whereas Robins ez al. (1995) used the ‘working’ covariance structure
following Liang & Zeger (1986).

Now to solve (22) for B, one may consider the following three scenarios: first, for some initial
B, wp is known in the spirit of GEE; secondly, wy is unknown but it can be replaced by the
adaptive design weight w;as E(w;) = wy; thirdly, wyg is an unknown function of ﬁ The estimator
of B as the solution of (22) under the above three scenarios will be denoted by ﬁwoqu ; ﬂwc,QLz
and 5wGQL3 respectively. These solutions may be obtained by using iterative equations

ﬁ(mnm;, _ 3(«.)@, . [Z (ad;ﬁ(};:o)) = (wp, ) (3P:;;m))] -1

i=1 |
X /8
% {; (ié;@) Z; (wio, P) (i — P:(W:u))] A (23)

where ﬁ(,,,) is the value of B at the mth iteration and [-],, denotes that the exprcss:on within
the brackets is evaluated at B(,,,) . Note that to compute ﬁwcou and ﬁwoou the first
derivative vector dpl(wy)/08 has the formulas
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o] 7)
6‘p§a§:fo) ( Bl) +(1- )( p;?) = woZiAn + (1 — wo)Z; 4n = B,, (24)
and

3}’;8(‘;0) _ 31’%;’31) lwomws = WiZidsy + (1 = w)Z" dp = G, (25)

respectively, where Z'; = (za, .. ., 2ip, .., zip) and Z} = (2}y,...,2},..., Z}y) are p X T mat-
rices, Ay = diag[pi19a1,. . - Pingin), and 4, = diaglpi2gi12,. - ., pi2qi2) are T x T matrices.
Moreover, in (24) and (25), pan = (Pn1, - - -+ Pints - - -,Pm)' and pp = (Pa2, - - Pir2s - -,Pm)’,
with pu1 = exp(Z,8)/(1 + exp(z},8)) and piz = exp(z B)/(1 + exp(z B)).

To compute Swgors,» one may simphfy the first derivative vector as

Ao ()0 () (oo

where for2 < i< T,

=7

3Wfo EH ;_1{(Pn19‘nlzrﬂwr0) (Pr2gr2z;, f(l—W:o))}]

BB 2a+ (172 - 1)(G + 7) ’ 27)
and fori> T
j~T
8‘;:5 ={2a+(G+1)T(i— (T +1)/2)} [Z E{(Pnlqmzr:fwra) (Pri2gra2s (1 — wn)) }
r=1 =l
+ Z f{(pmqmzn‘rwro) (Pri2gr2z;, (1 — Wrﬁ))}] (28)
r=i-T+1 =1

This completes the construction of the estimating equation given in (22) under the above three
SCenarios.

Note that the estimating equations for f require the knowledge of
p=(Pyy--esPpy--,Pr—1) Where p)(I = 1,...,T ~ 1) may be obtained consistently as in
section 3.2 by using the so-called method of moments. Next, under some regularity conditions,
it may be shown (Liang & Zeger, 1986) that for large X, BWGQLI and chqu have asymp-
totically p-dimensional normal distribution with mean § and covariance matrices given as

1 g i
var(BygoLi) = Z(&p’ (;’“’))}:-'(w, 0, P )(ng;m))] [;BEE}_ l(Wm,f’)B;] ;

=1

and (29)
X -1
var(ﬁwgql_;) —= [Z Dlz.- : (Wﬁh ﬁ)D:] ’ (3 D)
i=1

respectively, where B; and D; are given in (24) and (26), respectively. By similar arguments, one
can show that BWGQLZ also has an asymptotically normal distribution with 8 mean vector and
a suitable covariance matrix that can be consistently estimated by

K -
var(Bweqra) = [z GiZ; '(w,-,f))C,f] , (31)

f=1

where Z(w)), for example, is obtained from Z{w;) by replacing w;, by its data-based estimate
w;, and C; is given by (25).
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