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Abstract

In a recent paper, we described two approximate phase functions for the scattering of light by monodis-
perse particles. One phase function for particles of size small or comparable to the wavelength of scattering
radiation and the other for larger particles. Validity of these phase functions was established by comparing
their predictions against Mie phase functions. In this paper we examine the validity of these phase functions
for monodisperse aligned nonspherical particles. The nonspherical particles employed for examining approx-
imate phase functions are spheroids and infinitely long cylinders. Results show that the predictions of our
approximate phase functions are equally valid for nonspherical particles too.

1. Introduction

An important concept in multiple scattering problems is the single-scattering phase function.
The exact phase function is determined by the scattering quantities obtained from the solutions of
Maxwell equations for the scattering of light by a single scatterer, the size distribution of the
scatterers and also by the orientation in case of nonspherical scatterers. No wonder, the exact
description of the phase function is very complex in nature. This complexity of exact single-
scattering phase functions has led to designing of simple and accurate approximate phase functions
which would simplify the solution of the multiple scattering problem. Quite a number of approximate
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phase functions have thus been developed. Some of the commonly used models for the phase
functions are the Henyey Greenstein [1] phase function, Legendre polynomial decomposition
functions [2], the three-parameter phase function [ 3,4], the two-parameter phase function [5], the
Liu phase function [6] etc. However, search for more useful approximate phase functions still
continues.

In a recent paper [7] we proposed two new approximate phase functions: one for particles of
sizes small or comparable to the wavelength of the scattering radiation and the other for larger
particles. These phase functions were tested numerically against exact results for monodispersions
of spherical particles of various sizes. The Henyey-Greenstein and the Liu phase functions were
also included in this comparison. The small particle approximate phase function of ours was found
to be nearly as good as the exact phase function itself. For large particles, the new phase function of
ours, although not as good as the corresponding one for small particles, was noted to be better than
other approximate phase functions.

A natural question that concerns us is how good are these phase functions in point of
applicability in the cases of various kinds of nonspherical particles? In this paper, we attempt to
answer this question by numerical comparisons of exact and approximate phase functions for
nonspherical particles. For this purpose, as the first case, we examine the accuracy of the new phase
functions for the scattering of light by spheroidal particles. The second case for which we examine
the new phase functions is the scattering of light by infinitely long cylinders. In both cases we limit
ourselves to the scattering of unpolarized light by aligned monodisperse homogeneous dielectric
scatterers. The model of scattering by infinitely long cylinders is a widely employed model in
atmospheric optics. This scattering model corresponds to two-dimensional scattering geometry
and hence the phase functions constructed for the three-dimensional geometry need to be appro-
priately modified for being applicable to this case. Thereby, we obtain analogues of the new phase
functions for the scattering of light by infinitely long cylinders. Although we have limited our
present study to monodisperse aligned scatterers, we note that the proposed approximate formulae
are expected to work equally well for polydisperse and nonaligned particles too.

We have organized this paper as follows. In Section 2 we digress the relevant formulae from our
earlier work [7]. Section 3 gives an account of the test of these phase functions for spheroidal
particles. In Section 4, we obtain expressions for new phase functions for infinitely long cylinders
and examine their validity against the exact results. Finally, in Section 5, we conclude by
summarizing our results.

2. Relevant formulae

For small particles, (x < 1, where x = nd// is the size parameter with d as the characteristic
dimension of the scatterer and A as the wavelength of the scattering radiation), the new phase
function [7] reads as

@S, = ap + a, cosO + a, cos? 0 + ascos® 0 + ascos* 0, 1)
where
do.,

g = (Dex(n/z)’ dr = d(TSQ) 0=Tt/2’



S.K. Sharma, A.K. Roy | Journal of Quantitative Spectroscopy & Radiative Transfer 64 (2000) 327-337 329

i = 2 310, (0) + Duslr) + 8Du(n/2)],
8t 4
(Dex(o) - (Dex(n)
a3=——>5— — —dn
and
1
44 = T0u(0) + Pofm) + 40, (/2)] —

4
Here @, refers to the exact phase function. The constraints used in arriving at the expressions for
do ... ay are: (i) The @}.,, in spherical geometry is normalized according to the relation

1
ZRJ @} w(cosO)d(cos0) = 1.
-1

(i1) The new phase function ®@}.,, matches with ®., at 8 = 0, ©/2, and =. (iii) The slope of ®;.,, is
identical with that of ®., at 0 = «t/2.
The phase function @5, given by (1) can also be expressed in a more familiar form:

D5 = bo + b1 P1(cos0) + b,P,(cos0) + bsPs(cos ) + byP4(cos ),

where, comparing it with (1), the coefficients by,bq, ...,b4 can be easily identified as
bo = ao + 3a, + $aa, by = a; + 2as,
b, = 3a, + 5au, bs = 3as, by = 3504.

It may also be mentioned here that since Eq. (1) contains even as well as odd powers of cos®,
positivity of the phase function is not guaranteed in (1). Although, in all the test cases examined,
which include spherical as well as nonspherical particles, we find that the phase function remains
positive as long as the sizes of the scattering particles are small in comparison to the scattering
radiation, a formal proof could not be obtained.

For large particles (x > 3), the new phase function reads as

o [(cos 0)** + (cos H)***1
new — 2

}CI)GX(O) + (1 4+ cos 0)P(1 — cos O)1D,,(m/2)

1 —cosf

2k
+ (cos0) 3

®(1t) + 51 cos? O(1 — cos? 0) + s, cos® O(1 — cos?0). 2)
In (2), the indices w,v and k are positive integers such that v > u. The indices p, g are positive
numbers. It may be noted that the phase function (2) is so constructed that it coincides with the
exact phase function at 0 = 0, n/2 and =. The first three terms on the right-hand side of (2) in fact
determine the behaviour of the phase function in the near forward, around 0 = n/2 and in the
backward directions, respectively. In the second term, the parameters p and g generate the required
asymmetry around 0 = n/2. The fourth and fifth terms on the right-hand side of (2) actually ensure
the correct normalization of the phase function and the correct reproduction of the asymmetry
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parameter, respectively. We note here that with ®..,, given by (2), the multiple scattering integral
appearing in the radiative transfer equation can be evaluated analytically. Also the problem of
determination of cutoff value when the phase function is expressed as Legendre polynomial
decomposition does not crop up here.

The parameters in (2) are obtained by employing the following relations:

1
() 2) + ——®.,(0) + ——D —S; = — 3
apq ex(TC/ )+2,Ll+1 ex( )+2k+1 ex(n)+ 1551 27'5, ()
1 1 4 g
bp®@er(1/2) + 5D (0) — 5——@ s, = 4
pq ex(n/ )+2V+3 ex() 2k+3 ex(n)+3552 21_[7 ()

where

1
Apy = J (1 + cos 0)?(1 — cos 0)?d(cos 0),

-1

1
by = f cos (1 + cos 6)”(1 — cos B)?d(cos 0),

-1

and ¢ is the asymmetry parameter. Eq. (3) results from the normalization requirement whereas
Eq. (4) results from the requirement that @}, reproduces the correct value of ¢g. To obtain the
desired parametrization of the phase function, we adjust the parameters y, v, p, ¢ and k in a manner
so that s; and s, are reduced to as small numbers as possible. This is required to ensure that the
phase function given by (2) remains positive for all 0 values. The structure of terms
s1cos?0(1 — cos? 0) and s, cos® 0(1 — cos? 0) tells us that if s; ~ s, and both are positive and small
then as s; cos? 0(1 — cos? 0) > s, cos® 0(1 — cos? 0) for all O, one does not encounter much difficulty
in ensuring positive definiteness of expression (2). Problem may occur if s; is negative or if s, is
much greater than s;. Once a few cases are worked at, it becomes clear as to how to adjust s, s, so
that the values of sy, s, remain within the desired range. Although, we have restricted ourselves to
integral p, g values, the use of nonintegral values is also permitted and may yield even better results.
For lower x values in the domain of applicability of @, a variant of it, namely, ®X,.,, [7], which
employs the term cos?* 0((1 + cos 0)/2)*®.(0) in place of the first term on right-hand side of (2)
keeping all other terms intact, was found to be very useful and more appropriate as an approxima-
tion to the exact phase function. This would, however, result in replacing the factor 1/(1 4+ 2u) in
Eq. (3) by 3[1/(1 + 2u) + 1/(3 + 2u)] and putting v = u in Eq. (4).

The phase functions (1) and (2) were examined [7] for monodispersions of Mie particles of
various sizes. It was found that (1) is capable of reproducing the exact phase function truly and
completely at all scattering angles when x < 1. The formula works pretty well upto x <2 and
reasonably well for x < 3. For large particles, the phase function ®@},.,, given by (2) and its variant
@Y., constitute significant improvement over the Henyey-Greenstein phase function in the for-
ward lobe. In addition, it appears to be a better representation of true phase function in
comparison to the Henyey—-Greenstein phase function away from the forward lobe too.
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3. Test of new phase functions for spheroidal particles

In this section we present numerical comparison of the new phase functions with exact phase
functions for the scattering of light by a monodispersion of aligned spheroidal particles. Prolate as
well as oblate spheroids have been considered. The exact phase functions have been obtained by
employing a computer program for the scattering quantities of a spheroid given by Barber and Hill
[8]. To make the comparisons more meaningful, we have also included in this comparison, the
most widely used approximate phase function, namely, the Henyey—-Greenstein phase function.

The description of scattering function for spheroidal particles remains essentially similar to the
case of spherical particles. This means that the functions ®.,,, ®..(DL.,) and all the associated
analysis done in the context of spherical particles could be applied to the case of spheroidal
geometry as well. Thus, Egs. (1)-(4) and all the associated quantities defined in Section 2 are valid
and get meaningfully extended to the case of spheroidal particles in a natural way.

Figs. 1-3 show comparisons of @3, with ®y,, and @, for prolate spheroids of x = 0.1,0.5 and 1.0,
respectively. Here, x = 2ma//, 2a being the dimension of a spheroid along the symmetry axis. In all
these comparisons, the refractive index, m, is 1.5 and the axial ratio, a/b, has been taken to be 2.0.
Evidently, 2b is the diameter of the equatorial circle. The subscript hg refers to Henyey-Greenstein
and the @y, has the expression

1—g?
Oy = 2 3/2°
4n(1 + g° — 2g cos 0)

)

It is clear from these figures that whereas @5, nearly overlaps with the exact phase function,
®,, does not constitute a good approximation. The results are very similar for oblate spheroids.
This can be seen in Fig. 4 where we have compared the exact and approximate phase functions for
x = 1.0 with m = 1.5 and a/b = 0.4.
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Fig. 1. A comparison of ®},(0) with ®.(0) for aligned Fig. 2. Same as Fig. 1, but with x = 0.5.

monodisperse spheroidal particles. Here x = 0.1, m = 1.5
and a/b = 2.0. Solid line: @, (0); Boxes: @j,.,(0); Dash-dot
line: ®y,4(0).
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Fig. 3. Same as Fig. 1, but with x = 1.0. Fig. 4. Same as Fig. 3, but with a/b = 0.4.

Comparisons of the exact and approximate phase functions for large prolate spheroidal particles
have been shown in Figs. 5 and 6 for x = 5.0 and 10.0, respectively. For these cases also, we have,
m = 1.5 and a/b = 2.0. The maximum size parameter for which the numerical results are conver-
gent and hence meaningfully obtained using the computer program of Barber and Hill is about 12.7
for a/b = 2.0 [8]. For this reason, we have restricted our investigation to a maximum value of
x = 10.0. It is clear from these comparisons that ®..,(®L.,) are better representations of the exact
phase function for large spheroids in comparison with the Henyey—Greenstein phase function. The
values of various parameters corresponding to graphs in Figs. 5 and 6 are shown in Table 1.

For spheroids oriented randomly in three dimensions, the phase function can be obtained by
placing the particle in many fixed orientations and integrating the scattering quantities over the
different orientations. Barber and Hill [8] have examined the effect of random orientations for
spheroids of x = 5.0 with a/b = 2.0 and m = 1.68 + 10.0001. As expected, the oscillations in the
angular variation of the phase function diminish and shape of the phase function is somewhat
similar to that of small particle phase function. The phase function (1), therefore, is expected to give
good approximation for randomly oriented spheroids. The effect of size distribution is also similar.
Essentially, a polydispersion also washes out the oscillations in the angular variation of the phase
function. This can be seen, for example, in phase functions shown in Corenette and Shanks [9] for
modified gamma distributions of Mie particles for Haze C, Haze M and cloud C1 models and also
in the work of Mishchenko [10,11] for randomly oriented polydispersion of spheroids. As
a consequence, Eq. (1) may describe the phase function satisfactorily even for larger spheroids.
However, when the oscillations are still present, the large spheroid formula (2) or its variant may be
employed.

4. Test of new phase functions for infinitely long cylindrical particles

Our next test case is that of the scattering of unpolarized light by aligned infinitely long right
circular cylinders. As the scattering problem is now a two-dimensional one, the normalization and
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Fig. 5. A comparison of @, (0) with ®@.,(0) for aligned
monodisperse spheroidal particles with x = 5.0, m = 1.5

and a/b = 2.0. Solid line: ®.,(0); Dashed line: O

dash-dot line: @y,(0).

Table 1

(0) and

In(phase function)

0 45
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Fig. 6. Same as Fig. 5, but with x = 10.0 and ®..(0)

instead of @, ,(0).

Values of parameters used in the large particle phase function graphs

Scatterer X u vk p q 51 S5 Formula used
Spheroid

5.0 3 -12 6 1 0.00568 0.00535 DL,

10.0 5 514 8 0.000188 0.0000068 @},
Cylinder

10.0 28 2818 2 1 0.0080 —0.000657 @,

25.0 140 14018 6 1 0.000476 —0.002629 @},

asymmetry conditions become

0

2n
J 3 (0)d0 = 1
and

2rn
J cos 0 @5 (0)dO = g.

0

This results in the following redefinition of the parameters a, and a4 in Eq. (1):

Dex(0) + Dey(m)

a, =
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and
4
aq = 4aO + 2[(D€X(0) + (I)ex(n)] - E:
in respect of the @; ., for cylinders. The other three parameters occurring in the expression for @3 ...,
namely, ay, a; and a; remain unaltered.

For the large radii case given by (2), the cylindrical geometry analogues of (3) and (4),
respectively, are given by

1 1
CpuPer(/2) + [(RDA0) + fRID(m) + 3 = 5 ©)
and
Ap@a(m/2) + /(v + DOLO) [k + DO(m) + 17 =5 )
where
_ [ , i1 (2)29)
Cpg = %L (I + cos0)’(1 — cos0)1dO = O + )l

e _
dyy = ﬂjo cos 01 + cos O)?(1 — cos 0)d0 = ﬁcm,

and the function f(n) is

. 2!
f(n)—ﬂjo COS 0d6—22n+—1(n')2

for positive integer n. Here, 1, v, p, ¢ and k are all integers.
Finally, we observe that it is also possible to define a Henyey-Greenstein-type phase function
(@) for two-dimensional geometry as (see the appendix)

N et
" 721 + g2 — 2gcos6)’

()

which may be noted to yield correct normalization and asymmetry parameter for cylindrical
geometry.

The numerical comparisons of @3, with exact phase functions have been performed in the
x range 0.1-2.0. Here x = 2ma/A with a as the radius of the cylinder. Figs. 7 and 8 show typical
comparisons of @3, with @, and (T)hg for x = 0.5 and 1.0, respectively. The refractive index of the
cylinders is 1.5. It can be seen that the ®j;.,, reproduces the exact results correctly over the entire
angular range. In calculating the parameter a; the angular interval has been chosen to be 0.1°.
Since the phase function is very smooth at and near 6 = 90° for small particles, a, is not very
senstive to small changes in the magnitude of the interval. In fact, even when the interval is
increased to 1° the change in the value of a;, is negligible. For large diameter cylinders, comparisons
have been made in the range x = 3.0-50.0. Representative results of comparison of ®.., with
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Fig. 7. A comparison of @5 (0) with ®.,(0) for aligned Fig. 8. Same as Fig. 7, but with x = 1.0.

monodisperse infinitely long cylindrical particles. Here
x =0.5 and m = 1.5. Solid line: ®.(0); Boxes: ®;.,(0);
Dash-dot line: CT)hg(O).
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Fig. 9. A comparison of ®!.(0) with ®.,(0) for aligned Fig. 10. Same as Fig. 9, but with x = 25.0.

monodisperse infinitely long cylindrical particles with
x =10.0 and m = 1.5. Solid line: ®.,(0); Dashed line:
®!.(0) and dash-dot line: ®,,(0).

®., and (T)hg are shown for x = 10.0 and 25.0 in Figs. 9 and 10, respectively. As in the case of spheres
and spheroids, ®..,, can be seen to be a good representation of the exact phase function for
cylinders too. It constitutes significant improvement over (fhg in the near forward direction. The
exact Results have been obtained employing the computer program given in Barber and Hill [8].
The procedure for obtaining various parameters required as input for parametrizing the phase
function is same as described in Section 2. The value of these parameters corresponding to
Figs. 9 and 10 are shown in Table 1.



336 S.K. Sharma, A.K. Roy | Journal of Quantitative Spectroscopy & Radiative Transfer 64 (2000) 327-337

The effect of random orientations and polydispersions for cylinders has been studied by
Mishchenko [12] and by Kuik et al. [13]. As expected, random orientations and polydispersions
result only in decrease of oscillations in the angular variation of the phase functions. Clearly, our
phase functions (1) and (2) are expected to be useful phase functions for such ensembles too.

5. Conclusions

In this paper, we have examined the approximate phase functions, @, and @}, (DL.,,), designed
by us earlier in the context of spherical particles, for scattering of unpolarized light by aligned
monodispersions of spheroidal and infinitely long cylindrical particles.

S

Numerical comparisons of @5, with ®@., show excellent agreement with @, for spheroids as well
as infinitely long cylinders. The comparisons clearly demonstrate that ®},.,, is capable of reproduc-
ing the exact phase function truly and completely at all scattering angles for small nonspherical
particles also. Obviously then, it constitutes substantial improvement over all other approximate
phase functions. As was shown by us earlier [7], formula (1) leads to a simple analytic expression
for the asymmetry parameter and hence provides a simple alternative way of calculating g accu-
rately. The only input needed is the values of the phase function at 0, 90 and 180° and the slope of
the phase function at 90°. For large particles, the new phase function ®!,(®%,,) are found to
constitute significant improvement over @y, or ®,, in the forward lobe. This is important because
the dominant part of the phase function indeed comes from this part of the phase function. Outside
the forward lobe also the new phase function appears to have an edge over the Henyey-Greenstein
phase function.

Although we have restricted our studies in this investigation to monodisperse aligned particles,
we note that the approximate phase functions presented here are expected to be useful even for the
phase functions relating to polydispersions and nonaligned particles. These factors effectively
reduce the oscillations in the angular variation in the phase functions. It, therefore, appears that the
phase function given by (1) could be applicable for polydisperse nonaligned nonspherical particles
of large sizes too. However, in cases where the oscillations are still significant, one should employ
the large particle phase functions.

Having established the accuracy of the new phase functions (1) and(2) for spherical as well as
nonspherical monodisperse aligned particles, we now propose, to examine in details the accuracy of
these new phase functions for polydisperse and/or nonaligned particles and also to investigate
about the gains one may achieve by use of these phase functions in practical solutions of the
multiple scattering problems under various physical conditions.

Appendix

The formula for @y, given by Eq. (8) in Section 4 is easily obtained by considering a simple
two-parameter empirical expression for the phase function in cylindrical geometry of the form

1

V(O = ———
©) a—bcost

(a>b > 0), )
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where a > b ensures positivity of ®*(0) for all 0. The chosen form of the denominator in (9) also
ensures that ¢®(0) > ®*'(180). The parameters a and b occuring in ®*Y(0) are now determined
using the following conditions.

(i) ®='(0) is normalized. This condition yields the equation

(2" o do 2n
(I)cyl — —
0 (0)d0 L a—bcos0 \/aZ_bZ

(ii) ®°*'(0) generates the true value of the asymmetry parameter g. This leads to the equation

2 2n
o5l _ cos 0 _a @ _
. OY(0)cos O do JO T heosd b b g. (11)

= 1. (10)

J

LY

Using Eqgs. (10) and (11), we solve for a and b to obtain

1 2 2
tyg — oY

=2 .
a nl_g? 1_g2

Substituting these values for a and b in (9), we have finally
1—g?
2n(1 + g* — 2gcos )

o(0) =

This phase function looks very similar to the Henyey-Greenstein phase function given by Eq. (5).
For this reason, we have addressed to ®Y'(0) as ®@y,, the Henyey—Greenstein-type phase function.
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