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Abstract

This paper presents a method based on polynomial approximation using Bernstein polynomial basis to obtain approx-
imate numerical solution of a singular integro-differential equation with Cauchy kernel. The numerical results obtained by
the present method compares favorably with those obtained by various Galerkin methods earlier in the literature. Also the
convergence of the method is established rigorously for the studied integro-differential equation.
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1. Introduction

The singular integro-differential equation

do [ ()
2— = -1 1, 2 1.1
dx+/L/_1(t—x)dt f(x), <x<l1l, A>0 (1.1)
with Cauchy type kernel, the integral being understood in the sense of Cauchy principal value, with specified
end conditions, ¢(£1) = 0, and a special forcing function f(x) = —3, was solved earlier by Frankel [1], Cha-

krabarti and Hamsapriye [2], and recently by Mandal and Bera [3].

Frankel [1]solved it by Galerkin’s method after utilizing the various properties of Chebychev polynomials of
first and second kinds 7,,(x) and U,(x) respectively for n € N, while Chakrabarti and Hamsapriye [2] gave three
separate ways of solution, which were all essentially based on Galerkin’s method after recasting the equation
into another where the derivative occurs inside the integral. Recently, Mandal and Bera [3] employed a simple
method based on polynomial approximation of a function to obtain approximate numerical solutions.

The forcing function f(x) = —3, is of some special importance because it arises in the study of problems
concerning heat conduction and radiation (cf. [1]). Also singular integro-differential equations arise in connec-
tion with solving some special type of mixed boundary value problems involving the two dimensional
Laplace’s equation in the quarter plane (cf. [2]).
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Here, we have employed the method of polynomial approximation in the Bernstein polynomial basis. Bern-
stein polynomials are defined in an interval [a,b] as

_(n (x—a)(b—x)"" . ;
B,-,,,(x)(i>—(b_a)n , i=0,1,2,....n. (1.2)

These polynomials have recently been used to solve some linear as well as non-linear differential equations,
ordinary and partial, approximately by Bhatta and Bhatti [4] and Bhatti and Bracken [5] and some integral
equations, by Mandal and Bhattacharya [6]. These polynomials defined over an interval forms a complete
basis there, and each of them are positive and their sum is unity. Description of the properties of Bernstein
polynomials can be found in the papers of Bhatta and Bhatti [4] and Bhatti and Bracken [5].

Using these polynomials, we have obtained an approximate numerical solution of (1.1), which are found to
be in good agreement with the results obtained by Frankel [1], Chakrabarti and Hamsapriye [2] and Mandal
and Bera [3].

2. The general method

The unknown function ¢(x) of (1.1) with ¢(+1) =0, can be represented in the form
$(x) = (1 - )p(x), —1<x<1, (2.1)

where /(x) is a well behaved function of x in the interval —1 < x < 1. To find an approximate solution of (1.1),
Y(t) is approximated using the Bernstein polynomials in [—1,1] as

Y1) = :%Bi,n(l)v (2.2)
where B;,(x), (i=0, ... ,n) are defined on [—1,1] as

B,-,,,(x):c)W, i=0.1.2,....n (2.3)
and a; (i=0, ... ,n) are unknown constants to be determined. Substituting (2.3) in (1.1), we get

ia,« [—ngi,n(x) +2(1 - ) B, (x) + ;»/1 (1— fz)%&*"—mdt] =f(x), -1<x<l. (2.4)

=0 (1 —x2)? 1 t—x

Multiplying both sides by B;,(x), (j =0, 1, ..., n) and integrating from —1 to 1, we get a linear system given
by

> aCy=b;, j=0,1,...n, (2.5)
i=0
where
1

Cy=—2 [ BBy (x)dx 42 / (1= x)B, (x)B,,(x)dx

(11— xz)% -1
i f {f 11<1 =g, ax 26)
and
b= | llf(X)Bj,n(x)dX- (27)

For /=1, we can write Cj; as
Cijy=Dy+E;+Fy (2.8)
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where

1

Dy=—n | (1=x)Bi,(x)B;1,1(x)dx
~1
n

[ p(A22 i=1,2,...,n,
() () ] " 29)
i J r2n+2) i=0,1,...,n,
1
Ej=n / (1 = x2)B, ,(x)B; 1 (x)dx
-1
F2i+2j+3 F4n—2i—2j+1 .:0727.”, _17
o (7)(7) PR =02 o
i) \Jj I'(2n+2) i=0,1,...,n
and
1
Fiy= / A;(x)B;, (x)dx, (2.11)
-1
where
1 /n L k-1 1+(71)m I"[m+l F[l]
A,(x)z—n(,) d};”l—nx"“Jr D TEar A (2.12)
2 ! kz:(; m=0 4 FTK‘]
so that
1 n n ) . 1= (=1 k+r 0l = (=1 k+r—ml —lmF’”“Fl
F= e () (0) 30 S| al pC gt L L AP T
2 ! J7 =0 —=o k+r+2 m=0  fk4r—m 4 e
j=0,1,....n, i=0,1,...,n (2.13)
with

) i n—i k=0,1,...,n

dz.n _ 71 k—s ’ ) Ly s 1y 214
g Z( ) (s)(k—s) i=0,1,....n ( )
the summation over s being taken as follows: for i<n<n—1i, (1) s=0 to k for k <1, (ii) s=0 to i for
i<k<n-—1i (i) s=k—(n—1i) ton—iforn—i<k<n, while for i=n — i (n being an even integer) (i)
s=0tokfork<i (ii)s=k—itoifori<k<m;fori>n—i iandn — iabove are to be interchanged. Also,
we find that for the choice of f(x) = —%

29
1 (n Tm—j+DIrG+1)
b =— -2 . 2.15
=5 ()2 S @2.15)
The system (2.5) is solved for unknown a; (i=0, 1, ..., n) by standard numerical method and numerical
values of ¢(x) for different values of x are obtained approximately.
In our numerical calculations, we have chosen n =7, 10, 13 and ay, a, ... ,a, are obtained numerically.

Using these coefficients the values of ¢(x) at x =(0.2)k, k=0, 1, ..., 5 are presented in Table 1, for a com-
parison between the present method and that of the method used in [1], values of ¢(x) at these points obtained
by Frankel [1] are also given. It is obvious that the result compares favorably with the results of Frankel and

Table 1

Numerical values of ¢(x)

X 0 0.2 0.4 0.6 0.8 1.0

¢(x) (present method) n=07 .06973 06711 .05964 .04736 .02811 0
n=10 .06948 06714 .05988 .04711 .02821 0
n=13 .06950 06717 .05981 .04723 .02805 0

¢(x) (Frankel’s method) .06950 06712 .05984 .04718 .02891 0
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also those obtained by Chakrabarti and Hamsapriye [2] and Mandal and Bera [3]. It was further observed that
on increasing n the accuracy of the result increases.

3. Error analysis

Substitution of ¢(x) in terms of Y(x) in Eq. (1.1), produces an equation for (x) which can be written in the
operator form as

<D+A§C>x//:f, l<x<l, (3.1)
where C and D respectively denote the operators defined by
1
1 [ (1-¢£)
C =— nde, —-l<x<1 3.2
u(v) ]/ —Lu(ndr, —1<x (32)
and
Dux) = VI X, jcx< (3.3)
& =) |
Then
CU,(x) =—-T,(x), n=0, (3.4)
where T,(x) = cosnf with x = cosf are the Chebyshev polynomials of first kind and U, (x) = Smiﬁ:’;)ﬂ are the

Chebyshev polynomials of second kind.

Thus (3.4) shows that C can be extended as a bounded linear operator from L;(w) to L(w) (cf. [7, p. 306]),
where L(w) is the space of functions square integrable with respect to w(x) = (1 — xz)l/ 2in[—1,1]and L(w) is
the subspace of functions u € L(w) satisfying

o0

lull T = Z(k + 1) (u i), < oo, (3.5)
where

(u,v),, = L u(@)o(r)(1 — £)"*de (3.6)
and

1/2

w=(3) © (37)

Again
n+1
DUn(x) = _WTWH(X)’ nz= 07 (38)

which shows that D can also be extended as a bounded linear operator from L;(w) to L(w). Also assuming
f € L(w), we find that Eq. (3.1) possess an unique solution yy € Li(w) for each f'€ L(w).
Now, we have approximated the function y/(x) in terms of the Bernstein polynomials B;,(x) as

W(x) ~p,(x), (3.9)
where p,(x) is given by

n n

pa(x) = aBi(x) = > bU,(x), (3.10)

i=0 7=0
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where b; (j=0, 1,...,n) can be expressed in terms of a; (i=0, 1,..., n) and vice-versa by following the
transformation
sur= (1) By () (o) oo e
in\X) = n s s - s=2m\X '
' i )20 0 2 L=\ m m+ 1 ?
(c.f. [8)).
If we denote the right side of (3.10) by u,(x), where
u,(x) = chqﬁj(x) (3.12)
=
with
m\ 1/2 2\ 2
¢ =(5) bidyx) = <n) U, (x). (3.13)
The functions ¢{(x) (j=0, 1, ..., n) form a set of orthonormal polynomial basis in [—1,1] with respect to the

weight function (1 — xz)l/ 2. On p 306 of their book, Golberg and Chen [7] proved that if f € C'[—1,1], then
u, — Y as n — oo in Li(w) and

I = wll, < Cin, (3.14)

where C) is a constant. Thus convergence is fast for large r. In our example f'is —3, thus /'€ C**[—1,1]. Hence
convergence is good as is seen in the numerical computations.

4. Conclusion

A simple method of approximating the unknown function in terms of the truncated series involving the
Bernstein polynomials is presented here, for solving a special Cauchy singular integro-differential equation
arising in various fields of applied mathematics. The method illustrated here gives a simple way of getting
the approximate solution avoiding the appearance of ill-conditioned matrices or complicated integrations.
The method, tested, for numerical verification is proved to give favorable result. The convergence of the
method is also discussed. Although the numerical computations have been carried out for f{x) = —x/2, the
method can be employed for other forms of f{x).
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