


Here, we have employed the method of polynomial approximation in the Bernstein polynomial basis. Bern-
stein polynomials are defined in an interval [a,b] as

Bi;nðxÞ ¼
n

i

� �

ðxÿ aÞiðbÿ xÞnÿi

ðbÿ aÞn
; i ¼ 0; 1; 2; . . . ; n: ð1:2Þ

These polynomials have recently been used to solve some linear as well as non-linear differential equations,
ordinary and partial, approximately by Bhatta and Bhatti [4] and Bhatti and Bracken [5] and some integral
equations, by Mandal and Bhattacharya [6]. These polynomials defined over an interval forms a complete
basis there, and each of them are positive and their sum is unity. Description of the properties of Bernstein
polynomials can be found in the papers of Bhatta and Bhatti [4] and Bhatti and Bracken [5].

Using these polynomials, we have obtained an approximate numerical solution of (1.1), which are found to
be in good agreement with the results obtained by Frankel [1], Chakrabarti and Hamsapriye [2] and Mandal
and Bera [3].

2. The general method

The unknown function /(x) of (1.1) with /(±1) = 0, can be represented in the form

/ðxÞ ¼ ð1ÿ x2Þ
1
2wðxÞ; ÿ1 6 x 6 1; ð2:1Þ

where w(x) is a well behaved function of x in the interval ÿ1 6 x 6 1. To find an approximate solution of (1.1),
w(t) is approximated using the Bernstein polynomials in [ÿ1,1] as

wðtÞ ¼
X

n

i¼0

aiBi;nðtÞ; ð2:2Þ

where Bi,n(x), (i = 0, . . . ,n) are defined on [ÿ1,1] as

Bi;nðxÞ ¼
n

i

� �

ð1þ xÞ
i
ð1ÿ xÞ

nÿi

2n
; i ¼ 0; 1; 2; . . . ; n ð2:3Þ

and ai (i = 0, . . . ,n) are unknown constants to be determined. Substituting (2.3) in (1.1), we get

X

n

i¼0

ai ÿ
2x

ð1ÿ x2Þ
1
2

Bi;nðxÞ þ 2ð1ÿ x2Þ
1
2B0

i;nðxÞ þ k

Z

--
1

ÿ1

ð1ÿ t2Þ
1
2
Bi;nðtÞ

t ÿ x
dt

" #

¼ f ðxÞ; ÿ1 6 x 6 1: ð2:4Þ

Multiplying both sides by Bj,n(x), (j = 0, 1, . . . , n) and integrating from ÿ1 to 1, we get a linear system given
by

X

n

i¼0

aiCij ¼ bj; j ¼ 0; 1; . . . ; n; ð2:5Þ

where

Cij ¼ ÿ2

Z 1

ÿ1

x

ð1ÿ x2Þ
1
2

Bi;nðxÞBj;nðxÞdxþ 2

Z 1

ÿ1

ð1ÿ x2Þ
1
2B0

i;nðxÞBj;nðxÞdx

þ k

Z 1

ÿ1

Z

--
1

ÿ1

ð1ÿ t2Þ
1
2
Bi;nðtÞ

t ÿ x
dt

� �

Bj;nðxÞdx ð2:6Þ

and

bj ¼

Z 1

ÿ1

f ðxÞBj;nðxÞdx: ð2:7Þ

For k = 1, we can write Cij as

Cij ¼ Dij þ Eij þ F ij; ð2:8Þ
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where

Dij ¼ ÿn

Z 1

ÿ1

ð1ÿ x2Þ
1
2Bi;nðxÞBjÿ1;nÿ1ðxÞdx

¼ ÿ4j
n

i

� �

n

j

� �

Cð2iþ2jþ1
2

ÞCð4nÿ2iÿ2jþ3
2

Þ

Cð2nþ 2Þ
;

j ¼ 1; 2; . . . ; n;

i ¼ 0; 1; . . . ; n;
ð2:9Þ

Eij ¼ n

Z 1

ÿ1

ð1ÿ x2Þ
1
2Bi;nðxÞBj;nÿ1ðxÞdx

¼ 4ðnÿ jÞ
n

i

� �

n

j

� �

Cð2iþ2jþ3
2

ÞCð4nÿ2iÿ2jþ1
2

Þ

Cð2nþ 2Þ
;

j ¼ 0; 2; . . . ; nÿ 1;

i ¼ 0; 1; . . . ; n
ð2:10Þ

and

F ij ¼

Z 1

ÿ1

AiðxÞBj;nðxÞdx; ð2:11Þ

where

AiðxÞ ¼
1

2n
n

i

� �

X

n

k¼0

d
i;n
k ÿpxkþ1 þ

X

kÿ1

m¼0

1þ ðÿ1Þ
m

4

C½mþ1
2
�C½1

2
�

C½mþ4
2
�

xkÿmÿ1

" #

; ð2:12Þ

so that

F ij ¼
1

22n
n

i

� �

n

j

� �

X

n

k¼0

X

n

r¼0

d
i;n
k dj;n

r ÿp

1ÿ ðÿ1Þ
kþr

k þ r þ 2
þ

"

Xkÿ1

m¼0

1ÿ ðÿ1Þ
kþrÿm

k þ r ÿ m

1þ ðÿ1Þ
m

4

C½mþ1
2
�C½1

2
�

C½mþ4
2
�

#

;

j ¼ 0; 1; . . . ; n; i ¼ 0; 1; . . . ; n ð2:13Þ

with

d
i;n
k ¼

X

s

ðÿ1Þ
kÿs i

s

� �

nÿ i

k ÿ s

� �

;
k ¼ 0; 1; . . . ; n;

i ¼ 0; 1; . . . ; n
ð2:14Þ

the summation over s being taken as follows: for i < n < n ÿ i, (i) s = 0 to k for k 6 i, (ii) s = 0 to i for
i < k 6 n ÿ i, (iii) s = k ÿ (n ÿ i) to n ÿ i for n ÿ i < k 6 n, while for i = n ÿ i (n being an even integer) (i)
s = 0 to k for k 6 i, (ii) s = k ÿ i to i for i < k 6 n; for i > n ÿ i, i and n ÿ i above are to be interchanged. Also,
we find that for the choice of f ðxÞ ¼ ÿ x

2
,

bj ¼
1

2n
n

j

� �

ðnÿ 2jÞ
Cðnÿ jþ 1ÞCðjþ 1Þ

Cðnþ 3Þ
: ð2:15Þ

The system (2.5) is solved for unknown ai (i = 0, 1, . . . , n) by standard numerical method and numerical
values of /(x) for different values of x are obtained approximately.

In our numerical calculations, we have chosen n = 7, 10, 13 and a0, a1, . . . ,an are obtained numerically.
Using these coefficients the values of /(x) at x = (0.2)k, k = 0, 1, . . . , 5 are presented in Table 1, for a com-
parison between the present method and that of the method used in [1], values of /(x) at these points obtained
by Frankel [1] are also given. It is obvious that the result compares favorably with the results of Frankel and

Table 1

Numerical values of /(x)

x 0 0.2 0.4 0.6 0.8 1.0

/(x) (present method) n = 07 .06973 .06711 .05964 .04736 .02811 0

n = 10 .06948 .06714 .05988 .04711 .02821 0

n = 13 .06950 .06717 .05981 .04723 .02805 0

/(x) (Frankel’s method) .06950 .06712 .05984 .04718 .02891 0
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also those obtained by Chakrabarti and Hamsapriye [2] and Mandal and Bera [3]. It was further observed that
on increasing n the accuracy of the result increases.

3. Error analysis

Substitution of /(x) in terms of w(x) in Eq. (1.1), produces an equation for w(x) which can be written in the
operator form as

Dþ
kp

2
C

� �

w ¼ f ; ÿ1 < x < 1; ð3:1Þ

where C and D respectively denote the operators defined by

CuðxÞ ¼
1

p

Z

--
1

ÿ1

ð1ÿ t2Þ

t ÿ x

1
2

uðtÞdt; ÿ1 < x < 1 ð3:2Þ

and

DuðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1ÿ x2Þ
p du

dx
ÿ

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1ÿ x2Þ
p u; ÿ1 < x < 1: ð3:3Þ

Then

CU nðxÞ ¼ ÿT nþ1ðxÞ; n P 0; ð3:4Þ

where Tn(x) = cosnh with x = cosh are the Chebyshev polynomials of first kind and U nðxÞ ¼
sinðnþ1Þh

sin h
are the

Chebyshev polynomials of second kind.
Thus (3.4) shows that C can be extended as a bounded linear operator from L1(w) to L(w) (cf. [7, p. 306]),

where L1(w) is the space of functions square integrable with respect to w(x) = (1 ÿ x2)1/2 in [ÿ1,1] and L(w) is
the subspace of functions u 2 L(w) satisfying

kuk
2
1 ¼

X

1

k¼0

ðk þ 1Þ
2
hu;wki

2
w < 1; ð3:5Þ

where

hu; viw ¼

Z 1

ÿ1

uðtÞvðtÞð1ÿ t2Þ1=2dt ð3:6Þ

and

wk ¼
2

p

� �1=2

T k: ð3:7Þ

Again

DU nðxÞ ¼ ÿ
nþ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1ÿ x2Þ
p T nþ1ðxÞ; n P 0; ð3:8Þ

which shows that D can also be extended as a bounded linear operator from L1(w) to L(w). Also assuming
f 2 L(w), we find that Eq. (3.1) possess an unique solution w 2 L1(w) for each f 2 L(w).

Now, we have approximated the function w(x) in terms of the Bernstein polynomials Bi,n(x) as

wðxÞ ’ pnðxÞ; ð3:9Þ

where pn(x) is given by

pnðxÞ ¼
X

n

i¼0

aiBi;nðxÞ ¼
X

n

j¼0

bjU jðxÞ; ð3:10Þ
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where bj (j = 0, 1, . . . ,n) can be expressed in terms of ai (i = 0, 1, . . . , n) and vice-versa by following the
transformation

Bi;nðxÞ ¼
n

i

� �

1

2n
X

n

s¼0

d i;n
s

1

2s
X

½s
2
�

m¼0

s

m

� �

ÿ
s

mþ 1

� �� �

U sÿ2mðxÞ ð3:11Þ

(c.f. [8]).
If we denote the right side of (3.10) by un(x), where

unðxÞ ¼
X

n

j¼0

cj/jðxÞ ð3:12Þ

with

cj ¼
p

2

� �1=2

bj;/jðxÞ ¼
2

p

� �1=2

U jðxÞ: ð3:13Þ

The functions /j(x) (j = 0, 1, . . . , n) form a set of orthonormal polynomial basis in [ÿ1,1] with respect to the
weight function (1 ÿ x2)1/2. On p 306 of their book, Golberg and Chen [7] proved that if f 2 Cr[ÿ1,1], then
un ! w as n ! 1 in L1(w) and

kwÿ unk1 < C1n
ÿr; ð3:14Þ

where C1 is a constant. Thus convergence is fast for large r. In our example f is ÿ x
2
, thus f 2 C1[ÿ1,1]. Hence

convergence is good as is seen in the numerical computations.

4. Conclusion

A simple method of approximating the unknown function in terms of the truncated series involving the
Bernstein polynomials is presented here, for solving a special Cauchy singular integro-differential equation
arising in various fields of applied mathematics. The method illustrated here gives a simple way of getting
the approximate solution avoiding the appearance of ill-conditioned matrices or complicated integrations.
The method, tested, for numerical verification is proved to give favorable result. The convergence of the
method is also discussed. Although the numerical computations have been carried out for f(x) = ÿx/2, the
method can be employed for other forms of f(x).
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