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Abstract

This paper is concerned with obtaining approximate numerical solutions of some classes of integral equations by using
Bernstein polynomials as basis. The integral equations considered are Fredholm integral equations of second kind, a sim-
ple hypersingular integral equation and a hypersingular integral equation of second kind. The method is explained with
illustrative examples. Also, the convergence of the method is established rigorously for each class of integral equations con-
sidered here.
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1. Introduction

Bernstein polynomials have been used recently to solve some linear as well as nonlinear differential equa-
tions approximately by Bhatti and Bracken [1] and Bhatta and Bhatti [2]. References of other works in which
these polynomials have been used can be found in Bhatti and Bracken [1]. These polynomials defined on an
interval form a complete basis over the interval. Each of these polynomials are positive and their sum is unity.

There exists in the literature a number of approximate methods for solving numerically various classes of
integral equations. Here, a numerical method for solving some classes of integral equations by approximating
the solution in the Bernstein polynomial basis is proposed. Two classes of integral equations is considered, one
class involves second kind Fredholm integral equations with regular kernel while the other class involves
hypersingular kernels.

As illustrative examples, two Fredholm integral equations of second kind, a simple hypersingular integral
equation and a second kind hypersingular integral equation, whose exact solutions are known, have been con-
sidered for approximate numerical solutions. Numerical solution of each equation based on the exact and
approximate solutions are compared, and excellent agreement is seen to have been achieved. The absolute
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difference between the exact and approximate solutions for each example is plotted graphically to determine
the accuracy of numerical solutions. Also convergence of the method for the two classes of integral equations
is established rigorously.

2. The general method

We consider the integral equation of first kind given by

/b k(e )$(0)de = £(x), a<x<b, 2.1)

where ¢(¢) is an unknown function to be determined, x(x, ¢) is the kernel and f{x) is a known function. If x(x, ¢)
is a continuous and square integrable function, then the integral in (2.1) will be assumed to exist in the usual
sense. However, if k(x, ) has singularity at ¢+ = x within the range (a, b), then the integral in (2.1) will be as-
sumed to be defined in some appropriate manner.

To find an appropriate solution of (2.1), ¢(¢) is approximated in the Bernstein polynomial basis in [a, b] as

G(t) = aiBiu(t), (2.2)
=0
where B;,(x)(i =0,1,2,...,n) are Bernstein polynomials of degree n defined on [a, b] as
n\ (x—a)(b—x)"
B; = —_— =0,1,2,... 2.3
I‘Vl(x) ( l. ) (b _ a)'l ) 1 07 b ) 7" ( )
and ¢;(i =0,1,...,n) are unknown constants to be determined. Substituting (2.2) in (2.1), we obtain
n b
S a / K(x, )Bin(£)dt = f(x), a<x<b. (2.4)
-0 Ja

Multiplying both sides by B;,(x)(j =0,1,...,n) and integrating both sides with respect to x between x = a
and x = b, we obtain the linear system

> ac;=b;, j=0,1,2....n, (2.5)
=0
where
b b
¢y = / {/ K(x, t)B,-ﬂ,,(t)dt} B;,(x)dx, i,j=0,1,...,n (2.6)
and
b
b = / F()B(x)dx. (2.7)
The linear system (2.5) can be solved by any standard method to produce ¢;(i =0, 1,...,n). These a;s when

substituted in (2.2) produce ¢(¢) approximately.
Instead of the first kind integral equation (2.1), if we have the second kind integral equation given by

a(x)b(x) + / k(e )p(0dt = £(x), a<x<b (2.8)

then the modification is obvious. In this case ¢; in (2.5) is given by

cij = /ab {a(x) + /ab K(x, t)B,-,,(t)dt} B, (x)dx, i,j=0,1,...,n (2.9)

while b;(j =0, 1,...,n) remains the same as in (2.7).
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If k(x, ¢) is hypersingular at z = x in the sense that x(x,¢) = i(f:)z where L(x, ) is regular in x and ¢, then the
integral in (2.1) or (2.8) exists in the sense of Hadamard finite part of order two. In this case, ¢(x) must be such
that it vanishes at the end points and has the behavior

O(x) ~ |x — c\%, c=a,b.

Then ¢(x) can be written as ¢(x) = {(x — a)(b — x)}%‘P(x), and Y(¢) will be assumed to have representation in
the form (2.2). The aforesaid method then can be applied with appropriate modification. The details are given
in the following section when two types of hypersingular integral equations are considered for finding approx-
imate numerical solutions.

3. Illustrative examples

Here, we illustrate the above method (or its modification) to obtain approximate numerical solutions of two
Fredholm integral equations of second kind and two hypersingular integral equations, one of the first kind
known as simple hypersingular integral equation and the other is of the second kind.

Example 1. We consider a Fredholm integral of the second kind given by

1
6~ [ G aP)pd =1, ~1<a< (1)
-1
having the exact solution (cf. [3, p. 12])
10
o(x) =1 +§x (3.2)
Using the method illustrated in Section 2, if we approximate ¢(x) as
= Z a,»Bl»_,n (x), (33)
i=0
then a;(i =0, 1,...,n) satisfy the linear system
aicij:bﬁ j:0>1>"'ana (34)

i=0

where

c,-jz/llB,«vn(x)Bj‘,,(x)dx—/l {/ (xt + x2P)B, ()dt} ()dx

FOOE S SRR ]

: (3.5)

with

=000 (36)

s

the summation over s being taken as follows: for i <n <n—i, (i) s=0 to k for k < i, (i) s =0 to i for
i<k<n—i (i) s=k—(n—1i)ton—iforn—i<k<n while for i=n—i (n being an even integer) (i)
s=0tokfork<i,(i)s=k—itoifori<k<mfori>n—1i, iandn—iabove are to be interchanged, and

LM\~ 1D
b,?<j) Zl—wd{( : (3.7)

k=0
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The linear system (3.4) can be solved for ¢;(i = 0,1,...,n) by standard method and hence ¢(x) is obtained
approximately. In our numerical calculations, n is chosen as 4 and ay, ay, . . ., a4 are obtained numerically. Val-
ues of ¢(x), calculated by using the approximate expression (3.3) for » = 4, and also calculated by using the
exact expression (3.2) at the points x = 0,4+0.2,+0.4, £0.6, +-0.8 are presented in Table 1. It is seen that the
approximate and exact values coincide up to five decimal places. In Fig. 1, a plot of the absolute difference
between the exact and approximate solutions is displayed. It is observed from this figure that the accuracy
is of the order 10~!* with only five Bernstein polynomials.

Example 2. We consider another Fredholm integral equation of the second kind given by

¢(x)—[ o — )t =x, —1<x<1 (3.8)

1

having the exact solution (cf. [4])
o(x) = x. (3.9)
If ¢(x) is approximated by (3.3), then a,—(i =0,1,...,n) satisfy the linear system (3.4) where now

1 (n n L4+ (=1)" o 1+( 1) 1+(—1)k1+(_1)r in 1jn
Ci’_22"<i><j>[z 1+k d ZZ 5+k 1+7 Tk 5+ JUdT)

k=0 k=0 =0
(3.10)
df;" being same as in (3.6) above, and
1 (n) "= (=)
by =~ o ————=da" (3.11)
J n . k
2'\j) = 2+k
Table 1
Approximate and exact solutions of Eq. (3.1)
X 0 +0.2 +0.4 +0.6 +0.8
$(x) (approx) 0.99999 1.04444 1.17777 1.40000 171111
¢(x) (exact) 1.00000 1.04444 1.17777 1.40000 1.71111

Abs-diff

Fig. 1. Absolute difference between exact and approximate solutions of Eq. (3.1).
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Choosing n =4, a;(i =0,1,...,4) are obtained here and thus ¢(x) is obtained approximately. In Table 2,
approximate and exact values of ¢(x) at x = 0,4+0.2, +0.4, £0.6, 0.8 are shown. It is seen that the approxi-
mate and exact values almost coincide. In Fig. 2, the absolute difference between the exact and approximate
solution is plotted. This figure shows that here also the accuracy is of order 10~ 3.

Example 3. Here, we consider a simple hypersingular integral equation of the form

f 04— ), —1<x<l (3.12)

1(t—x)’

with the additional requirement that ¢(4+1) = 0. In (3.12), the integral is in the sense of Hadamard finite part
of order 2 and is defined by

£ am i | [y [0 S IRNEI) i Gy

—1(t—x) 0+ |/ (t—x)’ e (1—x)’ €

The exact solution of (3.12) is given by (cf. [5], [6]):

x—t
-|d¢
l—xt—{(1-x)(1-7)}
For the special case when f(x) = 1, the exact solution of (3.12) is found to be
1

qb(x):%/lf(t)ln Sl<x<l (3.14)
-1

dx) = ——(1 -2 (3.15)
T
To use Bernstein polynomials to solve (3.12) we first represent the unknown function ¢(x) as

o) =(1-x)PP(x), -1<x<1 (3.16)
Table 2
Approximate and exact solutions of Eq. (3.8)
X 0 +0.2 +0.4 +0.6 +0.8
¢(x) (approx) 0 +0.20000 40.40000 40.60000 +0. 80,000
$(x) (exact) 0 +0.2 +0.4 +0.6 +0.8

162 107"

Abs-diff

-1 -0.5 0 0.5 1
X

Fig. 2. Absolute difference between exact and approximate solutions of Eq. (3.8).
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where P(x) is a well-behaved unknown function of x € [—1, 1]. The representation (3.16) is chosen due to the
known end point behaviors of ¢(x). Now ¥(x) is approximated in terms of Bernstein polynomials in the form

Y(x) = ia,«B,-,,,(x)7 -1<x< L (3.17)
i=0
Then Eq. (3.12) produces the relation
Zn:a,«Ai(x)zf(x), —1<x<1, (3.18)
i=0
where
Ai(x) = 21 (") zn:d;;" l—n(k + Dt + kf Lt E;l)m F(?;)j(%) (k—m— 12, (3.19)
= =0 (*5%)

the summation inside the square bracket being understood to be absent for £ < 2.

The unknown constants ¢;(i =0,1,...,n) can be found by a collocation method as has been done by
Mandal and Bera [7] who used an expansion for ¥(x) in terms of simple polynomials instead of the Bernstein
polynomials. However, here we follow the method described in Section 2 above. Multiplying both sides of
(3.18) by B, ,(x)(j =0,1,...,n) we obtain

dacy=f, j=0,1,...n, (3.20)
=0
where now
! 1 n n - - in gjn
Cij = / Ai(x)B),(x)dx = AU S drd
-1 ! J7/ %= =0
1+ (_1)k+r k-2 1+(_l)k+r7m l+(_1)m F(m;l F(%)
- 1 —m—1 21
X[ D T T w1 4 rem Gom b (3:21)
and
1
£ /lf(x)g,.,,,(x)dx, =01, (3.22)
We note that when f(x) =1,
&L+ (=D,

The constants d};"’ appearing in (3.21) and (3.23) are defined in (3.6).

In our numerical computation here, f{x) is chosen to be 1, and n to be 3. The constants a;(i = 0, 1,2, 3) are
calculated by solving the linear system (3.20) for » = 3 and f;(j = 0, 1,2, 3) given by (3.23). Thus, the function
¥(x) is found approximately and hence, by using the relation (3.16), ¢(x) is obtained approximately. A
comparison between this approximate solution and the exact solution given by (3.15) is presented in Table 3
for x =0,40.2, 0.4, +0.6, +0.8. It is seen that the approximate and the exact values are same and they
coincide. The absolute difference between exact and approximate solutions is plotted in Fig. 3. It is found from
this figure that the accuracy here is of the order of 107"

Table 3

Approximate and exact solutions of Eq. (3.12)

X 0 +0.2 +0.4 +0.6 +0.8

¢(x) (approx) —0.318310 —0.311879 —0.291736 —0.254648 —0. 190986

¢(x) (exact) —0.318310 —0.311879 —0.291736 —0.254648 —0. 190986
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x 107"

Abs-diff

-1 -05 0 0.5 1
X

Fig. 3. Absolute difference between exact and approximate solutions of Eq. (3.12).

Example 4. Here, we consider a hypersingular integral equation of second kind as given by

o 20 -2f P q= e, —1<xs (324)

n “i(t—x)°

with end conditions ¢(41) = 0. This is a generalization of the elliptic wing case of Prandtl’s equation. Express-
ing ¢(x) in the form (3.16) above, we find that ¥(x) satisfies

P(x) % ]G_lla ~ ) (i(;)f dt=F(x), —1<x<1, (325)
where
S (x)
Pl = L@ (3.26)
(I —x2)

If ¥(x) is represented in terms of Bernstein polynomials in the form (3.17), and the following the same pro-
cedure as in Example 3, we find that, in place of (3.2) we obtain the linear system

n

Y ady=F;, j=01,...n, (3.27)
i=0

where
d— (MY (" i“r(—l)kdwflc (3.28)
Vo \iJ\j) &= 1+k F 25 :

where ¢;;s being the same as given in (3.21), and

1
F;= / F(x)B;,(x)dx. (3.29)
-1
Once the linear system is solved, the approximate solution is obtainecll.
For the special case when o = 5;(f > 0), and f(x) :2—;;"(1 —x?)%, Eq. (3.24) reduces to the Prandtl’s
equation and has the exact solution given by (cf. [8])
4k

$(x) =1 +;ﬂ(1 —x) (3.30)

ol—
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Table 4

Approximate and exact solutions of Eq. (3.24)

X 0 +0.2 +0.4 +0.6 +0.8
¢(x) (approx) 2.444061 2.394682 2.400197 1.955250 1. 466437
¢(x) (exact) 2.444060 2.394680 2.400180 1.955248 1. 466436

x 107

Abs-Diff

-1 -0.5 0 0.5 1
X

Fig. 4. Absolute difference between exact and approximate solutions of Eq. (3.24).

In this case, for f =k =1,

o (n\ <~ L4 (=1
Fj=—— 7 :
! 2fl<i>kzo:dk L+k (3:31)

Choosing n = 3, the coefficients ag, a1, a», as are found. In Table 4, approximate and exact values of ¢(x) at
x=0,40.2, £0.4,40.6,+0.8 for f = k = 1 are given. The approximate and exact values almost coincide. Also
in Fig. 4, a plot of the absolute difference between the approximate and exact solutions (for f =k =1) is
given. This figure shows that the error is of the order of 107°.

4. Error analysis
4.1. Fredholm integral equation

For the Fredholm integral equation, written in the operator form,
(I-K)p)(x) =f(x), —-1<x<1, (4.1)

where 7 is an identity operator and (K¢)(x) denotes the integral f_ll K(x,t)¢(t)de.
The Bernstein polynomials are not orthogonal. However, these can be expressed in terms of some orthog-
onal polynomials, such as the Chebychev polynomials U,(x) of second kind (cf. [9]). It can be shown that

Bi(x) =2i<':> Zdzi i{(;) - (mi 1)}U32m(x). (4.2)

s=0 m=0

Thus, an approximation p,(x) of the function ¢(x) in terms of the Bernstein polynomials in the form

B =) = D aBl) (43)
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is eventually expressed as
pn(x> = Zb/U](x)7 (44>
=0

where b;(j =0,1,...,n) can be expressed in terms of ¢;(i =0,1,...,n) and vice-versa. If u;(x) = \/%Uj(x),
then u;(x)(j =0, 1,...,n) form an orthonormal polynomial basis in [—1, 1] with respect to the weight function
w(x) = (1 — xz)%. Thus, (4.4) can be further expressed as

p.(x) = zj:cjuj(x) with ¢; = \/gbj. (4.5)

It is proved in Golberg and Chen [10, p. 178] that if K(x,7) € C" and f € C"(r > 0), then
||¢) _pn”W < Conir7 r>0

where ||/]|,, = fll {1(x)}*w(x)dx and ¢ is some constant. Thus, the convergence is very fast if r is large. In our
two examples on Fredholm integral equations, both K and f'are C**-functions, and as such, the method con-
verges rapidly. This is also reflected in the numerical computations.

4.2. Hypersingular integral equation

The simple hypersingular integral equation (3.12) has the representation in the operator form
(HP)(x) = filx), —-1<x<1 (4.6)
where H is the operator defined by

W%@MW/U_WWMt

—1<x<1, (4.7)

)

7de 1 t—x

the integral within the square bracket being in the sense of Cauchy principal value, and

fi) =1 F (). 48)
Since
(HUn)(x):_(n+1)Un(x)7 nz 0>

where H can be extended as a bounded linear operator (cf. [10, p. 306]) from L;(w) to L(w), where L(w) is the
space of functions square integrable with respect to the weight function w(x) = (1 —x?)? in [—1, 1], and L(w)
is the subspace of functions u € L(w) satisfying

Jull = G ) < (49)
where
mwmz[pfﬁ%mm@m. (4.10)

Now the function ¥(x) satisfying Eq. (4.6) is approximated in terms of the Bernstein polynomials B;,(x) in
the form

¥(x) = p,(x),

where p,(x) is the same as in (4.3). In terms of the orthonormal Chebychev polynomials u{x), p,(x) can be
expressed in the form (4.5). If f1 € C'[—1,1],r > 0, then it follows that (cf. [10, p. 306])

1¥ = plly <en™,
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where ¢ is a constant. Thus, as before, the convergence is quite fast if r is large. In our example, we have cho-
sen f] to be a constant and thus f; € C*°[—1, 1]. Hence, convergence is very rapid and this has been reflected in
the numerical computation.

The second kind hypersingular integral equation (3.24) or rather (3.25) can be written in the operator form

(I—=aH)P)(x)=F(x), —-1<x<1. (4.11)

The proof of the convergence of the series representation of ¥(x)in terms of Bernstein polynomials follows
almost immediately by the same arguments. The details are omitted.

5. Conclusion

A simple method of approximating unknown function in terms of truncated series involving Bernstein poly-
nomials is proposed here for solving several classes of integral equations. The method is illustrated by simple
examples for which the exact solutions of the integral equations are available in the literature. The approxi-
mate solutions are compared with exact solutions numerically as well as by plotting the absolute difference
between the approximate and exact solutions. Excellent agreement is seen to have been achieved between
the exact and approximate solutions computed numerically by choosing a few terms for the truncated series.
Also an error analysis is presented for a general Fredholm integral equation of the second kind and the two
types of hypersingular integral equations. The method employed here can be probably extended to obtain
approximate numerical solutions of integral equations arising in various areas of mathematical physics.
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