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The generation of gravity-capillary waves at the interface between two
superposed fluids due to interface disturbance is considered, assuming linear
theory. Fourier and Laplace transform techniques are employed in the
mathematical analysis and the form of the interface depression is obtained as
an infinite integral involving oscillatory functions when the disturbance is
concentrated at the origin. The method of stationary phase is then employed
to evaluate this infinite integral asymptotically. The asymptotic form of the
interface depression is presented graphically and compared with the non-
capillary case. It is observed that the interface capillarity has some significant
effect on the wave motion.

1. Introduction

The two-dimensional Cauchy—Poisson problem concerning the generation of
water waves due to local disturbance of the free surface is well studied in the
literature within the framework of linearized theory of water waves. The problem
was studied by Lamb [1] and Stoker [2] by the use of Fourier integral transform
technique, and the free surface elevation was evaluated asymptotically by employ-
ing the method of stationary phase when the disturbance is confined to the
immediate neighbourhood of the origin. The problem of an axially-symmetric
initial surface disturbance in water of uniform finite depth was considered by
Kranzer and Keller [3]. They compared theory with experimental results. They
also gave a brief account of various earlier works related to this problem. The
initial disturbance problem over an arbitrary region of the free surface was
considered by Wen [4] who also obtained the free surface depression by using
the method of stationary phase. There has been considerable interest in the study
of the problem of generation of surface waves in water covered by an inertial
surface (IS) composed of a thin but uniform distribution of non-interacting
floating particles. Mandal [5] considered the two-dimensional unsteady motion
in a deep ocean covered by an IS due to initial disturbances at the IS. The
corresponding problem for an ocean of uniform finite depth was considered by
Mandal and Ghosh [6]. Again, Mandal and Mukherjee [7] studied three-
dimensional unsteady motion in a deep ocean covered by an IS due to a prescribed
axisymmetric initial disturbance at the IS, while the corresponding problem for an
ocean of uniform finite depth was considered by Mandal and Ghosh [8]. Also,
Mandal and Ghosh [9] considered the problem of generation of water waves in an
ocean of uniform finite depth covered by an IS due to an arbitrary periodic
pressure distribution on the IS as well as an initial displacement of the IS.
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In this paper we consider the problem of generation of gravity-capillary waves
due to initial interface disturbance at the interface between two superposed fluids
wherein the upper fluid extends infinitely upwards and the lower fluid extends
infinitely downwards. In the mathematical analysis of the problem we use a new
potential function defined in the lower fluid region which is a linear combination of
the velocity potential for the lower fluid and another potential defined in the lower
fluid region by reflection of the upper fluid about the common interface. This new
potential function satisfies an initial value problem. Fourier and Laplace transform
techniques are employed to solve the problem and the interface depression is
obtained in terms of double integrals involving the initial interface depression.
Assuming the initial interface depression to be concentrated at the origin, the
interface depression is obtained in terms of an integral involving oscillatory
functions. An asymptotic form of the interface depression is obtained by employ-
ing the method of stationary phase. Known results for free surface gravity waves
are recovered in the absence of upper fluid as well as capillarity.

The asymptotic form of the interface depression is presented graphically. The
figures exhibit variations of the interface depression at a fixed point x for different
time ¢, and at a fixed time ¢ for different x. In the absence of the upper fluid,
the gravity wave profile has features which are qualitatively similar to those for
the profile given in Lamb’s [1] book. It is also observed from the figures that the
presence of capillarity has some significant effect on the wave motion, while the
presence of the upper fluid is not of much significance if the density of the upper
fluid is very small.

2. Formulation of the problem

We consider two-dimensional motion at the interface between two inviscid,
incompressible and homogeneous superposed fluids wherein the upper fuid
extends infinitely upwards and the lower fluid extends infinitely downwards, in
the presence of capillarity at the interface. The fluid motion is generated due to an
initial disturbance in the form of an initial interface depression. A rectangular
Cartesian coordinate system is chosen in which the origin is taken at the interface,
y-axis vertically downwards in the lower fluid so that ¥ = 0 is the mean position of
the interface. As the motion starts from rest, it is irrotational and can be described
by the velocity potentials ¢;(x,¥,) and ¢;(x,y,£) in the lower and upper fluids,
respectively. They satisfy

Vi =0 iny>0
% Y= 50 (2.1)
Vig,=0 iny<0
together with the linearized interface condition
¢1y = ¢2y =
ony=90,t>0 (2.2)

g1 —s)n— (¢1: — s¢2) = Inn
P1

where 7)(x, t) is the interface depression, g is gravity, s = p/p1 (0 <s < 1), p; and
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p2 are the densities of the lower and upper fluids respectively and T is capillarity at
the interface, the condition of no motion at infinite depth and height

V¢ — 0 asy — 00
: (2.3)
Vg, — 0 asy — —0o
the initial conditions
p1=¢2=0 att=0ony=0 (2.4)
n(x,t) =f(x) att=0 (2.5)

where f(x) is the initial interface depression. We suppose that ¢, ¢z, 7 are defined
in the sense of generalized functions.

3. Method of solution
Let us define a new potential function ¢(x,y,t) iny > 0 as
¢(xvy’t) =¢1(x,y, t) —5452(",—3?1 t) (3'1)
From relations (2.1) to (2.5) we find that ¢ satisfies

Vi¢=0iny>0,t>0 A
¢y=(1+3)7h

1 ony=0,0>0
(1 _S)n=E¢'t +M7?xx} 4

> (3.2)
Ve —0 asy— oo,

¢=0 att=0o0ny=20
ﬂ(x,t) =f(x) att=0 y,

where M = T'/p1g.
Let ®(£,y,t) denote the Fourier transform of ¢(x,y,t) denoted by

00

2630 = g || 6 exp 569 ax

—00
By application of the Fourier transform, equations (3.2) reduce to

B,y —E8=0 iny>0,:>0 )
&y = (1+53)p

(1 —s)p=§‘1>:-Mﬁzp} RESSEESE

> (3.3)

®,%,—0 asy— oo,
$=0 att=0 ony=0
p(&t) =F(§) att=0 J

where p(£, t) and F(£) denote the Fourier transform of 7(x, t) and f(x), respectively.
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By the application of the Laplace transform in time, equations (3.3) reduce to
Py, —20=0 iny>0
B, = —(1 +35)F(&) +p(1 + 5)p(£, p)
~ p® ony =20,
p(&,p) = 0= s+ ME)

5,‘5,,—»0 asy — 00

where the bar denotes the Laplace transform in time.

Then we find
8(6,9,) = LSOO o - g1 G4)
P&, p) =§FT(§)J (3.5)
where
W? = -1:‘-'-1%(1 — s+ ME%) (3.6)

If the initial depression of the interface is concentrated at the origin, then
Sf(x) = 8(x), so that
1

F(€)=(2_n)17

and hence from equation (3.5), by Laplace inversion we find

1
plé, ) = Tcos wt

(2n

The Fourier inversion then produces

n(x, 1) = % f coswtexp (—ifx) d¢

00

=l I cos ot cos Ex dE (3.7)
T Jo

where

g1 —s+ M¢?)

2 —
o(g) = £ (3.8)
For s = 0 and M = 0, equation (3.7) reduces to the result given in Stoker [2].

The velocity of interface wave propagation is given by
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Cz=a2(£)_1—sg_ T

£ _1+s£+p1(1+s)§ (59)

From this the following interesting observation may be made.
For a very small value of £, the first term of equation (3.9) is large compared to
the second so that

l—sg
2y =
e NI (3.10)

This implies that the ensuing motion mainly consists of gravity waves only since
the same result is also obtained for T' = 0. On the other hand, when £ is sufficiently
large, the second term dominates so that

2f‘-’—_
¢ e :).g (3.11)

This implies that gravity is mostly irrelevant, and the ensuing motion is mainly
due to capillarity. These facts will be more evident in the following section.

4, Asymptotic form of the interface depression
To obtain the asymptotic form of the interface depression we apply the method
of stationary phase to equation (3.7). Now, equation (3.7) can be written as

n(x, ) =$J:o [exp {it(a +E—:)} + exp {—ir(a +§Tx)}
+exp{it(a - %f)} + exp {—it( _fo) }] d¢ (4.1)

We see that the first two integrals of equation (4.1) have no stationary points. The
stationary points for the third and fourth integrals are the real roots of

o'(6) = x/t (4.2)

where a/(£) is given by

i L[ g V' 1-s+3Mg
a(a_2(1+s) {61 — s+ Mg2)}1V* )

It may be noted that &'(£) is positive and a'(£) — oo as £ — 0, co and o'(£) has
only one minimum value at £ = &, say, where

52_1—53—2\/5
T M 3

(4.4)

It then follows that equation (4.2) has two real solutions, &,&(> &), say, only
when x/t > a'(&) with a”(£1) negative and a"(£;) positive.
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By the method of stationary phase applied to the third and fourth integrals of
equation (4.1) we find

2
7 t) = Y {2ma (€)1} cos [al€)t - gx+sen {a"(€)}]  (45)

=1
‘This approximation is valid only when the ratio
aﬂf(é)
{tlar(e)'}*

is small enough for both roots, which is seen to be satisfied here. If we put s =0
and M = 0, there is only one root of equation (4.2) given by

_g
= 4x2

so that equation (4.5) reduces to the asymptotic form of the free surface depression
given previously [1,2].

Again, it may be noted that when x/t is large compared to the minimum value
of a’(&) then &; will be very small and &; will be very large. In this case, & will be a
gravity wave solution (T = 0) given by

_1—sgt

N (+6)

31

with the behaviour of the interface as

1 [1—5gé 12 1—-sg? =
"("")’“n—uzx(‘“—ma) 08 | i & (£7)

while & will be a capillary wave solution (g = 0) given by

(1+5)pr 4%

with the behaviour of the interface given by
2 (pi(1+5))2x12 (1+5)p 4 =
niwt) ~3 ( T 78 T 27274 (k)

The approximation in equation {4.7) holds when %gt2 is large compared to x and
the approximation in equation (4.9) holds when 8p1x°/T is large compared to #2.

The asymptotic form given by solution (4.7) corresponds to pure gravity waves
while solution (4.9) corresponds to pure capillary waves. This is consistent with
the observation made from the wave velocities given in equations (3.10) and (3.11).

At a fixed position (i.e. for a given x) it is seen from solution (4.7) that a pure
gravity wave has an envelope that increases with time and an effective period
(which can be estimated by looking at zero crossings of the curves) that decreases
with time. On the other hand, from solution (4.9) it is seen that a pure capillary
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wave has an envelope that decreases with time and an effective period that
increases with time. The relative contribution of the capillary component to the
gravity is

” 12 492
(1 +’){F(1"—_s)} ey (4.10)

These facts become apparent when we study the qualitative features of the
interface waves (or suface waves for s = 0) depicted in Figures 1 and 2.

5. Discussion

The asymptotic form of the interface depression 5(x, t) is plotted graphically in
Figures 1 and 2. Figure 1 shows the variation of 7(x, t) against ¢ between t = 1-0 s
and 2-0 s for x = 40 cm. Figure 2 shows the variation of 5(x, t) against x between
x =200 cm and 250 cm for ¢t =10 s. For an air—water model, the value of s is
0-0013 ([1], p. 576) and T = 74 cgs units {[1], p. 455) so that M = 0-075 cgs units,
s =0 and T =0 corresponds to the free surface behaviour. In each figure, three
curves are drawn corresponding to s = 0,M = 0 (curve (I)); s=0-0013,M =0
(curve (I1)) and s = 0-0013, M = 0-075 (curve (I11)).

As x/t varies from 40 to 20 in Figure 1, x/t is fairly large and as such the roots
&1 and & of equation (4.2) are separated significantly so that £; dominates &. The
curves (I) and (II) correspond to gravity waves only at the free surface and
interface, respectively. They almost coincide, which is expected since s(= 0-0013)
is very small. From these curves it is observed that for gravity waves, the wave
amplitude increases while wave period decreases with time. This feature of curves

x=40.8 cms.

M=.875,5=.8013 (—-— H{ar)
Nix,t) cms. M=0.8,5=.8813 ¢ o)
3 M=0.0,5=0.8 (rooreee-I(D)
2, |lI _ ‘
i i k 1 5
I i i
RN HNHANIN i i
1 SR 1 \ )
THHEHEHIHEEE ! i
UGN ) |
1B L TEINARLE R AN - ] ot sees.
P PR A 3 L TN e
AR I AN R TRV IR N e 11 (r) &(m)
= _!!!l'l.l'll'f‘!-.ll. H 'ftl'l I
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Figure 1.
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t=10.D secs.
M=.875,5%.0813 (—-—--)(m)
M=0.8,s=.0013 (—(1)
M=0.8,s=0.0 (- 1)

Figure 2.

(I) and (II) follows the pattern of the curve given in [1]. The curve (III) in Figure 1
shows the asymptotic form of the interface in the presence of capillarity. From this
curve, it is observed that the wave amplitude falls while the period increases with
time. This is due to the fact that that the capillary root dominates in the stationary
phase computation. Also, the capillary wave periods are much smaller than gravity
wave periods.

In Figure 2 a similar comparison can be made. Here x lies between 200 cm and
250 cm, and ¢ is taken as 10 s. As the spatial position (x) becomes larger, the
separation between pure gravity and pure capillary waves becomes larger so that
the capillary solution becomes more dominant. This is consistent with the
behaviour seen in Figure 2. It is observed that for capillary waves (curve (I1I)),
the amplitude increases and period decreases with x while for gravity waves
(curves (I) and (II)) the amplitude decreases and period increases with x. This
feature of the curves (I) and (II) follows the same qualitative pattern as the curve
given in [1].

Finally, it is observed that the presence of capillarity has some significant effect
on the wave motion, while the presence of the upper fluid is not of much
significance if the density of the upper fluid is very small.
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