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SUMMARY

Multiple Criteria Decision Making (MCDM) is a popular phrase used to describe situations where there is a need
for integration of the results of different studies to make an overall judgement. Among the highest priorities
towards socioeconiomic development around the world is the Environmental Protection Policy (EPP), and
environmental assessment is a key to EPP. In the context of environmental studies, data integration techniques are
very appealing and have wider applicability. It is well known that land, air and water are the three sources for
determination of the extent of pollution of different regions. The purpose of MCDM is to rank the regions wrt all
the sources taken together. For any individual source of pollution, it is trivial to rank the regions from best to worst.
However, the problem of integration becomes non-trivial in most cases since the regions do not lend themselves to
the same pattern of ranking wrt different sources. In this article we examine critically the performance of two
popular composite indices (CI) and suggest some alternatives.
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1. INTRODUCTION

Advocated by Hwang and Yoon (1981), Zeleny (1982) and Yoon and Hwang (1995), MCDM is a body
of techniques used for meaningful integration of component indices to an overall index in order to
decide on the ranking of a number of locations from best to worst. This is based on the premises that in
the absence of a natural ideal location, a best alternative would be the one which has the shortest
distance from the hypothetical ideal location.

We begin with the mathematical formulation of the problem. We are given a matrix X of order
K x N with rows representing locations (or regions or environmental units) and columns representing
sources (or characters), where the element x; of X denotes an index of the ith location wrt the jth
source. Denote by x;; and xx.;, respectively, the smallest and the largest possible values of x;; for fixed
Jj, 1 <j < N. Anideal hypothetical location corresponds to one for which the row vector of x-values is
given by [x1.1,x1:2,...,Xx1.5), comprising the smallest possible values for each source. Likewise, the
one based on [xk.i, Xk, - . ., Xk.nv] Will be referred to as an anti-ideal location.



410 B. K. SINHA AND K. R. SHAH

The main purpose of such a study is to identify the location which is closest to the ideal in some
sense. While doing so, one may also incorporate the fact that such a location is expected to be the
farthest from anti-ideal.

To make our search non-trivial, we assume that such ideal or anti-ideal locations do not exist. One
way to identify the closest location is to compare the given locations by suitably defining a composite
index (CI) based on the distances from the ideal and the anti-ideal. We will set the CI value at O for the
ideal and at oo for the anti-ideal and define the criterion of closeness as one corresponding to the least
value of the CI.

There are two popular CIs studied in the literature and applied in practice. One is based on the
Technique for Ordering Preferences by Similarity to Ideal Solution, abbreviated as TOPSIS; see
Zeleny (1982). The other, known as the Electre method, is computation-intensive. We will critically
examine both the CIs in this article and suggest some needed modifications.

2. NOTATION
Let

djj = distance of x;; from xy;

dl; = distance of x;; from xg, I1<i<K,1<j<N (1)

Thus, d;’s (respectively d;;’s) represent distances from the ideal (respectively anti-ideal) location.
Next, let

din = [dn,dp, ..., dw] (2)
which represents the row-vector of distances d;; for the ith location involving N characters,
diy = [di_lvdizv""dgv], 3)

which likewise represents a row-vector of distances d;; for the ith location involving N characters.
In general, a CI is of the form

p(d,d”) = p(w,0,d,d") (4)

where w = (wy,...,wy) are weights, usually independent of the data, whereas 0 = (01, ..., 0y)" are
normalizing constants, usually dependent on the data. In a given context, we will abbreviate CI as
o(d,d™) or simply as ¢(d).

Below we now proceed to define the TOPSIS-based CI.

Define, for the ith location,

1/2
L,(i,IDR) = [Ej:{w,dﬁj/z:xﬁj}] (5)
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based on distances from the ideal and, further,

1/2
L,(i,NIDR) = [Ej:{wjdij} / ZXZJH (6)

based on those from the anti-ideal.
Then the TOPSIS-based CI for the ith location is given by

L,(i,IDR)
wi(d) = ; ; ()
L, (i, IDR) + L, (i, NIDR)
It is clear that, for the purpose of comparison of different locations, we can work with
Ly(i,IDR)
d) = ————~— L 8
%) = T, NIDR) ®

A description of TOPSIS-based CIs can be found in Filar et al. (1997).

3. REQUIREMENTS

The general problem of formation of a CI is not easy to resolve. Usually, one cannot come up with a
unique choice which should serve for all occasions. However, we may be guided by certain laid-down
principles. These principles may not lead to evolution of a CI but we may be in a position to examine
the status or validity of existing Cls.

With this objective, we now proceed to study certain other facts regarding formation of CI. To start
with, we would expect the following requirements to be satisfied by any CI:

Write d{. : N} for an arbitrary N-vector of d-values.

R1: Ifd{.: N} <d*{.: N} (co-ordinatewise), then p(d) < ¢(d*), with strict inequality in the latter
in case the same holds in the former (in at least one co-ordinate).
R2: If o(d{.:N}) < p(d*{.: N}), then p(d{.,a:N+M}) < o(d{.,a:N+M}) for all addi-
tional M-vectors a,M > 1.

R1 states that d must be better than d* wrt every meaningful ¢ in case d* has a coordinate-wise
larger distance (from the ideal) than d wrt at least one co-ordinate.

R2 states that once d performs better than d* wrt ¢, it continues to perform better if both are
extended by addition of more features for each of which the distances are the same for both. There is
something more to it; we return to the technical details later.

Remark 1: Requirements 1 and 2 seem to be logical from both the theoretical and practical points of
view. It would be interesting to investigate how far the CIs suggested in the literature satisfy these
requirements. We shall deal with both the TOPSIS-based CI and the one based on the Electre method.
We show below that ¢*(d) satisfies R1 but does not satisfy R2.
That it satisfies R1 is easy to verify, since

d{.:N}<d{.:N}ed {.:N}<d {.:N}
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The following counter-example is to demonstrate that R2 is not generally satisfied by the above
choice. In this context, we should note the use of weights.

Example 3. N =3

i/j
X D D

1 2 3 4 1 2 3 4 1 2 3 4
1 7 6 6 3 5 0 2 2 0 2 1 1
2 6 7 5 3 4 1 1 2 1 1 2 1
3 2 8 7 1 0 2 3 0 5 0 0 3
4 5 6 4 4 3 0 0 3 2 2 3 0
min 2 6 4 1
max 7 8 7 4

Comparison of i = 1 and i = 2 excluding the last feature (column 4):

©* (1) = [25w1/114 + 4w3 /126]/[4w2 /185 + w3 /126]

©"(2) = [15w1 /114 4+ wy /185 + w3 /126]/[w1/114 + wy /185 + 4w3/126]
Choose: w; = 0.02,w, = 0.70,ws = 0.28
Then (1) = [1.3275]/[1.7357] = 0.765 > " (2) = [0.8813]/[1.2848] = 0.686.

Comparison of i = 1 and i = 2 including the last feature:
The moment we include another feature, we need to modify the weights. The rule is to do so without
altering the relative weights of the sources already under the domain of the study. So we use an
overhead of P collectively for these sources and attribute the weight Q = 1 — P for the additional
source. The new sets of weights are [Pw, Pw,, Pws, Q] in this order.

Therefore, the revised values of (1) and (2) are given by:

[P25w1 /114 + Pdws /126 + Q4/35]
[P4w, /185 + Pws/126 + Q/35]

[P15w; /114 + Pw, /185 + Pw3/126 + Q4 /35]
[PW1/114 + PW2/185 + P4W3/126 + Q/35]

¢ (1) =

¢ (2) =

We now choose P = 0.90 to re-evaluate the performances of the first two locations. It turns out that
@(1) = 1.26 < 1.34 = $(2), which is a contradiction. Thus even a small amount of perturbation (in
terms of an additional location which has only 10 per cent relative weight) may alter the relative
performance of the two locations. As a matter of fact, a plot of the ratio of the two expressions as a
function of P may clearly provide the set of values of P for reaching such a contradiction.

It would be interesting to note certain elementary facts regarding the formation of ¢. We state
below some results in this direction and provide examples/counter-examples. Note that the Cls
described below are based on d’s alone.
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Result 1: If © corresponds to a quadratic form (pd) in the elements of d, R1 may be violated.
Example 2: d = [1,2,3]',d" = [4,4,4)" and ¢(.) = quadratic form in d involving a pd matrix A,
where A = P'D,P, with q,¢> and g3 as the elements in the diagonal matrix D, and with P as an
orthogonal matrix with first row proportional to 1'. Let us choose Helmert’s matrix for P. Then,
o(d) = 12q; + 0.5¢; + 1.5g5 while o(d*) = 484,. Hence there are choices for the g’s for which ¢(d)
exceeds ¢(d*) even though d < d".

Result 2: Example of best location for the whole set which ceases to be the best for every subset.
Example 3: N =3,d =[0.5,0.5,0.5]',d; = [1.5,0,0]',d, = [0,1.5,0]',d5 = 0,0, 1.5]', po(d)= d'd.
Here, d is best wrt all the three characters taken together but not wrt any subset of two.

Result 3: Example of best location for the whole set which continues to be the best for every subset.
Example 4: N =3,d =[0.5,0.5,0.5,d, = [1.5,1,0],d> = [0,1.5,1] ,d3 = [1,0,1.5]', o4 = d'd.
Here, d is best wrt all the three characters and continues to be the best wrt any subset of two.

4. MODIFICATIONS

We now suggest two modifications to the TOPSIS-based CI and show that these satisfy the two
requirements.

Modification I: We make use of d and d~ together instead of using them separately:

, 1/2
pi(d,d) = [Z wi(d5/d;?) / > % > Wik / Zx?j]

where ) _ refers to all j for which d; > 0 while > refers to all j for which d; = 0. Further, R; is a
finite quantity of our choice subject to R; > max|d;;/ di; ], the maximum being taken over all i for which
d; > 0.

ij

Modification II: We make use of d and d~ in additive form:

wid,d”) = [2}: {wjdi/zl:xi}] 1/2
5 {5}
B 1/2

5ot/ 54}

1/2
+

_|_

+

where r; < min{d;; }, the minimum being taken over all d; > 0. Again S~ refers to all j for which
d; > 0 while S~" refers to all j for which d; =0.

It follows that both the modified CIs satisfy R1 and R2. Verification of R2 is easy. To see how R1
works, we need to separate out Cases [-III as follows:

Case I di; > 0; Case II: 0 = dj; < d;; Case III: dj = dj; = 0.

lj’
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5. NUMERICAL COMPUTATIONS

In this section, we intend to study the performance of the two suggested modifications for the CI. We
do so by applying the two formulae on the data set examined by Ross and Sinha (2001) relating to air/
water/land for 50 states of the U.S.A. In fact, we start with more general versions of the two formulae,
as indicated below, by introducing a parameter k (which assumes the value 2 for the formulae given in
the previous section).

Modification I: Generalized version:

=[S /[£4] [ /154"

where  _ refers to all j for which d;; > 0 while >~ refers to all j for which d;j =0

Further, R; is a finite quantity of our choice subject to R; > max[d;;/d;;], the maximum being taken
over all i for which d;; > 0.

We may also work out Modification II along the same lines.

Next we consider the ranks of all the states as assessed by the two formulae using various values of
k. Then we group the 50 states ranked according to the first formula into five sets of ten each. Thus, Set
1 will consist of the ten states ranked 1 to 10 according to this formula. Next, we do the same according
to the second formula and then for each set compute the intersection numbers. These numbers are
shown in the tables below. Table 1 deals with small values of k£ and Table 2 deals with values of k
centered around 2.

It is seen that the values of k have a role to play. It turns out that the TOPSIS-based value k = 2 does
not seem to be adequate.
Thus, one may use Modifications I and II with a value of k around 0.20.

We have also studied the Electre method. It turns out that this also suffers from certain violations of
basic requirements. The details are outlined in the next section.

Further research is, therefore, warranted in this fascinating area.

6. ELECTRE METHOD

The Electre method requires more extensive computations than the TOPSIS-based method. It is used
for comparing the status of two locations rather than ranking all of them together like the previous one.

Table 1. Studies of the agreement between two measures of composite indexing (small k)

Serial number Set 1 Set 2 Set 3 Set 4 Set 5 k

1 10 9 8 9 9 0.01
2 10 10 9 9 9 0.02
3 9 9 9 8 9 0.03
4 9 9 9 8 8 0.04
5 9 9 9 8 8 0.05
6 9 9 9 8 8 0.10
7 9 9 9 8 8 0.15
8 9 9 9 8 8 0.20
9 9 9 9 8 8 0.25
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Table 2. Studies of the agreement between two measures of composite indexing (k around 2)

415

Serial number Set 1 Set 2 Set 3 Set 4 Set 5 k

1 5 2 4 6 4 1.95
2 5 2 4 6 4 2.00
3 5 3 5 7 4 2.05
4 5 3 4 7 4 2.10
5 5 2 4 6 4 2.15

Starting with the same X ., 5 matrix of observations on pollution indices and the weight vector w we

proceed as follows:

Step 1: Transform X = [X1,X;,...,Xy] to R=[Ry,Ry,...,Ry], where

- 2
[1Xill

i

Step 2: Transform R to V = RW, where W = diag(wy,wa, ..., wy).
Step 3: Based on V, construct two matrices: C = ((c;)), where

Cij = E Wi

kv <vi
and D = ((dj;)), where

L maxk:v,-k<v/-k |Vik - ij|
Y maxy|vi — Vil

C and D are called concordance and discordance matrices, respectively.
Step 4: Compute

- ZZ#]CU’
“TEKE-1)
and
J— Zzz‘#dl’j
K(K—1)

and construct matrices F and G such that

- 1 when ¢;<¢
Y710 ow.

_J1 when d;<d
81 0 ow.
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Step 5: Define matrix E = ((e;;)), where e;; = fjj.gi;.
e;j = 1 implies that location i is better than location j.

Apart from the disadvantage of not giving the relative ranking of the locations simultaneously, there
is another serious drawback of the Electre method. It can be checked that e;; = 1 does not ensure that
eji = 0, and we can get instances where both e;; and ej; are 1, which makes the two locations i and j
incomparable.

One may wish to examine whether this method satisfies the two requirements. It is easy to see that
R1 is satisfied, but for R2 we have a counter-example.

Example 5:

[0 S lNe e |
[@XNNe BN Be)\
EANEES e NN
A= W W

Comparison of i = 1 and j = 2 excluding the last character, i.e. column 4:
If we take w = (0.02, 0.55, 0.43), computations yield ¢ = 0.58,d = 0.564, ¢, = 0.55and d;, = 1.00,
s0 fi» = 0 and gj, = 1, which leads to e; = 0.

Comparison of i = 1 and j = 2, including the last character, i.e. column 4:
(Note that the 4th character for the 1st and 2nd rows are the same.)

Following the procedure of Example 4 we took the new weight vector as w = (0.02P,0.55P,
0.43P, Q), where Q = (1 — P). Now even for Q as low as 0.08, ¢, changes from 0 to 1. The corres-
ponding changed entries in the concordance and discordance matrices are ¢ = 0.5818,d = 0.62,
c12 = 0.586 and dj, = 1.00, so fi» = 1 and g, = 1, which yields e, = 1.
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