Sankhyd : The Indian Journal o Statisics
1084, Voluma 48, Beries A, Pt. 3, pp. 95-407.

ADMISSIBILITY IN THE GAMMA DISTRIBUTION :
TWO EXAMPLES
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SUMAMARY.  Hwang (1981)—typo bounda on adunisiblo oalimators of tho vestor of scals
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Dinisible and i i in tho simple exponential distribution.  Also, kimultansous
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that the natural extimato s inodmissible for p > 8 under the loss £ a,0— £ log a 8 —p.
Somo concluding remarks are made. =t =
1. INTRODUCTION

Admissibility in multiparameter problems and its interrelations with
certain differentia! inequalities have recently received enormous attention.
Since the pioneering works of Stein, multiparameter admissibility vis-a-vis
differential inequalities has been studied by many statisticians, notably
Brown (1979), Berger (1980), Ghosh and Parsian (1980) and Hwang (1981).
Brown (1971) showed that the question of admissibility of an estimate of the
multinormal mean can often be settled by ‘comparing’ it with the celebrated

James-Stein estimate,
5X) = (1—,—°).X, o (LD
I Xj

=t

with ¢ = p—2.

Formally, Brown (1971) showed that (a) an estimate 4(z) of the mean &
is inadmissible if for some 0 < ¢ < p—2, and some M > 0,

‘%mMﬂ>éan for 2 > M. )

(b). If 8(z) is a generalized Bayes estimate of A with uniformly bounded risk,
then 8(z) is admissible if for ¢ = p—2, and some ¥ > 0,

b4
ﬁmm<gmm for [l > M. (1)
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The implications of {a) and (b) above are very strong. They virtually imply
that the Jamee-Stein estimate with ¢ = p—2 stands as a dividing line between
dmissible and inadmissible estimates of the multinormal mean. Recently,
Hwauog (1981) extended Brown's phenomenon (a) to the general continuous
exponential family and gave necessary conditions for admissibility of an
estimate of the vector of natural parameters under quadratic loss. For the
spocial normal case, Hwang's result ix somewhat stronger than Brown's
indicated in (1.2).

In order to obtain these necessary conditions, Hwang (1881) extended
Berger's (1980) identity to step-functions and gave unbiased estimates of
E‘[oh(X)]. where h is a atep-function, and 6 denates the natural parameter.
In Section 2, we consider the problem of giving Hwang-type bounda on
admissible estimates of the vector of reciprocals {051, .... 0;') of the natural
paramcters in the continuous cxponential family. Aa an application, it has
been shown in the spirit of Hwang that if X,,.... Xp are independent simple
exponential random variables with scale-parameters 8, ..., 0p, then any
estimate 8(x) = (&,(x), .... &(2)) of the mean vector (4, ..., 0;') is inadmissible
if for some 0 < ¢ < 2(p—1). and some M > 0,

Zp 2738(x) € i z7385(2) for every z ¢ (0, 319
=1 i=l

-
where 83(z) =12' [1+_. 'G.L-_ . 2_]
2. ( z x,")
=t

is the improved estimate suggested by Berger (1880).

Tn Section 3, we address the problem of simultaneous estimation of
independent gamma scale-purameters. In contrast to the weighted quadra-
tic losses of Berger (1080) and Ghosh and Parsian (1980), we have considered

»
another invariant loes L{f-!, a) = ‘Zlmo‘— «£| log a;6s—p, and have shown

that the ‘natural’ estimate for this loss is inadmissible for p > 3.
Finally, we make some concluding remarks relating this result to some earlier
observations of Berger (1980) and Brown {1980), Brown (1986).

2. ESTIMATION OF THE VECTOR OF BEGIPROCALS OF NATURAL PARAMETERS
In this section, we need to extend Berger's identity for E,[6-'4(X)),
where b is o step-function g(x)74(z), A typically an interval (rectangle), and
g absolutely continuous. We shall quote below the essontial preliminaries
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without proof in the notations of Hwang (1881). The notations are clearly
explained in Hwang (1981). As pointed out by Hwang (1981), his notations
serve the purpose of putting the calculations in s simple and compact form.

Lemma 2.1: Let X,, ..., Xp be independent and let Xy have density

(Lebesgue) fyfz) = € Pp@ita) on [, 8. Let 9(X) = (guX), ..., (X))
be an absolutel, b function such that

lim  gi(z)e” 10 = 0 for every 0, i > 1.

-

(z—a)
Then,
ai"( Kt ] G X)r(Xq)
1 0%y = B, [ 9¢X)IrdXq)
B, | 6t %ty = E, [ WXy JA(X)]A o (@0)

Remark : Suppose h(x) is & given function of z and gy(z) is defined as
the indefinite integral of As(x)4(%,) (with respect to z). Then (2.1) can be
rewritten as
g X)riXi)

(X1

quX) 9
%) 0%, 140]
22

B0, WO LX) = B, | 14%)) -, [6r

(2.2) is frequently uscful in expressing the difference in risk of two cstimators
as the expectation of a differentinl operator plus a negative quantity, Next
we quote a slightly modified version of a result due to Hwang (1981), without
the proof.

Theorem 2.1: Let X =(X,,...,Xp) have an arbiltrary mullivariale
disiribution depending on a parameter §. Let y(0) = (1,(0), ..., 75(0)) be any
parametric function and let §,(X), 8,(X) be lwo eslimators of y(8) such that
R(9), 8,(X)) < R(6, 8,(X)) % 0 (with alrict inequality for some 6). Let
d(X) = 8,(X)—8,(X). Then any other estimator 8§(X) of y(f) is inadmissible if

a(X).8(X) < d(X).8,(X) for all .

Remark : Theorem 2.1 asserts that Hwang's (1981) basic lemma is
applicable for any parameter function so long a8 the loss is squared-error.

With these preliminaries, we now go into actually obtaining Hwang-type
bounds on admissible estimators of (7', ..., 6;"), in the general continuous
exponential family.
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Let A°(X) and A(X) be two estimators of (67, ..., 6;") defined by

X = ) D@L 1<i<e )

M) = 55 Dl 1<i<s . (2d)

where @, ..., @, are any constants, and @, ¢° are functions satiafying certain
conditions indicated later in this section, and 4 is a p-dimensional reotangle.
The calculations closely ble that of Hwang (1981)  The idea is to express
R{B, A*)—R(6, A) as E(A¢*(z)—Ag(z)) plus a negative quantity, where A[-)
ia & differential operator, and choose $, ¢* suitably such that Ag*(z) < Ad(z).

Define 8%X) by
z .
8(z) = Paul 1< 2. o (2.5)
Now,

R(6, A")—R(6, 8%

=F i (/\;(::)—1),-‘)*—111‘E:l (89(x)—07")%
{=1 )]

=8 5 (o) vee £ (3 o) o )

2 2 o
= B Z i A2 G falae

-1

2 LN
-2 26 oy $iaalx)]

YR IRV RIS . RN
- [«-1 (et Ty7 ¥ 04 = (1) Wi

o & gilzriz) 2oy ey O
2':1-) 4() 1.4(ﬂt)+2,:i4l 07" gi=) o5 Ly(z)ti(,). e (26)

The last equality in (2.8) iz & consequence of (2.2), where g}{x) is to be taken

oy Hle(z). AL this stage

as an indefinite integral (with reapect to %) of
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it is worth noting thet ¢}(z) (and similarly ¢¢(z), for (2.8) to be valid) should
be such that

lim v:(z)z""‘"" =0
(i~ a)
lim g (2)e” V=0, @1
—b
(xi—a)
for every 8;; g(z) is formally defined below.
Similarly,
R{0, \)—R(8, 6“)
=E L., (@ +l)‘ 'ﬁ'(z)"(’)” E 1 (@ +1)2 Sz a(2)
gl 4(z) _ 9
2,5:‘ li(-'r] ‘|'2 2 07'g4(2) = (z)jt(z,) . (28)
where gi(z) is an indefinite integral (with respect to z) 0(— Bul2)e(z).
(2.6) and (2.8) now enable us to write
R(8. X*)—R(8, A)
= {R(0, A*)—R(6, &)} —{R(6, \)— R(6, &%)
]
= B[ (46"~ 0g ) Late) +2 I Bila, 8] e (29)
where
@) = % i 2 gi@lria)
= 2 _ ACLAC)
M%) = Z (a.‘+l)’ #rx)+ 2 - T fde-2Z iz (210

s = B A #ra+e &

G it Sm)—2 Eq.(rln(z) AT

("4+l =1 4(x)

and Byfz, 6) = 67 (g}{x)—gufz)) hi‘ Lioitz). .. (@12)

Therefore, if there exists a rectangle 4 such that A¢*(z) < Ag(z) for every
ze A, and Ey(By(z, 6)) € 0% 0, then R(6,A*) < R(6,A) ¥ 6, and Hwang’s
lemma (Theorem 2.1) is applicable.

Hence, any estimator 8(X) = (8,(X), ..., 8p(X)) of (67", ..., 6;%) will be
inadmissible if

ol o gio—a@) < Eam P G4 .. (213)
=1 PN S ME gy P o 5

4312
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for almost all z in 4.

We can now etate the following theorem.

Theorem 2.2: Let A*(X) and A(X) e two eslimalors as defined in (2.3)
and (2.4), saiisfying the conditions (2.7). Let A¢*(z), Ad(z), Bi(z, 6) be as in
(2.10), (2.11) and (2.12) respectively. If there exisls an A such that

Ad*(z) < Ag(z) Jor (almost ally z ¢ A

and EfB(z.6) < 0 for every0,
then any estimate 8(z) of (657, ..., 6;*), satisfying (2.13) for (almost all) z€ 4,
14 inadmissible.

Remark : Theorem 2.2 could also be stated by starting with an arbi-

X

a+1
behind Theorem 2.2 is in estimating scale-p in ind dent gamma

P

trary estimate 4°(X) rather than &X(X) = But since the motivation

distributions, in which case au;:-‘l is the standard estimate of 67!, we have

X

conveniently chosen 6%(X) 8y for some constants a,, ay, ..., ap.

Ezample : Let X,, ..., Xy be independent withj,‘(q) = gt 6, >0,
7>0,i=1,2,...,p. In this case E,‘(Xa) =0",i=12,..,p Thenatural
estimate of (67, ..., 6;7) is ()% x?,)

Let

—4
$u(2) = —#—,. 1<ig<p 0<c<2p—1).
2( z z,")
J=1

By definition, gy(z) is the indefinite integral of

(2 d .
—,—— —3 With respect to z;.
4 Tz
(2)
Hence, qil(z) = +’, 1<K p.
8( Izt
J=1
3 227t * .

Indeed, EW(’)=—,‘—="F—,. 1<i<p
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Now, using (2.11),
2 At et 2
Mpla) =323 _ZH 4o g3 ©
(a1 4 4( 2 ”i')‘ - 4 2(f z,-'] =1 g% e
-l gt 7 =14
b
1 za
=i —4pcD- 4 4eDM e =L
(2=
j=1

1 [ £ e 1
= 1| @ +ae—spD+e o | e (214
(Za5) £ a0
i=l =1

P
where D = ¥ a7t
(=1

It is easy to see that (c2+4c—4pc)D~" is minimized at ¢ = 2(p—1). Also,
a8 ( 3 ::,-")( z a::‘) < ( £ ::,T’)‘for every z, it follows that
f=1 =1 =1

r 2 1

' I'E‘ - ! 1 a(p—17? { o U G

A —— > A S — ——— o - (&
(£ £ (&) & )

for every 0 < ¢ < 2(p—1).

Therefore, if ¢;(z) is taken as ¢i(z) with ¢ = 2(p—1), then (2.15) gives
Afgr(z)) < Al@(z)) for every =.

Also, with this choice of $j(z),

2(p—1)—c.

—
z ap?

(=1

9 (@) —quz) = (2.16)

If now, 4 = (0, MJ, then by using Hwang (1881), (2.16) and the fact that
o < Ap—1), B, [ 0711510} 30 L)) < 06> 0.

Therefors, we have,
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Corollary : Let Xy,..., Xp be independent simple exponentials, with

E,‘(X‘) =67 Then any estimate 8(X)= (§(X), ..., 5x(2)) of (67", ...,6;"
is inadmissible, provided for some 0 < ¢ < 2(p—1), some M > 0,

% o) < B o) forevery ze (O, MP .. (217)
{=) i=}
2 2
where 88 (2) = %— [l+cx“.‘_l2( z :,") ] = Berger's eslimate (1880).
(=1

Remark : The corollary above seems to give evidence that Berger's
eshm&te with ¢ = 2(p—1) stands as the dividing line between admissible and
i ible estimates of the m tor in independent simple exponential
distribution. :In partioular, this corollary also shows Berger’s observation
that the standerd estimate X/2 is inadmissible if p » 2. For the genersl
gemma case, however, the calculations corresponding to (2.14) and (2.15)
get complicated and it is not clear if a similar results holds there too. Hwang
(1981) obtained & similar bound for admissible estimates of natural parameters
in independent gamma distributions.

3. ESIIMATION OF THE GAMMA SCALE PARAMETER
Let X,, X,, ..., Xp be independent, with X; having density

fo (@) = MG [l >0, 1< i< p,

where oz > 0 are known, and 6;'a (> 0) are considered unknown. Berger
(1980) considered weighted quadratic losses "L 0;™(816—1)2 for m = 0,2, 1,
-1

—1, end showed that the standard estimate of (6}, 65, ..., 6;), namely,
X, Xy, - . .
(CZ_T_—I ey a;-{_-l) is inadmissible for p > 2 except when m = 0, in which
case it is inadmissible for » > 3. Ghosh and Parsian (1980) also discussed
this problem for the same weighted quadratic losses. In this section, we

consider a typically different loss f 86— 2’2 log 86+—p; the vector of un-

biased eatimates ( % e X, ) is & natural estimate of the mean-vector for
1

this loss. We show that thm eatimate is inadmissible for p > 3 and relste
this inadmissibility result to some observations of Berger and Brown.

The usual technique of integration by parts (Berger’s 1980 identity) and
a theorem of Ghosh and Parsian (1980) are stated below for future reference.
Also, & technical lemma, to be used subsequently, is also proved.
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Lemma 3.1: (Berger, 1080) : Let A(z) = (hy(2), ..., hy(z)) be a Junetion
such that
lim b((z)z:‘_‘c_“" =0
2,40
and lim Ry(zpd e =0
t‘—in
Jor every 6> 0. Assume hy(z) has all partial derivalives of firs order. Then,
. — k(X
B0 ) = By oy 8 )

where KX = e W, 1< <.

It is implicitly assumed in the above idenlity that
E,[ | M X )+ (a— Dh( X)[X¢|] < 00, for every 6.

Lemama 3.2: (Ghosh and Parsian, 1980): For given functions v(x),
V) > 0, wla), defne Een) = 7o) and 8 = E dy|(5)]* where dy and B
are positive constants to be chosen loter. If
£ w@E)WAz) < ES for some K, dyand B all positive) and for all z ¢ %3,
- 3.1)

then Bl = o) - B2

provides a solution to A(x) < 0 for all b> 0 and 0 < ¢ < K- (p—pB) where
2 2
Afz) = 'ﬁ(’i)_zl i'n(-“:)lﬂ"’(-")+‘2l wy(z)pi() - (3.3)
Remark : Such solutions to A(z) < 0 were first obtained by Berger
(1980). The constant ¢ can be generalized to a non-decreasing function 7(S),
with 0 < 7(8) < K~'(p—p).

1 372
Lemma 3.3: For [z] < 5, log(l42) > z——-

322
Proof : Define f(z) = log(l+z)—z+T.
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v Z(8242)
Then fi{z) = Ttz

>0for0<z<%.

<0for—%<z<0.

Consequently, f(z) » f(0) = 0, for |z| < §.
Theorem 3.1: Let X,, ..., Xp be independent gamma variables with
E(X) = ‘fr:, o known. Consider the logs L(6Y, 8) = .é .s.e‘—é log 64—p.
P

Then (m1 :;) ia an inadmissible estimaior of (67, ..., 65%) for p > 3.

Proof : Let 8(X) be a competitor to the natural estimate
(X Xp
aE = (ko 22
Write §;(z) = Z—."+h‘(x), 1< i< p. We assume hy(z) are such that Lemma

3.1 holds. Then,
a(8) = R(6, 8)—R(6, &)

= & = {ns-togamn) 5 o,+log ( 30, ))
- ,%1 £ { 0yX)—log “‘i—“x)}
= 2‘.1 E{ 8h(X)—1og ( 1+"‘%’)} . (39)

If the competitor §(X) is auch that ‘%‘ < % uniformly in z, for every
1< i< p, then by Lemms 3.3,

a0) < B { oan)- 20420 2 D)

_% (—Dh(X) ahy(X), 3 ofhi(X)
_E,E{M(”(XH X, X, T3 x° }

(by Lemma 8.1)

_% M(X) | 3 ofhy(X)
- l§1 E { HOE)— X, T2 -fof"‘i } @8
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Now make the tranaformation
M(z) = z(z), 1<V <P
Then, K = gy(z)+2gf ()
= M) gt
Hence, (3.5) gives,
2 3 2
a0) < B[ £ zgivm+g 2 o). . @8
Note now the differential expression within braces in (3.6) ia of the form (3.8),
snd (3.1) of Lemma 3.2 s satisfied with X — % =2,d=ad.

92
Therefare, for 0 < ¢ < % (p—2), b> 0,

dy(z) = __—clogz LY )
lil of (log ©)2+b

» 3
isa solutionto L {“’(:)+-% I aigliz) < O.
=1 i=]

2,2 2
Also observe that |y ¢i(z)|2 = — . Ma< % if b> 4t
{ 121 af (log z)%+b }

Henee, if () = . ,CI‘J"— L 1KEK ... (3.8)
L aiflog z))24b
J=1
where 0 < ¢ < % (p—2), b > 4%, then a(6) < 0 for all 6.
This proves theJtheorem.

SOME BEMARKS ON THEOREM 3.1

(1) It is eaay to check that the tail condition required on ky(z) for Lemma
3.1 to hold is satisfied by the soluti lly obtained in’ Theorem]a.1.

(2) It waa shown by Berger (1980) that the oritical dimension of in-
admissibility of the natural estimate of the gamma scale-parameters is
frequently 2, rather than 3. Berger contended that the critical dimension of
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inadmissibility is typically 2, and 8 dimension is required only in special
situations. Brown (1980) discussed Berger’s phenomenon and some of its
peripheral aspeots in the context of simult; timation of independ,

normal means, and gave examples to assert that the critical dimension of
inadmissibility depends on the loss, rather than the underlying coordinato
distributions. Theorem 3.1 gives another example of a natural and invariant
loss for which the critical dimension of inadmissibility could be 3 in the gamma
distribution itself, aithough the periphera! aspects relating to the point of
shrinkage ere not illustrated by this example. Interestingly, Berger (1980)
also required 3 dimension for inadmissibility only for the invariant quadratic
loss. This is probably expected from Brown (1966) and Brown and Fox
(1974). It follows from Brown (1966) that under the loss described in
Theorem 3.1, the standard estimate is admissible if p = 1, although at this
moment we do not know if admissibility for p = 2 follows readily from Brown
and Fox (1974). We conjecture the standard estimate is admissible in two

dimension.

(8) The improved estimate in Theorem 3.1 bears similarity to the James-
Stein estimate of the multinormal mean., Thia is expected since on makinyg
a log transform, the problem reduces to the estimation of & location vector.
One should also observe that our improved estimate is practically the same

as Berger's (1980) for the other invariant loss 2 (&6—1)2.
=]
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