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CLARKSON INEQUALITIES WITH SEVERAL OPERATORS

RAJENDRA BHATIA anD FUAD KITTANEH

ABSTRACT

Several inequalities for trace norms of sums of n operators with roots of unity coefficients are
proved in this paper. When n = 2, these reduce to the classical Clarkson inequalities and their

non-commutative analogues.

1. Introduction

The classical inequalities of Clarkson [9] for the Lebesgue spaces L,, and their non-
commutative analogues for the Schatten trace ideals C,, play an important role in
analysis, operator theory, and mathematical physics. They have been generalised in
various directions. Among these are versions for more-general symmetric norms {4],
and for the Haagerup L,-spaces [10], as well as refinements {2]. In this paper, we
obtain extensions of these (and related) inequalities in another direction, replacing
pairs of operators by n-tuples.

Let A be a linear operator on a complex separable Hilbert space. If A is compact,
we denote by {s;(A)} the sequence of decreasingly ordered singular values of A.

For 0 < p < 00, let
1/p

Al = [ (s5(A)7] - (1)
For 1 < p < o0, this defines a norm on the class C, consisting of operators A for
which ||A||, is finite; this is called the Schatten p-norm. By convention, ||A[lec =
81(A) is the operator bound norm of A. These p-norms belong to a larger class of
symmetric or unitarily invariant norms. Such a norm ||| - ||| is characterized by the
equality

1Al = IUAV, (2)

for all A, and unitary U and V. The class of operators Cy.;y on which such a norm
is defined is an ideal in the algebra of bounded operators. This is called the unitary
ideal corresponding to ||| - |||. When we use the symbol || Al|, or |||A]|l, it is implicit
that the operator A belongs to the class C, or Cy.p, respectively; see [3] for the
properties of these norms.

The case 0 < p < 1 is less interesting. In this case, expression (1) defines a
quasi-norm. In lieu of the triangle inequality, we have

IA + Bllp < 2V/27'(||Afl, + ||Bll;), for0<p<1.

For 1 < p < o0, we denote by ¢ the conjugate index defined by the relation
1/p+1/g = 1. The symbol |A| stands for the positive operator (A*A)!/2.

2000 Mathematics Subject Classification 47A30, 46B20.
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We prove the following four theorems, In each of the statements, Ag, A1, ..., An-1

are linear operators and wp,ws,...,wn~1 are the nth roots of unity with w; =
2P 0<i<n—1.

THEOREM 1. For 2 £ p < 00, we have
n—1 n—-1
2/p Z 14517 <> Zw < n? 22 3 |14, (3)
=0 k=0 j=0

For 0 < p < 2, these two mequaht:es are reversed.

THEOREM 2. For 2 < p < 00, we have

n—1 n—1
nY_ 14515 < Z Zw"A "<t > 45l (4)
3=0 k=0 Il j=0 j=0
For 0 < p < 2, these two inequalities are reversed.
THEOREM 3. For 2 < p < o0, we have
n-1 n—1 n—1
Sl <SS utaf]| < | S]] ©
=0 k=0" j=0 j=0
for every unitarily invariant norm || - |||. For 0 < p < 2, these two inequalities are
reversed.
THEOREM 4. For 2 < p < 00, we have
n—1 a/p n—1,n-1 q
(T1am) <3| et ©
j=0 k=0l j=0 P

For 1 < p < 2, this inequality is reversed.

When n = 2, Theorem 1 gives, for any pair A, B, the inequalities
2%/7 (IIAII,z, +|BI2) < |4+ BIZ + |1A— BlI} < 227 (AlI; + I1BI3), (7
for 2 < p € 00, and the reverse inequalities for 0 < p € 2. Theorem 2 gives
2 (|IAII” +Bi5) < A+ BlIE + |1A - BIip < 2°~ (Il Al + IBIE),  (8)

for 2 € p < 00, and the reverse inequalities for 0 < p < 2.
For p = 2, inequalities (7) and (8) both reduce to the parallelogram law

A+ B3 + 14 — Bl = 2 (1413 + I BIIZ) - (9)

The special norm || - ||> arises from an inner product {4, B) = tr A*B, and must
satisfy this law. The generalisation given in Theorem 1 can be obtained easily in
this case.

The inequalities (8) are one half of the celebrated Clarkson inequalities. A recent
generalisation, due to Hirzallah and Kittaneh [11], states that

2l1|A[® +|BIP| < |l|A+ BIP + A - BP [l < 2P| |APP + |BIP Il (10)
for2<p< 00; the two inequalities are reversed for 0 < p < 2. The inequalities (8)



822 RAJENDRA BHATIA AND FUAD KITTANEH

follow from these by choosing for ||| - || the special norm || - ||;. Theorem 3 includes
the inequalities (10) as a special case.
When n = 2, inequality (6) reduces to the inequality

2 (|42 + | BIE)* < |4 + Bl + I|A - B3, (11)

for 2 < p < o0, and to the reverse inequality for 1 < p < 2. These constitute the
other half of the Clarkson inequalities. They are much harder to prove, and are
stronger, than the inequalities (8).

A simple proof and a generalisation of the inequalities (8) were given by Bhatia
and Holbrook in (4]. Some of their ideas were developed further in our paper [5).
In Section 2 we give a proof of Theorems 1 and 2 using these results. In Section 3
we discuss some extensions of these results as given in [4]. In Section 4, we outline
a proof of Theorem 3, as well as proofs of some more general theorems. We follow
the approach taken in [11]. This was based on results of Ando and Zhan [1], and
we show how these can be generalised to n-tuples. The harder Clarkson inequalities
(11) are usually proved by complex interpolation methods. In Section 5, we show
how one such proof (as given by Fack and Kosaki [10]) can be modified to give
Theorem 4. Section 6 contains further generalisations of Theorems 1-4, where the
w;-‘ in the inequalities are replaced by more general coefficients.

Sharper versions of (7), (8) and (11) have been proved by Ball, Carlen and Lieb
[2], by the use of deeper arguments. Our results go in a different direction.

2. Proofs of Theorems 1 and 2
Proof of Theorem 1 for p > 1. Consider the n x n matrix
T = [T}, 07 k<n-1, (12)
where the entries T); are operators. In [5, Theorem 1] we showed that

1T < YTl for 2 <p < oo (13)
.k

Now, given n operators Ag, ..., A,_1, let T be the block circulant matrix
T = circ (Ao, ..., An—1). (14)

This is the n X n matrix whose first row has entries Ag,..., A,_1, and the other

rows are obtained by successive cyclic permutations of these entries. Let
= .0 0 (U
WO wl vee Wh

1 1 1
1 Wy Wy e Wh gy

Pk===:7;

1

n—1 n—1

w1 I wn_l_
be the finite Fourier transform matrix of size n. Let W = F,, ® I. This is the block
matrix whose (j, k) entry is wj I/\/n. It is easy to see that if T is the block circulant
matrix in (14), then X = W*TW is a block-diagonal matrix, and the kth entry on
its diagonal is the operator

n —
| Wo

n—1
Xex =Y wkA;. (15)

j=0
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Now note that
n--1 1/p
I = 105 = (X 1Xz) 16)
k=0
Using (13)-(16), we obtain

n=1,yn-1

for 2 < p < oo. For these values of p, the function f(z) = z?%/? is concave on the
positive half-line. Hence

n?/P Yz + . +2¥7) <(zo+... + )P (18)

P12/p n-1 )
] <n S 14412, a7)
P 3=0

Using this, we obtain from (17) the inequality

n—1, n-1
2/p—-1 kA
n Z E w; Aj
k

=0 ' 5 =0

n—1
<n Y ll4;l5, (19)

2
P 7=0

for 2 < p € 00. This is the second inequality in (3).
The first inequality in (3) can be obtained from this by a change of variables. Let

n—1
By=) wf4;, for0<k<n-1 (20)
j=0
Replace the n-tuple (Ag, ..., An—1) in the inequality just proved by (Bg,. .., Bn-1)-

Note that the n-tuple whose kth entry is Ej w;.‘Bj is the same as the n-tuple
(nAo,nAi,...,nAn_1) up to a permutation. This leads to the first inequality in (3).

When 1 < p < 2, inequality (13) is reversed; see {5, Theorem 1]. So inequality
(17) is reversed. The function f(x) = 22/P is convex in this case, and inequality (18)
is reversed. As a result, both the inequalities in (3) are reversed. This completes the
proof of Theorem 1 for 1 € p < 0o. The case 0 < p < 1 is discussed in Section 3. 3

Proof of Theorem 2 for p > 1. The proof of Theorem 2 runs parallel to that of
Theorem 1. For T" as in (12) we have, from [5, Theorem 2|,

S ITwlls < NTHB, for 2 < p < oo, (21)
ik

and the inequality is reversed for 0 < p < 2. Start with this instead of (13), and
follow the steps of the proof of Theorem 1. One obtains Theorem 2 for 1 < p < co.
The case 0 < p < 1 is discussed in Section 3. O

The inequalities of Theorems 1 and 2 are sharp. For0< j<n— 1, let A; be the
diagonal matrix with its (j,7) entry equal to 1, and all its other entries equal to 0.
In this case, the first inequalities in (3) and (4), respectively, are equalities. On the
other hand, if we choose 4; = (W}, w],...,wh_;) for 0 < j <n—1, we see that the

other two inequalities are equalities in this case.
A simple consequence of inequality (7) is the following resuit, proved in [6].
Let T be any operator, and let T' = A + iB be its Cartesian decomposition with A

and B Hermitian. Then, for 2 € p < o,
2%/7=1 (| AI2 + | BIZ) < ITII2 < 227 (U7 + 1Bllz) » (22)
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and the inequalities are reversed for 0 < p < 2. Note that in this case we have,
from (8),

IAlE + 1 BiIE < T < 272 (114112 + 1| B]1?) (23)
for 2 < p < oo, and the reverse inequalities for 0 < p < 2. The inequalities (22) can

be derived from (23) by a simple convexity argument. More subtle norm inequalities
for the Cartesian decomposition may be found in [7] and [8].

3. Extensions and remarks

We have proved Theorems 1 and 2 for p > 1, using results given in [5]. There

are other connections between [4], [5] and the present paper. We point out some
of them.

1. Let T be the block matrix (12), and let U; be the block-diagonal operator
U; = dieg (wi1,...,wi_;I), 0<j<n—1
Let A; = U}TU;. The second inequality in (3) then gives

n*/P=23 T2 < |T)2, for2<p< oo
Ik

This is the inequality complementary to (13), proved in [5] by other arguments.

2. A unitarily invariant norm ||| - ||| is called a Q-norm if there exists another
unitarily invariant norm |j| - |||” such that ||| 4})|> = }||A* Ajl|". The Schatten p-norms
for p > 2 are Q-norms, since ||A||Z = || A*A||,/2. The crucial observation in [4] is a
reinterpretation of the Clarkson inequalities (8) in such a way that a generalisation
to Q-norms and their duals becomes possible. The next remarks concern similar
generalisations of Theorems 1 and 2.

3. The following useful identity can be easily verified.

—E (S“’k*‘l ) (waA:‘) = an;Aj- (24)

k=0 3=0 j=0
For n = 2, this reduces to
(A+ B)*(A+ B)+{(A— B)*(A- B)
2

4. We use the notation A¢®...® An_1, or ®A;, for the block-diagonal operator
with operators A; as its diagonal entries.
For positive operators 4;, 0 €< j < n — 1, we have the inequality

n—1
(ZA,-)EBOGB...GBO”,

j=0

for all unitarily invariant norms [5, Lemma 4}. For the p-norms, this gives (for
positive operators)

= A*A+ B*B. (25)

(26)

4o ®...® Auill < ||

n—1

> H45lE <

=0

1<p<oo. (27)
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For n = 2, this is a starting point of a proof of the Clarkson inequalities (8), and
its generalisation as in (26) led to stronger versions in [4].

To bring out the relevance of Q-norms, we give a different proof of Theorem 1,
based on the identity (24) and the inequality (27).

Another proof of Theorem 1 for allp > 0. Let Ag,...,An_1 be any operators,
and let By be the sum defined in (20). Then, for 2 < p < oo, we have

n-1 rn—1
> UBellz =3 I1BiBelipz
k=0 k=0
n-1
>\ > BB
k=0 p/2
n-1
=n|| Y AJA;
§=0 p/2
[ n—1 2/p
* 2
Zn LZ || A5 A; ”52]
i=0
[n—1 s 2/p
=n| Y (14512)" ]
| j=0
[~ n—1 p/2 2/p
Zn nl-'?/z(z “A.,"’z,) ]
L Jj=0

n—1

=7 411
s

In this chain of reasoning, the second equality follows from the identity (24), while
the three inequalities are derived from the triangle inequality, (27) and (18), respec-
tively. This proves the first inequality in (3). For 0 < p < 2, the three inequalities
used in the derivation above are reversed. It has been noted [6, Lemma 1] that for
positive operators A; and 0 <p < 1,

Yol < 30 4]

and also that the inequality (27) is reversed in this case; see [6, p. 111] or (12,
p. 20). The inequality (18) is reversed too in this case.
This proves Theorem 1 for all p > 0. O

5. Let us now recast Theorem 2 in the mould of [4]. Taking pth roots, we rewrite
the first inequality in (4) as

n—1 n~1
nt/P @AJ— < @Bk , 2 < p < o0,
j=0 P k=0 4
where By, is as in (20), and then as
n-1 n-1
s [@A,.] <|PB, 2<p<c (28)
n copies - j=0 P k=0 P
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(For brevity, we use the notation @ copiesX to mean the n-fold direct sum
X&X®...0X.) In the same way, the second inequality in (4) can be rewritten as

n-~1 n—1
nt/? @Bk £n @Aj R 2<p<oo,
k=0 | 4 j=0 p
and then as
n-1 n—1
&3 [@Bk] <nl@P4i|, 2<p<oo (29)
n copies - k=0 r j=0 P

In this form, the inequalities (28) and (29) shed some of their dependence on p,
compared to the (equivalent) inequalities (4). What is left of p can be removed too.
The inequalities (28) and (29) are true for all @-norms. For the duals of Q-norms,
they are reversed. This can be proved using the ideas expounded in [4] and in this
paper. We do not give the details here.

6. The case 0 < p < 1 of Theorem 2 is proved on the same lines as those used
in Remark 4 above.

7. It is tempting to attempt a generalisation of Theorem 1 on the same lines
as for Theorem 2 in Remark 5. Let us start with the special case, n = 2. The first
inequality in (7) can be rewritten as

lA@ Al +BoBl; <A+ Bl + |4~ Bl}, for2<p<co.  (30)
This is the same as saying that
IA*A® A*All, + |B*B @ B*Bl,
<(A+ B)*(A+ B)llp +{[(A- B)*(A—~ B)|l,, for1<p<oo. (31

To ask whether the inequality (30) might be true for all Q-norms is to ask whether
(31) might be true for all unitarily invariant norms; that is, whether we have

lA*Ae® A*A|l + [IB*B & B*Bl|
<litA+B)*(A+B)e 0| +{I(A- B)*(A-B)&0)| (32)

for all unitarily invariant norms. The answer is: ‘no’.
On 8 x 8 matrices, consider the norm

AN = [(51(A) + 52(A))% + (s3(A) + s4(A))?] /.

Let A = diag(1,1,0,0) and B = diag(0,0, 21/4,0). The direct sums involved in (32)
are then 8 x 8 matrices. Each of the two norms on the left-hand side of (32) is equal
to 24/2, while each of the two norms on the right-hand side is equal to (4+ 2\/5)1/ 2,
Thus the putative inequality (32) is not always valid.

8. Ball, Carlen and Lieb [2] have proved the following inequalities for 1 < p < 2:
2 1
IAllz + (p — DIBY2 < 3(I4+ Bl + 114 - B);

1
1415 + (o = DIBIZ < 557 (14 + BIE + |4 - BIZ)™™.
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Compare the first of these with one of the inequalities in (7):
- 1
2= (lA15 + 1BIZ) < 5 (14 + Bl + 1A - BI),

and compare the second with the inequality obtained by following some of the steps
of Remark 4:

1 2/
IAI5 +1BI; < 5 (Il4+ Bl + 1A - BlE) ™"

4. Proof of Theorem 3, and generalisations

This section has to be read along with the paper of Ando and Zhan [1] and that
of Hirzallah and Kittaneh [11]. We indicate how the results obtained there for n = 2
can be proved for n > 2,

Recall that a non-negative function f on [0, o) is said to be operator monotone
if f(A) > f(B) whenever A and B are positive operators with A > B. The function
f(t) = t? is operator monotone for 0 < p < 1. Thus for 1 < p < oo, the inverse
function of f() = tP is operator monotone; see [3, Chapter V).

THEOREM 5 (Generalised Ando-Zhan theorem). Let Aq,...,An-1 be positive
operators. Then for every unitarily invariant norm, the following statements hold.
(i) For every non-negative operator monotone function f on [0, 00),

gf(Aj) f(fAj)

=0
(i) This inequality is reversed if f is a non-negative increasing function on [0, cc)
such that f(0) = 0, f(o0) = 00, and the inverse function of f is operator monotone.

> . (33)

Ando and Zhan [1] have proved this for n = 2. An analysis of their proof shows
that all their arguments can be suitably modified when n > 2. In particular, in
their crucial Lemma 1 we can replace the sum A + B by Ej Aj, and then check
that the same proof works. Using this, we can prove the following theorem.

THEOREM 6. Let Ag,...,An—1 be any operators. Then for every unitarily
invariant norm, the following statements hold.
(i) For every increasing function f on [0,00) such that f(0) = 0, f(x) = oo
and the inverse function of g(t) = f(+/t) is operator monotone,

n—1 n—1 n—-1
| Zraan || < || Z (| Zera)|
j=0 k=0 i=0
<% 15;f(nlx4jl) |
J=

(ii) The two inequalities in (34) are reversed for every nonnegative function f
on [0,00) such that h(t) = f(/1) is operator monotone.

The n = 2 case of Theorem 6 has been proved by Hirzallah and Kittaneh [11].
Their arguments can be modified by replacing the Ando-Zhan theorem by its
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generalisation, pointed out above. Their Lemma 1 needs no change. At one stage,
we need the identity

n-—

Z w"A

i=0

1 n-—1 n—1

n 2 =X 1450 (35)

This is just the identity (24), and substitutes for its n = 2 version used in [11,
p. 366, line 6]. We leave the rest of the details to the reader.

The two parts of Theorem 3 follow from the corresponding parts of Theorem 6
if we choose f(t) = t? with p > 2 and 0 < p < 2, respectively.

'REMARK. Note that [1, Corollaries 1-3] and [11, Corollaries 2 and 3] can also
be generalised to n-tuples of operators in this manner.

5. Proof of Theorem 4

Imitating the standard complex interpolation proof of the n = 2 case, we give a
proof of Theorem 4 for 1 < p < 2. The ideas are the same as those used in [10].
At a crucial stage, we need a generslisation of the parallelogram law provided by
Theorem 1.

LEMMA. Let Ap,...,Apn—1 be operators in the Schatten p-class C, for some
1 < p< 2 Let By be thesum defined in (20), and let Y3, 0 < £k < n-—1, be
operators in the dual class C;. Then

< nl/q( 5 14, i) 1,,,(2 i) " (36)

J=0

tr z Y. B

Proof. Let A; = |A;j|W; and Yz = Vi|Y%| be right and left polar decompositions
of A; and Y;, respectively. Here, W; and Y}, are partial isometries.
We have 1/2 < 1/p < 1. For the complex variable z = ¢ +iy with 1/2 <z < 1, let

Aj(2) = |A;1P* W55

Yi(2) = Yalig* 902V v 20 -2,
Note that Aj(l/p) Aj and Yk(I/p) Y:. Let

f(z)=tr Z Yi(2) Bi(2).
k=0
The left-hand side of (36) is | f(1/p)]. We can estimate this if we have bounds for
|f(z)|at z=1/2and z = 1. If z = 1, we have
tr Ya(2) Aj(2)] = [1Yallf | tr Vi [Ye| 729 | A4, POTOW;).
Using the information that for any operator T,
[trT) < [T, and  JIXTZ|| < IXHITN 2]

for any three operators X, T and Z and unitarily invariant norm || - [|, we see that

|tr Yi(2)A;(2)| < WYklB 455, forallO<j k<n—1L
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Hence
n—1 n~1 n—1
1@ = e Y neae)| < (T miz) (X iamk),  6n
k=0 k=0 i=0
when 2 = 1.
When z = 1/2, the operators A;(z) and Y;(2) are in C; and
n-1
[£(2)] € Y ltr Yi(2) Bi(2)|
k=0
n—1
< D I (@)l2ll Br(2)ll2
k=0

< (ij o)) . (Z 124213 "

k=0 k=0
1 1/2
145(2) u%)

n—1 1/2
- nlﬂ(z uncz)uz) (
k=0 3=0

The equality at the last step is a consequence of Theorem 1, specialised to the case
p = 2. Note that when = = 1/2, we have ||4;(z)|13 = {|4,|3, and Y (2)H3 = | YR!I2.

Hence
n—1 1/2 ,n—1 1/2
if(z)isnlfz(zlmuz) (ZuA,-u;j) , (38)

k=0 i=0

n—

when z = 1/2. If M, is the right-hand side of (37) and M that of (38), then by
the three-line theorem we have, for 1/2 < 1/p <1,

|f(1/p)| < M2C/P=1/2) pg2(1=1/)
This gives (36). ]

Now, to prove Theorem 4, let By = Ux|Bx| be a polar decomposition, and let
Yi = [| Bell§ 2| BeP~ U
It is easy to see that
trYi B = || Belly = 1 ¥kllg-
So we get, from (36):

-1

n—1 1/p yn—1 1/p
S imdy <ne( S astg) (1)
=0

n
k=0 =0

This is the same as saying that

n—1 n—1 q/p
S I1Buls < n(z uAjuz)  1<px2 (39)

This proves Theorem 4 for 1 < p < 2. The reverse inequality for 2 < p < oo can be
obtained from this by a duality argument. O
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By a change of variables, a pair of complementary inequalities can be obtained as
in Theorems 1-3. As pointed out earlier |2, 4], the inequalities of Theorem 2 follow
from those of Theorem 4 by simple convexity arguments. Theorem 1 too can be
derived from Theorem 4 by such arguments. For example, for 2 < p < 00, we have

from (6):
n—1 1/p ln—l n—1 a\ /g
() <G| T o) (“0)
=0 k=0 j=0 p

On the positive half-line, the function f(z) = 2%/? is convex and the function
g(zx) = £%? is concave. Using this information, we can obtain the first inequality in
(3) from the inequality (40). The proof given in Section 2 is based on easier ideas.

6. Further generalisations

An anonymous referee has made the interesting observation that our proofs of
Theorems 1 and 2 rely on one crucial property of the finite Fourier transform matrix
F,, namely that F? is a permutation matrix. More generally, let R,, be any n x n
matrix such that

R? = 2P, (41)
where z is a complex number and P a permutation matrix. Then
Ry R, = al,, where a=|z|. (42)
For n = 2, some examples of such matrices are:

r V2 72 s iv/s2 -2 d 147 1-—2
y an . )
V2 —1r2 —r ’ ivVs2 —2 —8 1—4i 1414
where r and s are real numbers with 7? < 2 and s2 > 2.

Let R = R, ® I. Then R acts naturally on n x 1 column vectors whose entries
are operators Ag,...,A,—1. For a given operator R as above, let

A’ = RA. (43)
With these notations, we have the following theorem.

THEOREM 7. For 2 < A < p < 0, we have

n-1 n—-1 n—1
MMM ANy < D A5 < nEMRME Y Al (44)
Jj=0 Jj=0 j=0

Proof. The proof follows the steps in Remark 4 of Section 3. Replace the tuple
B there by A’. Note that

n—1 n-—1
S ArA =ad  ALA,, (45)

7=0 =0

and that for 2 < A < p, the function f(z) = /2 is convex and g(z) = z*/? is
concave. This leads to the first inequality in (44). The second can be obtained from
this on replacing A by A’ and noting that the tuple A” is a permutation of the
tuple A. We leave the details to the reader. O
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Theorem 7 includes, as special cases, Theorems 1 and 2. If R, is the matrix
with w¥ as its (j, k) entry, then o = n. Further, by choosing A = 2,p, we obtain
Theorems 1 and 2, respectively.

Similar generalisations of Theorems 3 and 4 may be obtained. Let us indicate
this briefly. Replace the identity (35) by

n—1 n-—1
DM = 1441 (46)
=0 =0

to obtain, instead of (34), the inequalities

n|| ;gzj‘(\/gglfkﬂ)

n-—~1

szﬁ

This leads to the inequalities

n—1

> l4;lP

=0

nl—p/2ap/2

i

(47)
D145

for 2 < p € oo. The inequality (5) is included in this as a special case.

Let r;; be the entries of the matrix R,, and let » = max|ry;|. If we replace
the tuple B in Section 5 by the tuple RA, we obtain modified versions of the
inequalities (37) and (38). For the first of these, we pick up an extra factor r on
the right-hand side; for the second, we need to replace the factor n'/2 by a'/2. The
interpolation argument then shows that

n-—1 n-1 1/p 1/p
tr Z Ye ALl < r2(1/p—-1/2) \1/q ( z NA; ”;) (Z "yk"p) .

k=0 J=0 k=0

This replaces the inequality (36). Imitating the rest of the argument in the proof
of Theorem 4, one obtains at the end

1 q/p
ZuA'nq T (ZMA,-ug) , (48)

j=0

for 1 < p < 2. Once again, when R is the matrix with entries w®, thena =n, r =1,
and the inequality (48) reduces to (39).

Acknowledgement. Theorem 7 and the ideas of Section 6 are due to an
anonymous referee, to whom we are most grateful.
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