CONVERGENCE OF GENERALIZED INVERSES WITH APPLICATIONS TO ASYMPTOTIC HYPOTHESIS TESTING

By MADAN L. PURI and CARL T. RUSSELL

Indiana University, Bloomington

and

THOMAS MATHEW

Indian Statistical Institute

SUMMARY. Let A_N , A be $m \times n$ matrices with $A_N \rightarrow A$. It is shown that $R(A_N) \rightarrow R(A)$ is necessary for the convergence of any sequence of generalized inverses $A_N^- \rightarrow A^-$, and sufficient conditions are given for the existence of a convergence sequence of g-inverses with specified row and column spaces. This generalizes a result of Stewart (1969). Applications to asymptotic hypothesis testing are discussed and an optimal property of the Moore-Panrose inverse is presented.

1. NOTATION AND PRELIMINARY RESULTS

Boldface capital letters denote matrices, and boldface lower-case letters denote column vectors over the complex field, $\mathbf{0}_{m\times n}$ denotes the zero matrix of order $m\times n$ and will be written an "0" when the order is clear from context. A^* , A^* , R(A), $\mathcal{M}(A)$, and O(A) denote, respectively, the conjugate transpose of A, the transpose of A when A has real components, the rank of A, the column space of A, and the space orthogonal to $\mathcal{M}(A)$ with respect to the usual inner product. For two subspace $\mathcal G$ and $\mathcal G$ of the same vector space, $\mathcal G \cap \mathcal G$ denotes the intersection, and if $\mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G = \{0\}$, $\mathcal G \cap \mathcal G \cap \mathcal G \cap \mathcal G \cap \mathcal G \cap \mathcal$

Definition. G is said to be a generalized inverse of A if

G is also called a g-inverse of A and written $G = A^-$. G is said to be a reflexive g-inverse of A if in addition to (1)

holds, in which case one writes $G = A_r^r$.

AMS (1980) subject classification: 15 A09, 62F05

Key words and phrases: Generalized inverse, Moore-Penrose inverse, Asymptotic hypothesis testing.

By Lemma 2.5.1 (RM), if $G = A^-$, then $G = A^-$, iff R(G) = R(A). It is worthwhile noticing that a reflexive g-inverse is uniquely determined by its row and column spaces.

Lemma 1: If $G_1 = A_1^-$ and $G_2 = A_2^-$, then $G_1 = G_2$ iff $\mathcal{M}(G_1) = \mathcal{M}(G_2)$ and $\mathcal{M}(G_1^*) = \mathcal{M}(G_2^*)$.

Proof: Necessity is obvious.

If $G_1 = DG_2$ and $G_2 = G_1E_1$, then

$$G_1 = DG_2 = DG_2AG_2 = G_1AG_1E = G_1E = G_2.$$
 Q.E.D.

In a sense, all g-inverses are reflexive, as the following lemma shows

Lemma 2. (RM Theorem 2.7.1): Let A be of order $m \times n$ and rank a, and let r be an integer satisfying $a \leqslant r \leqslant \min(m, n)$. Then $G = A^-$ iff $G = (A + MN)^-$, where M of order $m \times (r-a)$ and N of order $(r-a) \times n$ are arbitrary matrices satisfying $R(A : M) = R(A^* : N^*) = r$.

The following simple lemma is actually the key to the proofs in the next section.

Lemma 3: If $A_N \to A$, then $R(A_N) \geqslant R(A)$ for N sufficiently large.

Proof: Let r = R(A) and let B and C be matrices such that $BAC = I_r$ (the $r \times r$ identity matrix). Then $BA_NC \to BAC$ so $|BA_NC| \to |BAC| = |AAC| = |AAC|$ (where $|\cdot|$ denotes determinant). Thus $R(A_N) > r$ for N sufficiently large.

O.E.D.

Necessary and sufficient conditions for convergence of G-inverses

Stewart (1969) showed that if $A_N \to A$ then $A_N^+ \to A^+$ if $R(A_N) \to R(A)$ (where $\{\cdot\}^+$ denotes the Moore-Penrose inverse defined preceding Corollary 8). We now show that this condition is necessary for arbitrary choices of A_N^- .

Theorem 4: Suppose $A_N \to A$ and let $G_N = A_N^-$. In order that G_N converge, it is necessary that $R(A_N) \to R(A)$.

Proof: Suppose $R(A_N) \not\rightarrow R(A)$. Then, there exists a sequence $\{A_{N_k}\}$ such that $R(A_{N_k}) > R(A)$, by Lemma 3. There exists $\mathbf{x}_{N_k} \in \mathcal{M}(G_{N_k} A_{N_k})$ such that $A\mathbf{x}_{N_k} = 0$ and $\|\mathbf{x}_{N_k}\| = 1$. Thus

$$\begin{split} \boldsymbol{x}_{N_k} &= \boldsymbol{G}_{N_k} \boldsymbol{A}_{N_k} \boldsymbol{x}_{N_k} = \boldsymbol{G}_{N_k} (\boldsymbol{A}_{N_k} - \boldsymbol{A} + \boldsymbol{A}) \boldsymbol{x}_{N_k} = \boldsymbol{G}_{N_k} (\boldsymbol{A}_{N_k} - \boldsymbol{A}) \boldsymbol{x}_{N_k} \\ \text{so that} \quad 1 &= \|\boldsymbol{x}_{N_k}\| \leqslant \|\boldsymbol{G}_{N_k}\| \, \|\boldsymbol{A}_{N_k} - \boldsymbol{A}\| \, \|\boldsymbol{x}_{N_k}\| = \|\boldsymbol{G}_{N_k}\| \, \|\boldsymbol{A}_{N_k} - \boldsymbol{A}\|. \end{split}$$

It follows that $\|G_{N_k}\| > \|A_{N_k} - A\|^{-1} \to \infty$, so G_{N_k} does not converge. Q.E.D.

Since neither A_N^- nor $R(A_N^-)$ is in general unique, $A_N \to A$ and $R(A_N) \to R(A)$ can not alone guarantee $A_N^- \to A^-$. (For example let

$$A_{N}=A=\begin{pmatrix}1&0\\0&0\end{pmatrix}\text{ and }A_{N}^{-}=\begin{pmatrix}1&a_{N}\\b_{N}&c_{N}\end{pmatrix},\quad A^{-}=\begin{pmatrix}1&a\\b&c\end{pmatrix},$$

 a_N , b_N , c_N , a, b, c completely arbitrary.) We show, however, that if allowable convergent row and column spaces are specified, then there is a convergent sequence of g-inverses with the specified row and column spaces. The following result of Rao and Mitra gives necessary and sufficient conditions to realize a g-inverse with row and column spaces contained in specified spaces.

Lemma 5 (RM Lemma 4.4.1): Given matrices A, P, Q, a necessary and sufficient condition for A to have a g-inverse of the form G = PCQ is that R(QAP) = R(A) in which case the only choices for C are $(QAP)^-$. An inverse with the required property is unique, if further R(P) = R(Q) = R(A).

The following criterion is also needed.

Lemma 6:
$$R(QAP) = R(A)$$
 iff

$$R(\mathbf{A}) = R(\mathbf{P}) - \delta(\mathcal{M}(\mathbf{P}) \cap \mathcal{O}(\mathbf{A}^*)) = R(\mathbf{Q}) - \delta(\mathcal{M}(\mathbf{Q}^*) \cap \mathcal{O}(\mathbf{A})).$$

Proof: It is easy to show that $R(AP) = R(P) - \delta(\mathcal{M}(P) \cap \mathcal{O}(A^*))$ and $R(A^*Q^*) = R(Q^*) - \delta(\mathcal{M}(Q^*) \cap \mathcal{O}(A))$. Q.E.D.

In view of Theorem 4 and Lemma 5, the following result is the best one could hope to obtain by specifying row and column spaces for g-inverses.

Theorem 7: For N=1,2,... let A_N be an $m \times n$ matrix of rank a_N , let S_N be an $n \times s$ matrix of rank r_N , and let T_N be at $\times m$ matrix of rank r_N . Let A be an $m \times n$ matrix of rank a, let S be an $n \times s$ matrix of rank r, and let T be at $\times m$ matrix of rank r. Suppose that $A_N \to A$, $S_N \to S$, $T_N \to T$, and $a_N \to a$. Suppose

$$R(\mathbf{T}_N \mathbf{A}_N \mathbf{S}_N) = R(\mathbf{A}_N) - a_N$$
 for $N = 1, 2, ...$

and

$$R(TAS) = R(A) = a$$

Then there exist matrices G_N , G such that $G_N = A_N^-$, $G = A^-$. $\mathcal{M}(G_N) = \mathcal{M}(S_N)$, $\mathcal{M}(G_N^-) = \mathcal{M}(T_N^+)$, $\mathcal{M}(G) = \mathcal{M}(S)$, $\mathcal{M}(G^+) = \mathcal{M}(T^+)$, and $G_N \to G$. If $r_N = a_N$ for $N = 1, 2, \ldots$, then G_N and G are the unique reflexive g-inverses having the specified row and column spaces.

Proof: (The basic idea behind this proof was suggested by S. K. Mitra.) By Lemma 6, $\delta(\mathcal{M}(S) \cap O(A^*)) = r - a = \delta(\mathcal{M}(T^*) \cap O(A))$. Thus there exist nonsingular matrices B and C such that $SB = (B_{10} : B_{20} : 0_{RX(B-I)})$.

 $\begin{array}{ll} (CT)^{\bullet} = (C_{10}^{\bullet}: C_{30}^{\bullet}: 0_{m\times(L-I)}, & \mathcal{M}(B_{30}) = \mathcal{M}(S) \bigcap \mathcal{O}(A^{\bullet}), & \mathcal{M}(B_{10}: B_{20}) = \\ \mathcal{M}(S), \ B_{20}^{\bullet}B_{10} = 0_{(I-\Delta)\times a}, & \mathcal{M}(C_{20}^{\bullet}) = \mathcal{M}(T^{\bullet}) \bigcap \mathcal{O}(A), & \mathcal{M}(C_{10}^{\bullet}: C_{30}^{\bullet}) = \mathcal{M}(T^{\bullet}), \\ \text{and} \ \ C_{10}C_{20}^{\bullet} = 0_{a\times(I-\Delta)}, & \text{Considering} \ \{S_{N}B\}_{N-1}^{\sigma} \ \text{and} \ \ (CT_{N})_{N-1}^{\sigma}, & \text{it is clear that} \\ \text{one may assume} \ \ S = (S_{10}: S_{30}: 0_{n\times(L-I)}), \ \ T^{\bullet} = (T^{\bullet}_{10}: T^{\bullet}_{30}: 0_{m\times(L-I)}) \ \text{where} \\ \mathcal{M}(S_{20}) = \mathcal{M}(S) \bigcap \mathcal{O}(A^{\bullet}), & S_{10}^{\bullet}S_{10} = 0_{(I-\Delta)\times a}, & \mathcal{M}(T_{10}^{\bullet}) = \mathcal{M}(T^{\bullet}) \bigcap \mathcal{O}(A), \\ \text{and} \ \ T_{10}T_{20}^{\bullet} = 0_{a\times(I-\Delta)}. \end{array}$

Write $S_N=(S_{1N}:S_{2N}:S_{2N})$ and $T_B^*=(T_{1N}^*:T_{2N}^*:T_{2N}^*)$, where $S_{1N},S_{2N},S_{2N},T_{1N},T_{2N}$ are of orders $n\times a,\ n\times (r-a),\ n\times (s-r),\ a\times m,\ (r-a)\times m$, and $(l-r)\times m$, respectively, so that $S_{1N}\to S_{10},\ S_{2N}\to S_{20},\ S_{2N}\to 0,\ T_{1N}\to T_{10}$, $T_{2N}\to T_{20}$, and $T_{2N}\to 0$. Since

$$a = R(TAS) = R\begin{pmatrix} T_{10}AS_{10} & 0\\ 0 & 0 \end{pmatrix} = R(T_{10}AS_{10})$$

$$R(T_{10}T_{10}S_{10}S_{10}) = r - a$$

and it follows that

$$R\left(\begin{pmatrix}T_{10}\\T_{20}\end{pmatrix}(A+T_{20}^*S_{20}^*)(S_{10}:S_{20})\right)=R\begin{pmatrix}T_{10}AS_{10}&0_{0\times(T-4)}\\0_{(T-4)\times A}&T_{20}T_{10}^*S_{20}^*S_{20}\end{pmatrix}=r$$

so by Lemmas 2 and 5,

$$G = (S_{10} : S_{10}) \left[\left(\frac{T_{10}}{T_{20}} \right) (A + T_{20}^{\bullet} S_{10}^{\bullet}) (S_{10} : S_{10}) \right]^{-1} \left(\frac{T_{10}}{T_{20}} \right)$$

is a g-inverse of A with $\mathcal{M}(G)=\mathcal{M}(S)$ and $\mathcal{M}(G^*)=\mathcal{M}(T^*)$. Moreover, $(A_N:T^*_{2N})\to (A:T^*_{20}), (A^*_N:S_{2N})\to (A^*:S_{20}),$ and $R(A_N:T^*_{2N}), R(A^*_N:S_{2N})\in A_N+(r-a)$ so by Lemma 3 $R(A_N:T^*_{2N})=R(A^*_N:S_{2N})=r$ for N sufficiently large. Likewise

$$R\left(\left(\begin{array}{c} \boldsymbol{T_{1N}} \\ \boldsymbol{T_{2N}} \end{array}\right)(\boldsymbol{A_N} + \boldsymbol{T_{2N}^*} \ \boldsymbol{S_{2N}^*})(\boldsymbol{S_{1N}}:\boldsymbol{S_{2N}})\right) = r$$

for N sufficiently large. Thus it follows from Lemmas 2 and 5 that for $N > N_0$ (N_0 sufficiently large)

$$G_{0N} = \left(S_{1N}:S_{2N}\right) \left[\left(\begin{array}{c} T_{1N} \\ T_{2N} \end{array} \right) \left(A_N + T_{2N}^{\star} S_{2N}^{\star}\right) \left(S_{1N}:S_{2N}\right) \right]^{-1} \left(\begin{array}{c} T_{1N} \\ T_{2N} \end{array} \right)$$

is a g-inverse of both $A_{0N}=A_N+T_{2N}^e\,S_{2N}^e$ and A_N , $\mathcal{M}(A_N)\subset\mathcal{M}(A_{0N})$ and $\mathcal{M}(A_N^*)\subset\mathcal{M}(A_{0N}^*)$, and $\mathcal{M}(G_{0N})=\mathcal{M}(S_{1N}:S_{2N})\subset\mathcal{M}(S_N)$ and $\mathcal{M}(G_{0N}^*)=\mathcal{M}(T_{1N}^*:T_{2N}^*)\subset\mathcal{M}(T_N^*)$. Clearly $G_{0N}\to G$.

Let $N \ge N_a$. By Lemmas 5 and 6.

$$\delta(\mathscr{M}(S_{1N}:S_{2N}) \bigcap \mathcal{O}(A_{0N}^{\bullet})) = \delta(\mathscr{M}(T_{1N}^{\bullet}:T_{2N}^{\bullet}) \bigcap \mathcal{O}(A_{0N})) = 0$$

and
$$\delta(\mathcal{M}(S_N) \cap \mathcal{O}(A_{0N}^*)) = \delta(\mathcal{M}(T_N^*) \cap \mathcal{O}(A_{0N})) = r_N - r_N$$

If $r_N > r$, let the columns of B_N and C_N^* consist of orthonormal bases for $\mathcal{M}(S_N) \cap \mathcal{O}(A_{0N}^*)$ and $\mathcal{M}(T_N^*) \cap \mathcal{O}(A_{0N})$, respectively. If $r_N = r$ let $B_N = 0$, and $C_N = 0$, Define

$$G_N = G_{0N} + N^{-1}B_NC_N \quad (N \geqslant N_0).$$

Clearly $G_N \to G$. Since $O(A_{0N}) \subset O(A_N)$ and $O(A_{0N}^*) \subset O(A_N^*)$, $A_N G_N A_N = A_N G_{0N} A_N + N^{-1} A_N B_N C_N A_N = A_N$. Finally,

$$\mathcal{M}(G_N) = \mathcal{M}(G_{0N}) \oplus \mathcal{M}(B_N) = \mathcal{M}(S_N)$$

and

$$\mathcal{M}(G_N^*) = \mathcal{M}(G_{0N}^*) \oplus \mathcal{M}(C_F^*) = \mathcal{M}(T_N^*).$$

For $N < N_0$ let G_N be any g-inverse of A_N satisfying $\mathcal{M}(G_N) = \mathcal{M}(S_N)$ and $\mathcal{M}(G_N^*) = \mathcal{M}(T_N^*)$ (one may use the construction which yielded G).

 G_N and G defined above satisfy all the specified requirements. If $r_N = a_N$ for all N, then by Lemma 1, G_N and G are the unique reflexive g-inverses of A_N and A having the specified row and column spaces. Q.E.D.

Since one may define the Moore-Penrose inverse A^* of a matrix A to be the unique g-inverse of A satisfying $\mathcal{M}(A^*) = \mathcal{M}(A^*)$, $\mathcal{M}(A^{**}) = \mathcal{M}(A)$ (A^* exists by Lemmas 6 and 5), the result of Stewart (1969) referred to earlier follows immediately from Theorems 4 and 7.

Corollary 8: Let
$$A_N \to A$$
. Then $A_N^+ \to A^+$ iff $R(A_N) \to R(A)$.

Another way to specify a unique g-inverse G of A is to specify square matrices E and F with

$$R(\mathbf{E}) = R(\mathbf{F}) = R(\mathbf{F}\mathbf{A}\mathbf{E}) = R(\mathbf{A}) \qquad \dots (3)$$

and require $\mathcal{M}(G) = \mathcal{M}(E)$, $\mathcal{M}(G^*) = \mathcal{M}(F^*)$. We shall denote such g-inverses by A_{EF}^- . By Lemma 5, $A_{EF}^- = E(FAE)^+F$. If in particular E and F are diagonal matrices, then A_{EF}^- is the matrix obtained by striking from A the columns corresponding to zero diagonal entries in E and the rows corresponding to zero diagonal entries in E and the rows corresponding to zero diagonal entries in F, inverting this reduced matrix and finally expanding again by adding zeros to obtain A_{EF}^- (cf. RM(11.2.3)). Considering a sequence $A_N \to A$ and specified E, F, it follows from Theorem 7 that the condition (3) required for existence of $(A_N)_{EF}^-$ and A_{EF}^- automatically guarantees $(A_N)_{EF}^- \to A_{FF}^-$.

3. APPLICATIONS TO ASYMPTOTIC HYPOTHESIS TESTING

In asymptotic hypothesis testing one often bases a test on a quadratic form

$$Q_N = X_N' B_N X_N$$

where X_N is asymptotically p-variate normal $\mathcal{H}_p(\mu, A)$ under an appropriate null hypothesis (in which case $\mu=0$) or a sequence of "near-by" alternative hypotheses. In general the dispersion matrix A is unknown but a sequence of consistent n.n.d. estimators $\hat{A}_N \to A$ (stochastically) is available. If \hat{A}_N is nonsingular, one takes $B_N = \hat{A}_{\pi}^{-1}$. The case where A_N is singular is frequently dismissed by remarking that one can work with a largest nonsingular minor and the corresponding variates; one then assumes that these reduced matrices converge to a nonsingular matrix. This amounts to assuming that $\hat{A}_N \to A$ (stochastically) and setting $B_N = (\hat{A}_N)_{EF}^-$ for some fixed choice of a diagonal matrix E = F where R(E) = R(EA) = R(A). If \hat{A}_N is unbiased for A, then $\mathcal{M}(A_N) \to \mathcal{M}(A)$ for all N sufficiently large (for proof see Appendix) in particular, $R(\hat{A}_N) \to R(A)$ (a.s.). In general, however, \hat{A}_N is not unbiased for A and no useful conditions are known to guarantee the stochastic convergence $R(\hat{A}_N) \to R(A)$.

Suppose in what follows that the assumption $R(\hat{A}_N) \overset{\Gamma}{\longrightarrow} R(A) = r$ is valid. Thus one can specify (Theorem 7) convergent g-inverses $A_N \overset{\Gamma}{\longrightarrow} A^-$ (in particular, Corollary 8 exhibits such choice), and it follows that the asymptotic distribution of $Q_N = X_N' \hat{A}_N X_N$ is the same as that of $Q = X' A^- X$ where X has distribution $\mathcal{H}_p(\mu, A)$. By Theorem 9.2.3 (RM), Q has chi-square distribution with r = R(A) degrees of freedom and noncentrality parameter $\mu' A^- \mu$ provided either $\mu \in \mathcal{M}(A)$ or A^- is a symmetric reflexive g-inverse. Thus if \hat{A}_N and A^- are symmetric reflexive g-inverses of \hat{A}_N and A, respectively, chosen such that $\hat{A}_N \overset{\Gamma}{\longrightarrow} A^-$ (in particular \hat{A}_N^+ , A^+ or an appropriate choice of $(\hat{A}_N)_{EF}^-$, A_{EF}^- will do), then Q_N has asymptotically chi-square distribution with r d.f. and noncentrality parameter $\mu' A^- \mu$. Denote by χ_*^* the upper α point of the central chi-square distribution with r d.f. and assume r < p

Consider first the following restrictive case. Let X_y have mean m_N and dispersion matrix D_N , and suppose that

$$\mathcal{M}(m_N) = \mathcal{M}(\mu)$$
 and $\mathcal{M}(\hat{A}_N) = \mathcal{M}(D_N) = \mathcal{M}(A)$.

^{*}The notation "," denotes stochastic convergence.

(This will be the case in particular whenever X_N is unbiased for μ and \hat{A}_N is unbiased for $D_N = A$ as in the following classical situation: Let U_N have mean $N^{-1}\mu$ and dispersion matrix A, let Y_1, \ldots, Y_N be N independent copies of U_N , let

$$X_N = N^{\frac{1}{2}} \overline{Y}_N, \text{ and let } \hat{A}_N = (N-1)^{-1} \sum_{i=1}^N (Y_i - \overline{Y}_N)(Y_i - \overline{Y}_N)'.$$

It should be observed that $R(\hat{A}_N) = R(A)$ for N > r. Thus $\mathcal{M}(\hat{A}_N) = \mathcal{M}(A)$ for all N > r.

For N > r, let C be a $p \times m$ matrix of rank p-r satisfying $C\hat{A}_N = 0$ and consider the test Φ_{1N} which rejects $H_0: \mu = 0$ when $CX_N \neq 0$ as well as when $Q_N > \chi_1^2$ and the usual test Φ_{0N} which rejects H_0 only when $Q_N > \chi_1^2$. Then Φ_{1N} has the same size as Φ_{0N} but has power 1 against alternatives $\mu \notin \mathcal{M}(A)$.

Unfortunately the preceding test Φ_{1N} is not robust against even minor deviations from $\mathcal{M}(m_N)=\mathcal{M}(\mu)$ and $\mathcal{M}(\hat{A}_N)=\mathcal{M}(D_N)=\mathcal{M}(A)$ since $P[X_N-m_N\in\mathcal{M}(D_N)]=1$. In fact one often knows only that $X_N\stackrel{P}{\to}\mu$, $D_N\to A$, and $\hat{A_N}\stackrel{P}{\to}A$ so that Φ_{1N} is not applicable and one must hope to detect arbitrary deviations from H_0 using Φ_{0N} alone. But no choice of Φ_{0N} is sensitive against arbitrary deviations $\mu\in\mathcal{M}(A)$ since

$$\lim_{N\to\infty} P_{\mu}[X_N'\hat{A}_N X_N > \chi_z^2] = \alpha \text{ for } \mu \in \mathcal{O}(A^-).$$

Moreover, different symmetric reflexive choices for \hat{A}_{N} yield different spaces C(A) and different noncentrality parameters $\mu'A^{-}\mu$. Furthermore, even for fixed $\mu \in \mathcal{M}(A)$, there is no g-inverse G of A which maximizes $\mu'G\mu$.

Example 11. Let $e_1, ..., e_r$ be an orthonormal basis for $\mathcal{M}(A)$, let $e_{r+1}, ..., e_p$ be an orthonormal basis for $\mathcal{O}(A)$, and write matrices and vectors with respect to the basis $e_1, ..., e_p$. Let $1 \le k \le \min(r, p-r)$ and l=r-k. Then

$$\mathbf{A} = \left(\begin{array}{ccc} \mathbf{D}_{1}^{2} & 0 & 0 \\ 0 & \mathbf{D}_{1}^{2} & 0 \\ 0 & 0 & 0 \end{array} \right)$$

where $D_k = \operatorname{diag}(d_1, \ldots, d_k)$, $D_l = \operatorname{diag}(d_{k+\ldots}, d_{\tau})$, and d_1, \ldots, d_{τ} are positive. Also for $l \in (-\infty, \infty)$

$$A_{i}^{-} = \begin{pmatrix} D_{i}^{-1} & 0 & tD_{i}^{-1} & 0 \\ 0 & D_{i}^{-1} & 0 & 0 \\ tD_{i}^{-2} & 0 & t^{2}D_{i}^{-1} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

is a symmetric reflexive g-inverse of A (notice that $A^+=A_0^-$). If $\mu=(\mu_1,\ldots,\mu_p)'$, then

$$\mu' A_i^- \mu = \sum_{i=1}^k d_i^{-1} (\mu_i + i \mu_{r+i})^2 + \sum_{i=k+1}^r d_i^{-1} \mu_i^2,$$

so if $(\mu_{r+1}, \dots, \mu_p)' \neq 0$. $\mu'A_i^-\mu$ increases without bound as $|t| \to \infty$. In particular, if for fixed $\mu \in \mathcal{M}(A)$, e_1 and e_{r+1} are chosen so that $\mu_i = 0$ for $1 \neq i \neq r+1$, then $\mu'A_i^-\mu = d_i^{-2}(\mu_1 + t\mu_{r+1})^2$, so if G is any fixed g-inverse of A and K > 0 is given, one can find a symmetric reflexive g-inverse $A^-(G, K)$ such that $\mu'A^-(G, K)\mu > K\mu'G\mu$.

One should not conclude, however, that a g-inverse of the type A_i is generally desirable. For even though the test Φ_{oN} using A_i for large |z| is highly sensitive against certain alternatives μ far from $\mathcal{M}(A)$ (in the sense that $\sum_{i=1}^r \mu_i^2 \left(\sum_{i=1}^r \mu_i^2\right)$ is small) such a test is necessarily relatively insensitive against certain alternatives near $\mathcal{M}(A)$; more precisely, if $\mu_1 < 0$, $t\mu_{r+1} > 0$ and $\mu_1 = 0$ ($1 \neq i \neq r+1$), then $\mu'A_i^*\mu < \mu'A^*\mu$ holds whenever $\mu_1(t\mu_{r+1})^{-1} < -\frac{1}{2}$. (Even without making a special choice $\mu_1 = 0$ ($1 \neq i \neq r+1$), it is clear from the expression $\mu'A_i^*\mu$ that there exists μ satisfying $\mu'A_i^*\mu < \mu'A^*\mu$ for any given t). In general, as long as $\mu \in \mathcal{O}(A)$, the maximum gain in sensitivity for detecting μ far from $\mathcal{M}(A)$ which can be realized by choosing a reflexive g-inverse G different from $A_0 = A^*$ is more than offset by the maximum loss in sensitivity for detecting μ near $\mathcal{M}(A)$ in the sense given in the following lemma.

Lemma 12: Let G be any symmetric reflexive g-inverse of A different from A^+ , and let $S_{\bullet} = \{\mu : \|P_A\mu\| \geqslant \epsilon$ and $\|\mu\| = 1\}$ where P_A is the orthogonal projector on $\mathcal{M}(A)$. Then there is an ϵ_{\bullet} (depending on G) such that for $0 < \epsilon \leqslant \epsilon_{\bullet}$

$$\max_{\mathbf{u} \in S_{\bullet}} \frac{\mu' A^{+} \mu}{\mu' G \mu} > \max_{\mathbf{u} \in S_{\bullet}} \left\{ \frac{\mu' G \mu}{\mu' A^{+} \mu} \right\}$$

where $max(a, \infty) = \infty$. In fact for $0 < \epsilon \le \epsilon_0$, there is a $\mu_0 \in S_a$ such that $\mu_0^* A^+ \mu_0 > \mu_0 G \mu_0 = 0$.

Proof: It suffices to prove the last statement of the lemma.

In the notation of Example 11, an arbitrary symmetric reflexive g-inverse G of A has the form

$$G = \begin{pmatrix} D^{-1} \\ B'D \end{pmatrix} (D^{-1} : DB)$$

where $D = \operatorname{diag}(d_1, ..., d_r)$. Since $G \neq A^+$, $DB \neq 0$ so that also $K = \|D^BB\| > 0$. Let $a_0 = K^s/(K^2 + 1)$, and let $0 < \epsilon \leqslant \epsilon_0$ so that $\epsilon/(1 - \epsilon) \leqslant K^2$. Choose r such that $\|D^BB\|^2/\|v\|^2 > \epsilon/(1 - \epsilon)$, and let $u = -D^BBr$. Then, $\mu_0 = (\||u|^2 + \||v|^2)^{-1}(u^* : v')^* \in S_t$, since

$$\|P_{A}\mu_{0}\| = \|u\|/(\|u\|^{2} + \|v\|^{2})^{\frac{1}{2}} > F$$

and $\|\mu_0\| = 1$.

Furthermore,
$$\mu'_0 A^{\dagger} \mu_0 = \frac{\| \mathbf{D} B \mathbf{n} \|^2}{\| \mathbf{u} \|^2 + \| \mathbf{n} \|^2} > 0$$

while

$$\mu_0'G\mu_0 = \frac{\|-DBv + DBv\|}{\|u\|^2 + \|v\|^2} = 0.$$
 Q.E.D.

Lemma 12 shows that the Moore-Penrose inverse is in one sense optimal if one wishes to consider alternatives $\mu \in \mathcal{M}(A)$. One the other hand, if the only alternatives of interest are $0 \neq \mu \in \mathcal{M}(A)$, the choice of g-inverse is irrelevant since $\mu'A^-\mu$ does not depend on the choice of A^- if $\mu \in \mathcal{M}(A)$.

In summary, we have seen that when an asymptotic test of $H_0: \mu = 0$ is based on the quadratic form $Q_N = X_M \hat{A}_N X_N$ in the asymptotically $\mathcal{T}_N(\mu, A)$ random variable X_N , there are many choices of \hat{A}_N^c which yield an asymptotically chi-square distribution for the test statistic Q_N ; one of these amounts to working with a largest nonsingular minor and the corresponding variates. The procedure for detecting deviations $\mu \notin \mathcal{M}(A)$ which works for the usual exact and asymptotic normal theory test statistics is not generally applicable and one must often rely solely on Q_N to detect arbitrary deviations from H_0 . But even for fixed $\mu \in \mathcal{M}(A)$ there is no way to choose \widehat{A}_N to achieve maximum sensitivity at μ ; fortunately, the Moore-Penrose inverse does have an optimal property for detecting $0 \neq \mu \notin \mathcal{M}(A)$. Since the choice of g-inverse has no effect on the sensitivity of Q_N to deviations $0 \neq \mu \in \mathcal{M}(A)$, the Moore-Penrose should be used unless one wishes to increase the sensitivity of Q_N to a particular $\mu \in \mathcal{M}(A)$ with a corresponding (but greater unless $\mu \in C(A)$) loss of sensitivity at some other $\mu_0 \notin \mathcal{M}(A)$.

Appendix

Proposition: If $\hat{A}_N \stackrel{P}{\rightarrow} A$ and \hat{A}_N is unbiased for A, then $\mathcal{M}(\hat{A}_N) = \mathcal{M}(A)$ for all N sufficiently large.

Proof: Since $A_N \stackrel{P}{\rightarrow} \hat{A}$, by Lemma 3 we obtain

$$R(\hat{A}_N) \geqslant R(A)$$
 with probability one. ... (A1)

for all N sufficiently large. Consider a vector λ orthogonal to the columns of A, i.e., $\lambda' A = 0$. Then $\lambda' A_N \lambda$ is nonnegative random variable with $E(\lambda' \hat{A}_N \lambda) = 0$. Hence $\lambda' \hat{A}_N \lambda = 0$ with probability one or equivalently $\lambda' \hat{A}_N = 0$. Thus we get

$$\mathcal{M}(\hat{A}_N) \subset \mathcal{M}(A)$$
 ... (A2)

for all N. In particular, $(A2) \Longrightarrow R(\hat{A}_N) \leqslant R(A)$ for all N. This, together with (A1) gives $R(\hat{A}_N) = R(A)$ for all N sufficiently large. Hence (A2) gives $\mathcal{M}(\hat{A}_N) = \mathcal{M}(A)$ for all N sufficiently large.

Acknowledgement. The authors would like to express their sincere thanks to Professor S. K. Mitra for very valuable suggestions which led to a considerable improvement in the original draft of the paper.

REFERENCES

RAO, C. R. and MITRA. S. K. (1971): Generalized Inverse of Matrices and its Applications, John Wily, New York.

RUSSELL, C. T. (1973a): On the use of g-inverses in asymptotic hypothesis testing. (Abstract).
Notices Am. Math. Soc., 20, A-206.

(1973b): Rank tests for multivariate paired comparisons involving random variables which are not identically distributed. Ph. D. Thesis, Indiana University.

STEWART, G. W. (1969): On the continuity of the generalized inverse. SIAM J. Appl. Mat. 17, 33-45.

Paper received: June, 1983.