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SUMMARY. Let Ay, A bomx n matrices with Ay— A. 1t is shown thet R(Ay) - R(A)

is necessary for tho B! of any seq of Jizod inverses Ag— A, and sufficient
conditions ato given for the exi of a 8¢ qt of g-i " with spocified row
and column spoces. This generalizc o rosult of Stewart (1969). Applications to asymptotio
bypothesia testing are discussed and an optimal proporty of the Meore-Panroso invorss is presanted.

1. NOTATION AND PRELIMINARY RESULTS

Boldface capital letters denote matrices, and boldface lower-case letters
denote column vectors over the complex field, Omx» denotea the zero matrix
of order mxn and will be written an ‘““0” when the order is clear from
context. A°, 4', R(4), A(A), end O(A4) denote, respectively, the conjugate
transpose « f 4, the transpose of A when A has real components, the rank of
A, the colurn space of 4, and the space orthogonal to .#(4) with respect
to the usual inner product. For two subspace @ and 7 of the same
vector space, @ () Z denotes the intersection, and if §N2=1{0}, 3D 2
denotes the direct sum; &(Q) denotes the dimension of 8. [z]l = (z°x)t,
4 = sup {||dz|:: 2] = 1} ; 2y > = mennnﬂli_l?. lien—2l = 0, Ay — A means

Ay x - Az for sll 2 or equivalently [[Ay—A|| - 0. The frequent references
to Rao and Mitra (1971) will be indicated by RM.

Definition. G is said to be a generalized inverse of A if
AGA = A. o (1)
@8 also called a g-inverse of A and written G = A~. G js ssid to be a reflexive
g-inverse of A if in addition to (1)
GAG =G . {2)
holds, in which case one writes G = A;.
AMS (1980) rubject elaseification : 15 AOB, 02F05
Key worda and phrases : Gevors'izad invarsa, Moore- Penrate inverse, Asymptotic hypothesis
testing.
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By Lomma 2.6.1 (RM), if G = A-, then G = 47 iff R(G) = R(4). 1,
is worthwhile noticing that a reflexive g-inverse is uniquely determined by
its row and column apaces.
Lemma 1: If G, = A; and G, = 47, then G, = G, iff A(G)) = 46,
and (G}) = A(G)).
Proof :  Necessity is obvious.
If G, = DG, end G, = G,E, then
G, = DG, = DG,AG, = G AGE =G E =G, QED.
In a sense, all g-inverses are reflexive, aa the following lemma shows.
Lemma 2. (RM Theorem 2.7.1) : Let A be of order m X n and rank a, ang
let r be an integer salisfying a € r € min(m, n). Then G = 4- iff
G = {A+MN); where M of order mx(r—a) and N of order (r—a)xn are
arbitrary matrices satisfying R(A: M)= R(A*:N*) =r.
The following simple lemma is actually the key to the proofs in the next
section.
Lemma 3: If Ay— A, then R(Ay) > R(A) for N sufficiently large.
Proof : Let r = R(4) and let B and C be matrices such that BAC =1,
(the rxr identity matrix). Then B4,C— BAC so |BAyC|~ |BAC| =1
(where |- | denotes determinant). Thus R(dy) > r for N sufficiently large.
QED.
2. NECESSARY AND SU¥FICIENT CONDITIONS FOR
CONVERGENCE OF (-INVERSES
Stewart (1969) showed that if Ay— A then Aj— A+ if R(Ay)— R(4)
{where (-)* denotes the Moore-Penrose inverse defined preceding Corollary 8).
We now show that this condition is necessary for arbitrary choices of Ajz.
Theorem 4: Suppose Ay— A and le Gy = Az In order thal Gy
converge, it is necessary that R(Ay)— R(A).
Proof : Suppose R(Ay) 4> R(A). Then, there exists a sequence {AN.)
such that R(ANk) > R(A), by Lemma 3. There exists zy, € "”(G": A"r)
such that A’”g =0 and ||;c~'|| = 1. Thus

1“’} = GNkANAINk = GN“(AN"-—A+A)1N. = GNk(AN‘,_A)'N.
so that 1= ||1?Nk|| < IIGNkII IIANt—AII lla-'kall = Ilaukll IIAN.—-AII-

It follows that ||GNkI| > |[AN.—-A||"—> ®, 80 GN‘ does not converge. Q.E.D-
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Since neither Ay nor R(AF) is in general unique, Ay— A and
R(Ax)— R(A) can not alone guarentee 45— A-. (For example let

1 o 1 ay 1 a
Ay=A= and A;:( s A'=( ,
0 0 by cx b ¢

ay. by, ¢y, a, b, ¢ completely arbitrary.) We show, however, that if allowable
convergent row and column spaces are specified, then there is a convergent
sequence of g-inverses with the specified row and column spaces. The follow-
ing result of Rao and Mitra gives necessary and sufficient conditions to realize
a g-inverse with row and column spaces contained in specified spaces.

Lemma 5 (RM Lemma 4.4.1): Given matrices A, P, Q, a necessary
and sufficient condition for A lo have a g-inverse of the form G = PCQ is that
R(QAP) = R(A) in which case the only choices for C are (QAP)~. An inverse
with the required properly is unique, if further R(P) = R(Q) = R(A).

The following criterion is also needed.
Lemma 6: R(QAP) = R(A) iff
R(4) = R(P)—8(.s(P) N 0(4*)) = R(Q)—5(s(Q*) N O(A)).

Proof : 1t is easy to show that R(AP) = R(P)—&(.#(P) () O(A*)) and
R(4°Q*) = R(Q")—8(#(Q") () O(4)). QED.

In view of Theorem 4 and Lemma 5, the following result is the best one
could hope to obtain by specifying row and column spaces for g-inverses.

Theorem 7: For N =1,2, ... let Ay be an mXn malrix of rank ay, let
Sy be an nx s matrix of rank ry, and let Ty be a t Xm matriz of rank ry. Let
A be an mx n malriz of rank a, let 8 be an nx s matriz of rank r, and let T be
a !xm matrix of rank r. Suppose that Ay— A, Sy— 8, Ty— T, and ay— a.
Suppose

R(TyAxSy) = R(Ay) —ay for N=1,2, ..

and R(TAS) = R(A) =a.

Then there cxist malrices Gy, G such that Gy = Ay, G = A-. MGy) =
M), MGy) = MTE), MB) = HS). MG")= AT, and Gy~ G.
If ry=ay for N =1,2,..., then Gy and G are the unique reflexive g-inverses
having the specified row and column spaces.

Proof :  (The basic idea behind this proof was suggested by S. K. Mitra.)
By Lemma 6, 3(u(S)() O(A*) = r—a = 84 T*) () O(4)). Thus there
oxist nonsingular matrices B and C such that SB = (Byy: By, : Oaxa_n)
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(CT)* = (Cy: Cqp: Omxn),  A(By) = M(S) N 0(4"), M(By:By) =
M(S), B3By, = 0y_ayxa: ACy) = HT*) N O(A), M(Cry: Coa) = (T,
and GyyCj = Oayr_a). Considering {SyB}g_, and {CTy}z.,, it is clear that
one may agsume S = (8, : 8y : 0,y n), T* = (T : Tho : Omy ry) Where
HEu) = A(S) N O(A"), SySi = Op_mxar MTio) = MTIN0A),
and T, Ty = [

Write Sy = (S,y : Sy : Spx) and Ty = (T3y : Ty5 : Thy), where Sy, Sy,
Sy, Ty, Ty, Ty are of orders nxa, nX(r—a), nx(s—r), eXm, (r—a)xm,
and (¢—r) X m, respoctively, so that Syu— Sg Spy— Su, Sw—o 0. T\yo T,
Tw— Ty, and Tyy— 0. Since

T, A4S, 0
a=R(TAS) =R ( 1o . ) = R(T,,AS;)
0

end R(T 3, T3,8:80) = r—a
it follows that

® ( ( Tm) T, AS), Oaxira
(A+T30Si0)(S : S )) =R i =
Ty o O _ayxa T TioS:Sw

80 by Lemmas 2 and 5,

Ty 17/ T
G = (S, : Su) [ ( ) (A+T5 8308y : SW)J
T Tx

2
is a g-inverse of 4 with _#(G) = #(S) snd _#(G*) = #(T*). Moreover,
Ay i) (A 2 T2), (A3 : Sy) (4° : Sya), and R(dy : Ty), R(Ay: Sy
< ay+(r—a) so by Lemma 3 R(Ay: Tgy) = R(A) : Spw) = r for N suffi-
ciently large. Likewise

T
R ( (Ay+Tin SNSi: S ) =+
TI’

for N sufficiently large. Thus it follows from Lemmas 2 and 5 that for
N > N, (N, sufficiently large)

Tw . 2f T
Gon = (Suw : San) T (An+T3y S3n)(Sin 1 Sp)

W Tow
ia a g-inverse of both A,y = Ay+T;y S;; and Ay, MAy) C H(Ay) and
MAY) C MAy), and #(G) = A(Siv : Sav) C A(Sy) and HG5y) =
ATy : Toy) C AH(TY). Clearly Gow— G.
Let N > N,. By Lemmas 5 and 6,

S(A(Sww : Saw) N O(Agy)) = S(A(Tix : Tn) N O(Aen)) = 0
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and S(A(Sy) N O(Agy)) = $(AH(TY) N O(Aon)) = ru—r.

If ry > r, let the columns of By and C7, consist of orthonormal bases for
M(Sy) N O(Agy) and A(TY) () O(dgx), respectively. If ry=r let By =
0ux1 80d Cy = 0;x,,. Define

Gy = Gy +N'ByCy (N > N,).

Clearly Gy— G. Since O(A,) CO(Ay) and  O(dgy) C O(4y),
AnGyAy = ANGoyAy+N-14yBNCnAy = Ay. Finally,

| H(Gy) = M(Gon) D A(Br) = A(SN)
an
HGy) = H(Goy) ® ACy) = A(T).

For N < N, let Gy be any g-inverse of Ay satisfying A(Gw) = A(Sy)
and A(GY) = A(T}) (one may use the construction which yielded G).

Gy and G defined above satisfy all the specified requirements. If ry = ay
for all N, then by Lemma 1, Gy and G aro the unique reflexive g-inverses of
Ay and A having the specified row and column spaces. Q.E.D.

Since one may define the Moore-Penrose inverse A~ of a matrix 4 to
be the unique g-inverse of A satisfying (A *) = AH(A*), M(A+*) = M(A)
(4* exists by Lemmas 6 and 5), the result of Stewart (1989) referred to earlier
follows immediately from Theorems 4 and 7.

Corollary 8: Let Ay— A. Then Af— A+ iff R(Ay)— R(A).

Another way to specify a unique g-inverse G of A is to specify square
matrices E and F with

R(E) = R(F) = R(FAE) = R(4) w3

and require M(G) = A(E), A(G") = A(F*). We shall denote such
g-inversea by App. By Lemma 5, App = E(FAE)*F. If in particular E and
F are disgonal matrices, then Agp is the matrix obtsined by striking from A
the columns corresponding to zero diagonal entries in E and the rows cerrespon-
diag to zero diagonal entries in F, inverting this reduced matrix and finally
expanding again by adding zeros to obtain Agp (cf. RM(11.2.3)). Considering
a sequence Ay— A and specified E, F, it follows from Theorem 7 that the
condition (3) required for existence of (Ay)gp 8nd A, automatically
guarantees (Ay)gp— App.
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3. APPLIOATIONS TO ASYMPTOTIO HYPOTHESIS TESTING
In asymptotio hypothesis testing one often bases & test on a quadratio form

v = X.'anXu

where Xy is asymptotically p-variate normal 7Z;(g, A) under an appropriste
null hypothesis (in which cage . = 0) or & sequence of “near-by” alternative
hypotheses. In general the dispersion matrix A is unknown but a sequence
of i t n.n.d. estimatora A};—»A (stochastically) is available. If zi,,
i8 nonsingular, one takes By = zi,;’. The case where Ay is singular is fre-
quently dismissed by remarking that one can work with a largest nonsingular
minor and the corresponding variates; one then assumes that these reduced
matrices converge to a nonsingular matrix. This amounts to assuming that

Ay— A (stochastically) and setting By = (AN)E‘,‘ for some fixed choice of a
diagonal matrix E = F where R(E) = R(EA) = R(A). 1f Ay is unbiased for
A, then A(Ay) = A(A) for all N sufficiently large (for proof see Appendix)
in particular, R(zi,)—» R(A) (a.8.). In general, however, /iN is not unbiased
for A and no useful conditions are known to guarantee the stochastic conver-
gence R(Ay)— R(A).

Suppose in what follows that the assumption R(,i,,-)-'-; R(A) = ris valid.*
Thus ono can specify (Theorem 7) couvergent g-inverses 4y La (in parti-
cular, Corollary 8 exhibits such choice), and it follows that the asymptotic
distribution of @y = X;,A;X, is the samo as that of @ = X’A" X where X
has distribution Yz,(u, A). By Theorem 9.2.3 (RM), @ has chi-square dis-
tribution with r = R(A4) deg of freedom and trality p 1
WAy provided oither x & M(4) or A” is a symmetric reflexive g-inverse.

Thus if ai;, and A" aro symmetric refloxive g-inverses of jN and A, respeotively,

chosen such that /i;, Sa (in partioular A.g, A+ or an appropriate choice of

(AW)gp Agp will do), then Qy has asymptotically chi-square distribution

with r d.f. and noncentrality parameter z’A~p. Denote by ! the upper

a point of the central chi-square distribution with 7 d.f. and sssume r < p
Consider first the following restrictive case. Let X have mean my

and dispersion matrix Dy, and suppose that

Hmy) = Mp) and A(Ay) = AD,) = HA).

*Ths notation ":)" denotes stochastio convergenos.
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(This will be the case in particular whenever X, is unbiased for p and A, is
unbiased for Dy = A a8 in the following classical situation : Let Uy have
mean N-tp and dispersion matrix 4, let ¥,, ..., ¥ be N independent copies
of Uy, let

- a N - -
Xy = NPy, andlet Ay = (N—1)1 Z (V—F)(¥i~TF).

It should be observed that R(Ay) = R(A) for N > r. Thus A(Ay) = H(A)
forall N >r.

For N > r, let C be a pxm matrix of rank p—r satisfying C'A",.,= (]
and consider the test ®,, which rejects H,: g = 0 when C’'X, # 0 as well
as when Qx > 2 and the usual test ®yy which rejects H, only when Q, > x2.
Then @, has the same size as Doy but has power ! against alternatives
p e SA).

Unfortunately the preceding test @,y is not robust against even minor
doviations from A(niy) = Ap) snd H(Ay) = SDy) = HA) since
PIXy—my e MD)) =1 In fact one often knows only that XN_,;F)
Dy— 4, and .tf,,ﬁ» 4 so that @,y is not applicable and one must hope to
detect arbitrary deviations from H, using ®gy alone. But no choice of ®gy
is sensitive against arbitrary deviations ¢ .#(A4) sinoe

lim P,[X,A;Xy > xt) = afor g & O(A).
N

Morcover, different symumetric reflexive choices for i,‘, yield different spaces
¢{4") and different noncentrality parameters p’A p. Furthermore, even
for tixed p ¢ JJ(A), there is no g-inverse & of A which maximizes p'Gp.
Example 11. Let e, ..,e, be an orthonormal basis for #(d), let
€,y .., €p be an orthonormal basis for O(4), and write matrices and vectors
with respect to the basis e,,..., 5. Let 1< k< min(r, p—7) and l=r—k. Then

)
a=[ 0o b o
0 0 o

where Dy = diag(d,, ..., di}, Di = diag(dx, . .-, dr), and d,, ..., dr are positive.
Also for ¢ € (—o0, c0)
7Dt 0 bt 0
0 Dt 0 0
tDiz 0 2Dt 0

0 0 0 0
4 2-11
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is a symmetrio refloxive g-inverso of A (notice that A*=4;). It
B = (g, - pp)s then

k 4
wATR = L di¥mtipeat+ T dith,
= imk41

80 if (frey oo pp) # 0. pArp increases without bound as 4] - w. Ip
partioular, if for fixed u ¢ (A4), €, and e,,, are chosen so that uq =0 for
1#i#r+), then A7 = d 3, +e,,), s0 if G i8 any fixed g-inverse
of A and K > 0 is given, one can find & symmetric reflexive g-inverse A(G, K)
such that wA7(G, K)g > Kp'Gp.

One should not conclude, however, that s g-inverse of the type A, is

generally desirable. For even though the test ®p using A; for large j¢|
is highly sensitive agyinst certain alternatives u far from /() (in the sonse
that _Z':I » (.'2’:: /t,') is small) such & test is neceasarily relatively insensitive
against certain alternatives near ./({A); more precisely, if g, < 0, fgr, >0
and =0 (1 #4s#r+l), then w'A7p < p'A*p holds whenever
#ltpr)™ < —4 (Even without making a special choice gy =0
(1 # i # r41), it is clear from the expression p'A7 p that there exists ¢ satis-
fying w'A; p < p'A*p for any given ). In general, as long as g ¢ O(4), the
maximum gain in sensitivity for detecting w far from _#(4) which can be
realized by choosing a reflexive g-inverse G different from A; = A+ is more

than offset by the maximum loss in sensitivity for detecting u near .#(4)
in the sense given in the following lemma.

Lemma 12: Let G be any symmelric reflexive g-inverse of A different
Jrom A%, and let S, = {u: |\P qull > ¢ and |p|| = 1) where P , is the orthogonal
projector on H(A). Then there is an ¢, (depending on G) such that for
0<€e< €

maz FATE £Ge

maz T > max { L ——.

pes, A'GR nese {.“ A+l‘}
where maz[a, 0) = 0. In fact for 0 < € < €, there s a p, e 8, such thal
Pod sy > Gy = 0.

Proof : It suffices to prove the last atatement of the lemma.

In the notation of Example 11, an arbitrary symmetric reflexive g-inverse
G of A has the form

D
G = ( ) (D-!: DB)
nbo
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whore D = disgldy, ..., dr). Since G #£ A, DB £0 so that also
K =|PBI>0 Let 8,=KYK'+1). and let 0<ege so that
ff1—6) < K®. Choose r such that [D*By|Yllol® > ¢/(1—¢). and let
= —DWBr. Then, gy = (W4 [Ir|?)~Ku' : ¢’y € S,, since

1P 4ptgli = Ihellf(llal® oty >

and lpgll = 1.
. \D B
ey =
Furthermore. u,A*p, el 4ot >0
. . _ I-DBv+DBol _
while 2.Gp, = ioE = 0. QED.

Temma 12 shows that the Moore-Penrose inverse is in one sense optimal
if one wishes to consider alternatives u ¢ .#(A). One the other hand. if
the only alternatives of interest are 0 # u e A(A), the choice of g-inverse is
irrelevant since #’A4-p does not depend on the choice of A~ if u € A(A).

In summary, we have seen that when an asymptotic test of H,: pu =0
is based on the quadratic form Qv = Xy4, Xy in the ssymptotically 72,(u. 4)
random variable Xy, there are many choices of A; which yield an asymptoti-
cally chi-square distribution for the test statistic Qu; one of these amounts
to working with a largest nonsingular minor and the corresponding variates,
The procedure for detecting deviations u ¢ L#(A) which warks for the usual
exact and asymptotic normal theory test statistics is not generally applicable
and one must often rely solely on @y to detect arbitrary deviations from H,.
But even for fixed u ¢ L#(A) there is no way to choose ﬁ,, to achieve maximum
sensitivity at p; fortunately, the Moore-Penrose inverse does have an optimal
property for detecting 0 # p ¢ A(A). Since the choice of g-inverse has no
cffect on the sonsitivity of Qn to deviations 0 # p & L#(A), the Moore-Ponrose
inverse should be nged unless one wishes to increase the sensitivity of Qv to
a particular u ¢ .A(A) with a corresponding (but greater unless u € (\(-1))
loss of sensitivity at some other ug ¢ A(A4).
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Appendix
Proposition :  If A‘,—P) A and Ay is unbiased for 4, then J¢(.4AN3=MA)
for all N sufficiently large.
Proof : Since Ay LA by Lemma 3 we obtain

R(ﬁ,,) > R(A) with probability one. .. (Al
for all N sufficiently large. Consider a vector A orthogonal to the columns
of A, ie, X’A =0. Then A’AyA is nonnegative random variable with
E(NAyA) = 0. Hence XAnA =0 with probability one or equivalently
NAy=0. Thus we get

AAR) C AA) - (Y

for all N. In particular, (A2) — R(dwm < R(A) for all N. This, together
with (A1) gives R(zf‘v) = R(A) for all N sufficiently Jarge. Hence (A2) gives
MAy) = A(A) for all N sufficiently large.
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