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A method is outlined to derive Sagdeev’s pseudopotential which can take into account the dusty
charge fluctuation. Numerical solutions of Sagdeev’s master equations are obtained to show the
existence of solitary waves. Also, for small amplitude, explicit analytical expressions for solitary

waves and double layers are obtained. !

I. INTRODUCTION

Dusty plasma can be defined as an ionized gas which
contains charged particles. It exists in astrophysical bodies
(for example, the radial structure of Saturn’s rings, narrow
rings of Uranus, etc.)! > The discovery of the dust accoustic
wave (DAW) and the dust ion accoustic wave (DIAW)® gave
new impetus to the study of dusty plasma. Nonlinear prop-
erties of dusty acoustic waves has been the subject of study
by several authors.* !* Linear and nonlinear dust accoustic
waves have been studied experimentally.'*'® Ton-acoustic
shocks!” and ion-acoustic solitary waves'® have been ob-
served recently in the laboratory. In fact, dusty plasma phys-
ics has become one of the most rapidly growing fields in
plasma physics in particular and science in general (for a
survey and other references see Ref. 19). Many of the studies
used multicomponent plasma models to study plasma dy-
namics. If one takes into account dusty charge fluctuation,
analytical study becomes difficult. However, one can derive
Korteweg—de Vries (KdV) type equations using the reduc-
tive perturbation technique. Neglecting dusty charge fluctua-
tion makes the analysis an extension of a multicomponent
plasma model with the dusty component having large mass
and, hence, ion and electron inertia may be neglected. Using
this model, large amplitude dusty accoustic waves have been
studied for both magnetized and nonmagnetized dusty
plasma.zo*22

In the present work a method of obtaining the exact
Sagdeev’s potential for the dusty plasma has been obtained
without neglecting the dust charge fluctuation. Sagdeev’s
pseudopotential equation has been numerically solved to ob-
tain soliton solutions. The plan of the paper is as follows. In
Sec. II basic equations of the dusty plasma dynamics are
given and the Sagdeev’s potential has been derived from
these equations. In Sec. III some special cases are considered
where successive approximations are made for the dust
charge. In Sec. IV small amplitude expansion for the pseudo-
potential is derived. Analytic solutions for ¢(¢) in terms of &
are also given in this section. Numerical solution of the
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Sagdeev’s equation d¢p/dé=~\—2¥(¢p) are discussed in
Sec. V. Section VI is kept for the conclusion.

Il. BASIC EQUATIONS AND DERIVATIONS OF
PSEUDOPOTENTIAL

We consider a dusty plasma whose constituents are elec-
trons, ions and dust grains. The electron and ions are taken as
Boltzmannian so that the densities are given by

n,=n, exp(e],—¢), (1)
n;=nj exp( —;(b)’ 2)

where n,(, n;, are the unperturbed electron and ion number
densities. 7,, 7, are the temperatures and ¢ is plasma po-
tential.

Equations governing the dust dynamics are

2 2 nana=o, ®)
ot ox

%=47T[e(ne_ni)_and]a (5)
%-f-ud%:Ie-i—li, (6)

where uy, ny, q4, my, respectively, are the dust particle
velocity, number density, charge, and the mass. /,, /; are the
electron and ion currents, respectively. Following Goertz' we
take the following expressions for /,, /;:
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where m, , m; are electron and ion masses, a is the radius of
dust particle with surface charge ¢,;. In order to study Egs.
(1)—(6) we introduce the following normalizations:

x=)\df, (9)
_ Ty 10
¢_ e ¢9 ( )
1 (11)
t=——r,
wpd
nd=nd0ﬁd, (12)
qa=9q4094 > (13)
=/ Loy 14
Ug= m_dudv ( )
ad=7\ddd, (15)
where
1 _ 1 1 1 (16)
No Nae o Mg
B kBTj 1/2 1
T (1)

(j=i,e), \y; is the Debye length for jth species, g.=—e
and ¢,=e,
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Wpq
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is the dust frequency and z; is the grain charge number given
by z;=qq/e. With these normalizations equations (3)—(6)
take the following forms:
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In order to use quasipotential analysis, the dependant vari-
ables are made to be functions of a single variable é=x
— M 7, where M defines the Mach number. Equations (19)—
(22) reduce to

Y L B 25
3 d_g(”d”d)_ ) (25)
dii, dit, do

= — g —= L
df Uy dg 24094 dg 5 (26)
d*¢
JE 0= e M Qizaoas 27)
_dqg
(—M+ud)d—§‘:[g+1,-. (28)
Equation (25) gives
1
ad=M( - _—). (29)
ny

From Egs. (25) and (29), we obtain

L7d:ZMﬂ O¢ﬁd67dd¢_l’~ (30)
Assuming
foq‘ﬁdcidd&ﬂ(q‘s), (31)
we get
_Zdo - b
d_ﬁF(QS)_M(I ﬁd)’ (32)
F'(¢ - F(¢
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d
If we write
_d¢
P= d_f’ (34)

then from Eq. (27) we have

P2

-2
2z

_ T, T
oo(exp p— 1)*"%’07 [ exp( - ¢T) - 1]
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The Sagdeev potential is given by = —(P?/2) so that

e
dé

From Eq. (28), we obtain

2
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Now we have a system of differential equations:

dq, i (I,+1;)

P -
dF
- =haqq- 39)
do

From Egs. (38) and (33),

By = =
L F (¢)2_—m(1e+[i)'
(40)

F"(¢)— F”(¢)F(¢)—

Equations (38), (39), and (40) are the main results of this
paper. To get arbitrary amplitude solitary waves without any
approximation for ¢, like the charge balance equation, one
has to integrate these equations numerically. However, one
can get analytical expressions for the pseudopotential up to
any order in ¢.

lll. SOME SPECIAL CASES
A. Case (i)

We first consider the charge balance equation:

I,+I1,=0; (41)
this gives
g, =A+Bé, (42)
where
7o Time) " nig
A= “ A\ Ty e 43
- e’zao(T,+T;) ’ “3)
adTe
B=— . 44
o (44)

Using Eq. (31), we obtain

F'(¢) 1—2‘“’]‘5—(2@ =A+B¢. (45)
Integrating, we get
_ B _
F(¢)— 2F2(¢) A¢+5¢2)- (46)

Solving, we have
M 2 _ B_
F(#)= [1—\/ %(Adﬂr;#)J- @7

B. Case (ii)

I,+1,#0. (48)

We shall assume a linear relation for g,
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g, =1+bdo. (49)

Using Egs. (37) and (49) and equating the coefficients of
¢ from both sides we have

_agT, | 2zy
_ezzdo Mz(”'_l) :|, (50)
where r=(T,/T;). Finally we get
_ 2 1
F($)=— 1—\/ —— ¢+—b¢2”. (51)
Z40 2

C. Case (iii)
Ji=l+a p+a,*+..., (52)

_ M
F(¢)=a{l—\/ -

where a,, a,.. can be found from consistency equations
using Egs. (33), (35), and (37). However, if we neglect terms
of o(¢*) then a,, a,, a; can be found from the equations

(53)
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3
+ il e_alqdo) (62) At B,=0 the Duffing equation yields a stable or un-
6 T, agNgT; stable soliton solution depending on whether B;>0 or B,

IV. SMALL AMPLITUDE EXPANSION

Let us assume that the pseudopotential can be written

d*¢p oy 5
d§2 __ﬁ_Al¢_A2¢ 5 (63)
where
7 itig T, a 1
A=t o — (64)
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By a transformation ¢(&)=w(z) with z=sech «¢, the above
equation reduces to

d*w dw
a?z?(1—2z?%) 77 +a?z(1—2z%) ——A,w+4,w*=0.

dz
(66)

Since z=0 is a regular singularity, we seek a solution in the
form

w(z)=2, b,z". (67)
r=0
The series truncates at r=3 if a=.4,/4, b,

=34,/24,, by=0, b;=0 and we get a solution in the form
34, X—Mrt
s ([
where 8= \/4/4,. If we now include ¢ term in d° ¢p/d &* one
can write
)
dé

(68)
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where
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<0. If B,#0, we put z=tanh k£ and Eq. (71) reduces to
d*’F dF
k(1 —22)2F—2k22(1 —zz)Z—BlF+B2F3=O,
(72)
Where Bl=A1_2A2ILL+3A3M2, Bzz_A3 with AI_AZM
+A3u*=0, u=A,/345. Here the Frobenius method re-

quires an infinite series, but whose sum can be calculated and
turns out to be

F(z)=ay(1-z%)"?, (73)
which gives
4, 2B\
d(é)=—*|——| sechk& where k=\/B—1. (74)
345 B,

From Eq. (69), we obtain
L(dp\> 4, , A,
2\deg] 2 3

The boundary conditions for the formation of a double layer

are

o+ % ot (75)

de\* B B
aE =0 at ¢=0 and ¢=0¢,,. (76)

The above conditions imply that d ¢/d & can be written in the
form

dé
d—§=k¢(¢m—¢), (77)

where k=/A3/2, ¢,,=2A4,/345 and the conditions for the
existence of the double layer are

94,4;=243%, 4;>0. (78)

Applying the tanh method we obtain the double-layer
solution as

b(6)= %cﬁm[ 1 rtanh(gﬂ, (79)

where

5= . (80)
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FIG. 1. Sagdeev’s potential /(@) vs ¢ is plotted for different values of M
where the dust-plasma parameters are n;,=1.1X10""cm™3, =n,
=10 em™3, nyp=10" cm™3, T,=10eV, a,=107° cm, g 4= —93.96e¢.

-0.002 1

-0.004
[B=g
-0.006

-0.008 f

-0.01 : :
-4

FIG. 2. Plot of ¢ vs & for M=1.8, M=1.9, other parameters remain same
as in Fig. 1.

FIG. 3. Plot of 7, vs & for M= 1.8, others parameters remain same as in
Fig. 1.
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FIG. 4. Plot of 77, , i7; vs & for M= 1.8, other parameters remaining same as
in Fig. 1.

V. RESULTS AND DISCUSSIONS

In Fig. 1, the Sagdeev potential versus ¢ for different
values of M using Egs. (35) and (51) is plotted. The values of
the other parameters are given in the figure captions. It is
seen that a potential well exists on the side ¢=<0 for 1.6
<M=<3.1. This indicates that solitary wave solution exists
for 1.6=<M<3.1. Integrating numerically Eq. (34), the dip
soliton profile shown in Fig. 2 is obtained. It is seen that
while the solitary wave amplitude increases with the increase
of the Mach number, the width decreases. Compressive ion
and the dust density profiles shown in Fig. 3 and Fig. 4,
respectively. Figure 4 shows also the electron density profile
thereby showing depletion of electrons, which is to be ex-
pected as the dust density increases because of electron
depletion.

VI. CONCLUSION

A nonlinear wave equation in a plasma comprising elec-
tron, ions and dust charge grains is derived. Sagdeev’s po-
tential has been derived for stationary solitary wave solution
without neglecting dust charge fluctuation. Small amplitude
expansion is obtained and the so-called tanh method has
been applied to obtain soliton solution analytically. Numeri-
cally, the solitary wave solution is obtained, which is a dip
soliton whose amplitude increases, but the width decreases,
with the increase of Mach number.
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