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Abstract

We construct several examples of positive definite functions, and use the positive definite matrices
arising from them to derive several inequalities for norms of operators.

1. Introduction

This paper has two goals. The first is to present, and to advance, a technique for
proving the positive definiteness of several classes of matrices related to important
problems in operator theory. The second is to show how this positivity can be used
to prove inequalities for norms of operators.

The matrices that we discuss include the divided-difference matrices or the
Loewner matrices. These are matrices whose entries are defined as

aij =
f(λi)− f(λj)

λi − λj , (1.1)

where λ1, . . . , λn are distinct points in an interval I , f is a differentiable function
on I , and it is understood that aii = f′(λi). It is a fundamental fact in Loewner’s
theory of operator monotone functions that f is operator monotone (see Section 4
for the definition) if and only if all matrices given by (1.1) associated with f are
positive definite. Following the seminal paper of Löwner in 1934, there have been
several expositions of this theory. However, no direct proof of the positivity of these
matrices (for the standard examples of operator monotone functions) seems to have
been found. Our method provides such a proof.

More examples of the efficacy of this technique are provided by giving new and
simple proofs of the classical Heinz inequalities and their more recent generalisations
that have aroused a lot of interest. Some new inequalities are established, and a
decade-old problem related to the Lyapunov Equation is solved.

We summarise the essence of the technique in Section 2, and then illustrate its
use in the subsequent sections.

2. Preliminaries

All matrices in this paper are n× n complex matrices. The entries of a matrix X
are denoted by xij . A positive (semi)definite matrix will simply be called positive.
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The symbol ||| · ||| stands for a unitarily invariant norm on the space of matrices;
see [3, Chapter IV] for basic properties of such norms. The usual operator norm
‖ · ‖ is an example of such a norm.

The Schur product or the Hadamard product of two matrices X and Y will be
denoted as X◦Y . This is the matrix whose (i, j) entry is xijyij . A well-known theorem
of Schur says that if X and Y are positive, then so is X ◦ Y .

If X is positive, then for any matrix Y we have

|||X ◦ Y ||| 6 max
i
xii|||Y ||| (2.1)

for every unitarily invariant norm [19, p. 343].
We shall say that two matrices X and Y are congruent if Y = T ∗XT for some

nonsingular matrix T . Congruence is an equivalence relation. If X is positive, then
every matrix Y congruent to X is also positive.

We shall repeatedly use the connection between positive matrices, positive definite
functions on R and positive definite kernels; see, for example, [18, pp. 400–402]. We
shall also use basic facts about Fourier transforms. Let f be a function in L1(R).
The Fourier transform of f is the function f̂ defined as

f̂(ξ) =

∫ ∞
−∞

f(x)e−iξx dx.

By a well-known theorem of Bochner, if f ∈ L1(R), then f(x) > 0 for almost all x
if and only if f̂ is positive definite; see [14, p. 70].

Our method involves three ideas. The matrices that we study here have entries
of the form xij = f(λi, λj). First, we find a congruence that converts such a matrix
to one whose entries have the form xij = g(λi − λj). These matrices are positive if
the function g is positive definite. The second step in our argument is calculating
the Fourier transform ĝ(ξ). If we find that ĝ(ξ) > 0, then we can conclude that g is
positive definite. This establishes the positivity of the matrix X. Now we can use X
as a Schur multiplier, and obtain norm inequalities using the inequality (2.1).

Germs of some of these ideas can be found in several recent papers; see, in
particular, the papers by Corach, Porta and Recht [5, 6], Horn [17], Mathias [26]
and Zhan [30]. In a paper written while our work was in progress, Kosaki [20] has
taken an approach closely related to ours. This has been elaborated further in two
papers by Hiai and Kosaki [15, 16].

When writing Fourier transforms, we shall ignore constant factors, since the only
property we use is that of being positive almost everywhere.

For simplicity, we state and prove all our results for n×n matrices. Many of them
are valid for operators in Hilbert space. The extensions are often (but not always)
routine. Also, the passage from positive definite matrices to positive semidefinite
ones is a routine matter via standard continuity arguments; we shall not make an
explicit mention of it.

3. The Heinz inequalities

In [13] Heinz proved several inequalities for fractional powers of positive opera-
tors, and used them to obtain many results on the perturbation of spectral families
of self-adjoint operators. Some of these have been generalised in different directions
and given different proofs. We consider here two of these basic inequalities.

Let A,B be positive matrices, and let ν be any real number, 0 6 ν 6 1. Then for
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all X and all unitarily invariant norms,

|||AνXB1−ν + A1−νXBν ||| 6 |||AX +XB|||, (3.1)

|||AνXB1−ν − A1−νXBν ||| 6 |2ν − 1| |||AX −XB|||. (3.2)

To appreciate the power of these inequalities, note that the very special case X = I

and ν = 1
2

of (3.1) gives

|||A1/2B1/2||| 6 1
2
|||A+ B|||,

a noncommutative arithmetic-geometric mean inequality. See the discussion in [3,
Section IX.4] for connections between such results, and for different proofs.

Here we give yet another proof of these two inequalities that brings out a new
connection between them.

It is enough to prove these inequalities for the special case A = B; the general
case follows from the special one by a much used 2× 2 block matrix argument; see,
for example, [3, p. 264].

Assume A = B in (3.1). Since the norms that we are considering are unitarily
invariant, we may assume that A is diagonal with positive diagonal entries λ1, . . . , λn.
Let Y be the matrix with entries yij given as

yij =
λνi λ

1−ν
j + λ1−ν

i λνj

λi + λj
. (3.3)

Note that

AνXA1−ν + A1−νXAν = Y ◦ (AX +XA).

The matrix Y is Hermitian, and all its diagonal entries are 1. So if we show that for
0 6 ν 6 1, Y is a positive matrix, then the inequality (3.1) would follow from (2.1).

The proof is easy for three special values of ν. When ν = 0 or 1, all entries of
Y are equal to 1. So Y is positive. When ν = 1

2
, yij = 2(λiλj)

1/2/(λi + λj). Let D be

the diagonal matrix with diagonal entries λ
1/2
1 , . . . , λ

1/2
n , and let C be the matrix with

entries

cij =
1

λi + λj
. (3.4)

The matrix C given by (3.4) is called the Cauchy matrix and is known to be positive.
Indeed, if gi = e−λit, 1 6 i 6 n, then the inner product between gi and gj in the space
L2([0,∞)) is

〈gi, gj〉 =

∫ ∞
0

e−(λi+λj )t dt =
1

λi + λj
. (3.5)

So the matrix C is a Gram matrix and, hence, is positive. Since Y = 2DCD, Y is
congruent to C and is, therefore, positive too.

Now let ν be any real number in (0, 1). Note that

yij = λ1−ν
i

(
λ2ν−1
i + λ2ν−1

j

λi + λj

)
λ1−ν
j .

Thus, applying a congruence, we see that the positivity of Y for 0 < ν < 1 is
equivalent to that of the matrix Z with entries

zij =
λαi + λαj

λi + λj
, −1 < α < 1. (3.6)
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Since λi > 0, we can put λi = exi for some xi ∈ R. Thus to show that the matrix
Z is positive, it suffices to show that the kernel

K(x, y) =
eαx + eαy

ex + ey
, −1 < α < 1, (3.7)

is positive definite. Note that

K(x, y) =
eαx/2

ex/2

(
eα(x−y)/2 + eα(y−x)/2

e(x−y)/2 + e(y−x)/2

)
eαy/2

ey/2

=
eαx/2

ex/2

(
cosh α(x− y)/2

cosh(x− y)/2

)
eαy/2

ey/2
.

So K(x, y) is positive definite if and only if the kernel

L(x, y) =
cosh α(x− y)/2

cosh(x− y)/2
, −1 < α < 1, (3.8)

is positive definite. This follows from the following theorem.

Theorem 3.1. For −1 < α < 1, the function

f(x) =
cosh αx

cosh x
(3.9)

is a positive definite function on R.

Proof. The function f is even. Its Fourier cosine transform can be seen to be

f̂(ξ) =
cos(απ)/2 cosh(ξπ)/2

cosh ξπ + cos απ
; (3.10)

see [11, p. 1192]. For −1 < α < 1, cos απ/2 is positive. For all ξ 6= 0, cosh ξπ > 1.

So the denominator in (3.10) is also positive. Thus f̂(ξ) > 0. Hence, by Bochner’s
Theorem, f is positive definite.

Remark 3.1. Another proof of Theorem 3.1 goes as follows. It has the advan-
tage of avoiding the complicated-looking transform (3.10). Use the familiar factoring

cosh x =

∞∏
k=0

(
1 +

4x2

(2k + 1)2π2

)
, (3.11)

to write

cosh αx/2

cosh x/2
=

∞∏
k=0

1 + α2x2/(2k + 1)2π2

1 + x2/(2k + 1)2π2

=

∞∏
k=0

[
1− α2

1 + x2/(2k + 1)2π2
+ α2

]
. (3.12)

To prove that the product is positive definite, it suffices to prove that each factor is
positive definite. Since −1 < α < 1, it suffices to prove that for each k, the function

g(x) =
1

1 + x2/(2k + 1)2π2
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is positive definite. The function

h(x) =
1

1 + x2

is an easily recognised positive definite function, being the Fourier transform of the
positive function e−|ξ|. Thus for each a, the function 1/(1 + a2x2) is also positive
definite. So g(x) is positive definite.

Remark 3.2. The Schur product is used to derive the arithmetic-geometric
mean inequality in [5], [17] and [26]. In [6], the authors derive a norm inequality by
appealing to Theorem 3.1 and to Schur’s Theorem.

Remark 3.3. We have used the positivity of the matrix given by (3.3) to prove
the Heinz inequality (3.1). The argument can be turned around. Mathias [26] has
given a proof of the positivity of the matrix given by (3.6) for 0 < α < 1, using a
norm inequality from [4], also given in [3, Theorem IX.4.8].

Now we consider the inequality (3.2). It is enough to prove this for A = B, and
it is enough to consider the case 1

2
< ν < 1.

Let W be the matrix whose entries are

wij =
λνi λ

1−ν
j − λ1−ν

i λνj

λi − λj , i 6= j,

wii = 2ν − 1 for all i. (3.13)

By the arguments that we used to prove (3.1), the inequality (3.2) will be proved if
we can show that W is positive whenever the λi are positive.

Let D be the diagonal matrix with entries λν−1
1 , . . . , λν−1

n down its diagonal, and
let V = DWD. Then V has entries vij = (λ2ν−1

i − λ2ν−1
j )/(λi − λj), i 6= j, and

vii = (2ν − 1)λ2ν−2
i for all i. We want to prove that this matrix is positive for all ν,

1
2
< ν < 1. Put α = 2ν − 1. We then need to prove that the matrix V with entries

vij =
λαi − λαj
λi − λj , i 6= j,

vii = αλα−1
i for all i, (3.14)

is positive for all α, 0 < α < 1.
As before, one can see that the matrix V given by (3.14) is positive if and only

if the kernel K1(x, y) defined as

K1(x, y) =
eαx − eαy
ex − ey , x 6= y,

K1(x, x) = αe(α−1)x, (3.15)

is positive definite for 0 < α < 1. In turn, this is positive definite if and only if the
kernel

L1(x, y) =
sinh α(x− y)/2

sinh(x− y)/2
, x 6= y,

L1(x, x) = α, (3.16)

is positive definite for 0 < α < 1 (see the passage from (3.7) to (3.8)). This positive
definiteness is a consequence of the following theorem.
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Theorem 3.2. For 0 < α < 1, the function

f1(x) =
sinh αx

sinh x
(3.17)

is a positive definite function on R.

Proof. The function f1 is even. Its Fourier cosine transform is

f̂1(ξ) =
sin απ

cosh ξπ + cos απ
; (3.18)

see [11, p. 1192]. For 0 < α < 1, the numerator in (3.18) is positive; the denominator
is also positive, since cosh ξπ > 1 for all ξ 6= 0. Thus f̂1(ξ) > 0 for all ξ. Hence, by
Bochner’s Theorem, f1 is a positive definite function.

Remark 3.4. Once again, we could avoid the computation of the transform
(3.18) if we use the factoring

sinh x

x
=

∞∏
k=1

(
1 +

x2

k2π2

)
.

Then we can write

sinh αx

sinh x
= α

∞∏
k=1

1 + α2x2/k2π2

1 + x2/k2π2
.

Each factor in this product is of the form

1 + b2x2

1 + a2x2
=
b2

a2
+

1− b2/a2

1 + a2x2
, 0 6 b < a,

and is, therefore, positive definite.

Remark 3.5. The positivity of the matrix V given by (3.14) is equivalent to the
operator monotonicity of the function f(t) = tα, 0 < α < 1, on the positive half line.
This is a consequence of Loewner’s Thoerem [3, Theorem V.3.4]. We shall discuss
this in greater detail in Section 4.

Remark 3.6. Furuta [10] has observed that several norm inequalities for oper-
ators are equivalent to the operator monotonicity of f(t) = tα, 0 < α < 1, on R+.
Our analysis shows the equivalence of (3.2) to this list. In this context, see also [9].

Remark 3.7. Our analysis shows that (3.1) and (3.2) are as intimately related as
the functions cosh and sinh. There is another sense in which these two inequalities
are real and imaginary parts of one statement. Let X be a Hermitian and A a
positive matrix. Let 0 < ν < 1, and let

S = AνXA1−ν , T = νAX + (1− ν)XA.
If we use the notations ReZ and ImZ to mean

ReZ = 1
2
(Z + Z∗), ImZ = 1

2i
(Z − Z∗)
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for every matrix Z , then we see that

Re S = 1
2
(AνXA1−ν + A1−νXAν),

Im S = 1
2i

(AνXA1−ν − A1−νXAν),
ReT = 1

2
(AX +XA),

ImT = 1
2i

(2ν − 1)(AX −XA).

So the inequalities (3.1) and (3.2) say that

|||Re S ||| 6 |||ReT |||, |||Im S ||| 6 |||ImT |||. (3.19)

Remark 3.8. For the Hilbert–Schmidt norm ‖Z‖2 = (trZ∗Z)1/2, we have

‖Z‖2
2 = ‖ReZ‖2

2 + ‖ImZ‖2
2.

In this case, the two inequalities in (3.19) can be combined to say ‖S‖2 6 ‖T‖2. This
need not be true for other norms.

Remark 3.9. It is easy to see that if X is any matrix and A any positive matrix,
then

‖AνXA1−ν‖2 6 ‖νAX + (1− ν)XA‖2, (3.20)

for 0 < ν < 1. A corresponding statement for other unitarily invariant norms need
not be true. Choose

A =

(
8 0
0 1

)
, ν = 1

3
,

to obtain an easy counter-example to (3.20) when the norm ‖ · ‖2 is replaced by ‖ · ‖.
When ν = 1

2
, the inequality (3.20) does hold for all unitarily invariant norms. This

is a special case of (3.1).

Remark 3.10. In a recent paper [20], Kosaki has given other proofs of (3.1),
(3.2) and related inequalities. He uses integral transforms, and the trigonometric and
hyperbolic functions enter his calculations, but in a way different from ours.

4. Operator monotone functions

Let f be a real-valued function on an interval I . Then f is said to be operator
monotone if it satisfies the following property: whenever A and B are two Hermitian
matrices of the same size, with all their eigenvalues in I and such that A > B, then
f(A) > f(B). (Here A > B means that A− B is positive.)

A rich theory of operator monotone functions was developed by Löwner [24].
Among the several papers and books where such functions are studied are [1, 2, 3,
7, 8, 12, 13, 19, 22, 23, 25].

Given any n points λ1, . . . , λn in I , consider the matrix of divided differences of f:
this is the matrix with (i, j) entries

f(λi)− f(λj)

λi − λj if i 6= j,

f′(λi) if i = j.

One of the first steps in Loewner’s theory is to show that f is operator monotone
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on I if and only if all such matrices (for all choices of λ1, . . . , λn in I) are positive
[3, Theorem V.3.4]. This is a natural generalisation of the fact that a function with
a positive derivative is monotone.

Other characterisations of operator monotone functions can be derived from
this: they have analytic continuations that map the upper half plane into itself
[3, Theorem V.4.7], and they have integral representations of a special type [3,
pp. 134–145].

It is somewhat curious that the operator monotonicity of special functions f is
proved in all the sources cited above by appealing to the latter characterisations, or
by special arguments for each function. No proof based on the first characterisation
(positivity of the divided-difference matrix) seems to be known. Our approach in
Section 3 readily leads to such proofs for all the standard examples; see below.

Example 4.1. For 0 < α < 1, the function f(t) = tα is operator monotone on
(0,∞).

In this case, the matrix of divided differences is the matrix V given by (3.14). We
have seen that this is a positive matrix.

Example 4.2. The function f(t) = log t is operator monotone on (0,∞).
The matrix of divided differences, in this case, is the matrix V with entries

vij =
log λi − log λj

λi − λj , i 6= j,

vii =
1

λi
for all i. (4.1)

Making the substitution λi = exi , we see that the positivity of the matrix V is
equivalent to the positive definiteness of the kernel

K2(x, y) =
x− y
ex − ey , x 6= y.

Since

K2(x, y) =
1

ex/2

(
(x− y)/2

sinh(x− y)/2

)
1

ey/2
,

the positive definiteness of K2(x, y) is equivalent to the positive definiteness of the
function

f2(x) =
x

sinh x
.

This is an even function, and its Fourier cosine transform is

f̂2(ξ) =
eπξ

(1 + eπξ)2

[11, p. 1185]. Since f̂2(ξ) > 0, the function f2 is positive definite by Bochner’s
Theorem.

Once again, if we use the infinite factoring

x

sinh x
=

∞∏
k=1

k2π2

k2π2 + x2
,

then we need not calculate f̂2(ξ).
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Example 4.3. The function f(t) = tan t is operator monotone on (−π/2, π/2).

Now the matrix of divided differences is the matrix V whose entries are

vij =
tan λi − tan λj

λi − λj , i 6= j,

vii = sec2 λi for all i. (4.2)

Using the identity

tan x− tan y =
sin(x− y)

cos x cos y
,

we can write

vij =
1

cos λi

(
sin(λi − λj)
λi − λj

)
1

cos λj
.

The matrix V is thus congruent to the matrix W with entries

wij =
sin(λi − λj)
λi − λj . (4.3)

To prove that W is positive, we have to show that the function f(x) = (sin x)/x
is positive definite. This is easy: f is the Fourier transform of the characteristic
function of the interval [−1, 1].

Example 4.4. For completeness, we note an easy proof of the fact that the
function

f(t) =
at+ b

ct+ d
, ad− bc > 0,

is operator monotone on any interval that does not contain the point−d/c. Following
the steps for other functions studied above, one sees that this reduces to showing
that the matrix with all entries 1 is positive.

From the fact that the matrices V given by (4.1) and (4.2) are positive, we can
derive some inequalities for norms of commutators, just as we did in Section 3. This
is indicated below.

Let D be the diagonal matrix with entries λ
1/2
1 , . . . , λ

1/2
n down its diagonal. Let

W = DVD, where V is the matrix given by (4.1). Then W is positive. The entries of
W are

wij =
log λi − log λj

λ
1/2
i λ

−1/2
j − λ−1/2

i λ
1/2
j

, i 6= j,

wii = 1 for all i. (4.4)

Using the arguments in Section 3, we obtain, from the positivity of this matrix, the
inequality

|||(logA)X −X(logB)||| 6 |||A1/2XB−1/2 − A−1/2XB1/2|||, (4.5)

valid for positive matrices A,B and for every matrix X. From this we obtain the
inequality

|||HX −XK||| 6 |||eH/2Xe−K/2 − e−H/2XeK/2|||, (4.6)

valid for all X and for Hermitian H,K .
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In the same way, from the fact that the matrix W given by (4.3) is positive, we
obtain the inequality

|||(sinH)X(cosK)− (cosH)X(sinK)||| 6 |||HX −XK|||. (4.7)

The inequalities (4.5)–(4.7) have been proved recently by Kosaki [20]. He remarks
that since trigonometric functions are neither monotone nor convex, a proof of (4.7)
using majorisation type arguments seems impossible. The proof that we have given
is just such a proof. It is clear that many more inequalities could be obtained using
these ideas. For example, from the positive definiteness of the function x/(sinh x),
one sees that

|||HX −XK||| 6 |||(sinhH)X(coshK)− (coshH)X(sinhK)|||, (4.8)

for all X and for Hermitian H,K .
The logarithmic mean of two positive numbers a and b is, by definition, the

quantity
a− b

log a− log b
=

∫ 1

0

atb1−t dt. (4.9)

We have then a refinement of the arithmetic-geometric mean inequality:

√
ab 6

∫ 1

0

atb1−t dt 6 1
2
(a+ b). (4.10)

An operator version of this has been proved recently by Hiai and Kosaki [15]. This
says that for positive matrices A,B and for every matrix X,

|||A1/2XB1/2||| 6 |||
∫ 1

0

AtXB1−t dt||| 6 1
2
|||AX +XA|||. (4.11)

Let us see how this can be derived easily using our technique. Using (4.9) and the
arguments in Section 3, one can see that the first inequality in (4.11) follows from
the positivity of the matrix given by (4.1). The same arguments show that the second
inequality in (4.11) would follow if we show that the matrix W with entries

wij =
2(λi − λj)

(log λi − log λj)(λi + λj)
, i 6= j,

wii = 1 for all i, (4.12)

is positive. Again making the substitution λi = exi , we see that

wij =
tanh(xi − xj)/2

(xi − xj)/2 . (4.13)

Thus the positivity of W would follow from the positive definiteness of the function

f(x) =
tanh x

x
. (4.14)

Since
tanh x

x
=

∫ 1

0

cosh αx

cosh x
dα,

Theorem 3.1 implies that f is a positive definite function. We could also prove this
directly. The function f is even, and its Fourier cosine transform is

f̂(ξ) = log coth
πξ

4
, ξ > 0; (4.15)

see [11, p. 549], [28, p. 36, Formula 7.37].
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Further refinements and generalisations of (4.11) have been obtained in [15]
and [16].

5. Generalisations of Lyapunov’s Theorem

Consider the matrix equation

AX +XA = B, (5.1)

where A is a positive matrix. This is a special case of Lyapunov’s Equation. If
we choose a basis in which A is diagonal with diagonal entries λ1, . . . , λn, then the
solution X can be written as

xij =
bij

λi + λj
.

In other words, X is the Schur product of B with the Cauchy matrix given by (3.4).
Thus X is positive if B is; a fact well-known, and of great importance, in the
Lyapunov theory.

Equations more general than (5.1) that involve polynomial expressions in A have
also been studied. The simplest such equation is

A2X +XA2 + tAXA = B. (5.2)

If A is positive, then the solution in a basis that diagonalises A can be expressed as

xij =
bij

λ2
i + λ2

j + tλiλj
.

This is the Schur product of B with the matrix Z whose entries are

zij =
1

λ2
i + λ2

j + tλiλj
. (5.3)

So if B is positive, then the solution X of the equation (5.2) would be positive if the
matrix Z is positive.

It is easy to see that for t 6 −2, the matrix Z is not positive. For t = 2, Z is
the Schur product of the Cauchy matrix (3.4) with itself, and is, therefore, positive.
What happens for other values of t? This problem was studied by Kwong [21]. He
showed by a somewhat intricate topological argument that the matrix Z is positive
if t ∈ (−2, 2], irrespective of its order n. He also showed that when n = 2, 3, 4, the
matrix Z is positive for t ∈ (−2,∞), (−2, 8) and (−2, 4), respectively, and asked for
necessary and sufficient conditions on t for Z to be positive for all n. Our next
theorem says that the matrix Z is positive for all n if and only if t ∈ (−2, 2]. The
proof is more transparent and simpler than the one given in [21] for one half of the
theorem.

Theorem 5.1. Let λi be positive numbers. Then the n × n matrices Z defined in
(5.3) are positive for all n if and only if t ∈ (−2, 2].

Proof. The matrix Z is positive if and only if the kernel

K3(x, y) =
1

e2x + e2y + texey
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is positive definite. Since

K3(x, y) =
1

ex

(
1

2 cosh(x− y) + t

)
1

ey
,

this is positive definite if and only if the function

f3(x) =
1

2 cosh x+ t
(5.4)

is positive definite. By Bochner’s Theorem, this is so if and only if f̂3(ξ) > 0. The
Fourier transform of the even function f3 can be read from Formula 1 of 3.983 in
[11, p. 538]. We have, for ξ > 0,

f̂3(ξ) =


sinh(ξ arccos t/2)

(4− t2)1/2 sinh ξπ
for −2 < t < 2,

sin(ξ arccos t/2)

(t2 − 4)1/2 sinh ξπ
for t > 2.

In the first case, f̂3(ξ) > 0 for ξ > 0. Since f̂3 is an even function, we have f̂3(ξ) > 0
for all ξ ∈ R. In the second case, f̂3(ξ) assumes negative values for ξ in a set of
positive measure.

We conclude that f3 is positive definite, and hence the matrix Z is positive for
all n if −2 < t < 2, but not if t > 2. We have already noted that Z is positive for
t = 2, but not for t < −2.

In the same spirit, we can give a proof of another theorem, proved by Kwong
[22, Theorem 10] using a different technique.

Theorem 5.2. Let λ1, λ2, . . . , λn be positive numbers. Then the n × n matrix W

with entries

wij =
λνi + λνj

λ2
i + λ2

j + tλiλj
(5.5)

is positive for −1 < ν < 1 and −2 < t < 2.

Proof. The assertion of the theorem is equivalent to saying that the kernel

K4(x, y) =
eαx + eαy

e2x + e2y + texey
(5.6)

is positive definite for −1 < α < 1, −2 < t < 2. Since

K4(x, y) =
eαx/2

ex

(
2 cosh α(x− y)/2

2 cosh(x− y) + t

)
eαy/2

ey
,

this kernel is positive definite if and only if the function

f4(x) =
cosh αx

cosh 2x+ t
(5.7)

is positive definite for −1 < α < 1, −1 < t < 1. Once again, we have an even
function whose Fourier cosine transform can be read off from Formula 6 of 3.983
in [11, p. 539]. It is convenient to make the substitution δ = arccos t. Note that
0 < δ < π if −1 < t < 1. We then have

f̂4(ξ) =
cos α

2
(π − δ) cosh ξ

2
(π + δ)− cos α

2
(π + δ) cosh ξ

2
(π − δ)

sin δ(cosh πξ − cos πα)
. (5.8)
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Since sin δ > 0 and cosh πξ > 1 > cos πα, the denominator in (5.8) is positive.
The numerator is also positive. To see this, use the identities for cos(x ± y) and
cosh(x ± y), and re-group the terms to see that the numerator is two times the
quantity

cos
απ

2
cos

αδ

2
sinh

ξπ

2
sinh

ξδ

2
+ sin

απ

2
sin

αδ

2
cosh

ξπ

2
cosh

ξδ

2
.

For −1 < α < 1 and 0 < δ < π, this quantity is positive.

Remark 5.1. An alternate proof of Theorem 5.2 that avoids the complicated
Fourier transform (5.8) goes as follows. Rewrite the expression in (5.5) as

wij =
1

λi + λj

λνi + λνj

λi + λj

∞∑
n=0

(2− t)n λni λ
n
j

(λi + λj)2n
.

The positivity of W is then a consequence of the positivity of the Cauchy matrix
given by (3.4), the matrix given by (3.6) and the Schur product theorem. We are
thankful to an anonymous referee for this elegant argument.

Remark 5.2. Once again, it is possible to obtain inequalities for operators from
Theorems 5.1 and 5.2. Some of these have been written down by Zhan [30].

Remark 5.3. The idea used by Kwong [21, 22] to prove positivity is extremely
interesting. Our approach using congruence sheds some new light on it.

Let L be the set of all functions g mapping the positive half line into itself, for
which the n× n matrix with (i, j) entry

g(λi) + g(λj)

λi + λj

is positive for all n and for all positive numbers λ1, λ2, . . . .

The set L is a closed cone, and contains the functions g(t) = 1 and g(t) = t. It
also contains the functions gs(t) = t/(t+ s) for all s > 0. To see this, note that

gs(λi) + gs(λj)

λi + λj
=

1

λi + s

(
2λiλj + s(λi + λj)

λi + λj

)
1

λj + s
.

So the positivity of the Cauchy matrix implies the positivity of this matrix (simply
using the fact that taking positive linear combinations and applying congruences
preserves positivity).

Thus L includes all operator monotone functions f, since such an f has an
integral representation

f(t) = α+ βt+

∫ ∞
0

st

t+ s
dµ(s), (5.9)

where α, β > 0 and µ is a positive measure.

This gives an alternate proof of the positivity of some of the matrices that we
have considered.

Remark 5.4. Using the same ideas, it is easy to prove the positivity of some
matrices whose entries are complex numbers with positive real part.
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Let λi be complex numbers with positive real parts. The Cauchy matrix C with
entries

cij =
1

λ̄i + λj
(5.10)

is positive. (The proof is the same as we gave for the matrix given by (3.4).) The
argument that we have outlined above can be repeated to show that the matrix with
(i, j) entry

f(λ̄i) + f(λj)

λ̄i + λj
(5.11)

is positive for all functions f of the form (5.9).

Remark 5.5. What we have said in Remark 5.4 presents a way of extending
many of the known inequalities from positive matrices to normal matrices with all
their eigenvalues in the right half plane.

6. Infinite divisibility of the Cauchy matrix

We say that a matrix A is entrywise positive if all of its entries aij are positive
numbers. For such a matrix, we denote by A(r) the matrix whose entries are arij ,
r > 0. If a matrix A is both positive semidefinite and entrywise positive, then we
say that A is infinitely divisible if A(r) is positive semidefinite for all r > 0; see [19,
p. 456].

The techniques introduced in this paper give an interesting proof of the known
fact that the Cauchy matrix C defined by (3.4) is infinitely divisible.

Once again, let λi > 0 be given, and put λi = exi , xi ∈ R. To show that C is
infinitely divisible, we need to show that for each r > 0, the kernel

K5(x, y) =
1

(ex + ey)r
(6.1)

is positive definite. Since

K5(x, y) =
1

erx/2
1

[e(x−y)/2 + e(y−x)/2]r
1

ery/2

=
1

erx/2
1

[cosh( x−y
2

)]r
1

ery/2
,

the kernel K5(x, y) is positive definite if and only if the function

f5(x) = (sech x)r (6.2)

is positive definite for r > 0. The Fourier cosine transform of the function f5 can be
read off from Formula 7.5 in [24, p. 33]. We have

f̂5(ξ) = 2r−2 1

Γ(r)

∣∣∣∣Γ( r + iξ

2

)∣∣∣∣2 . (6.3)

This shows that f5 is positive definite.
Other proofs of this property of the Cauchy matrix are outlined in [19, p. 458].
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Ann. 258 (1982) 229–241.
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